Concrete
Today, managing energy is a full time job
Published
1 year agoon
By
admin
Jamshed N Cooper, Managing Director, HeidelbergCement India Ltd. and Zuari Cement, looks at energy consumption across various areas of cement production while emphasising the need to measure energy usage in terms of consumption vis-a-vis the cost per unit.
What kind of innovations in the area of energy consumption do you wish to see in the cement industry?
In cement manufacturing process, maximum energy is consumed at the clinkering stage. Electrical energy ranges from 50 to 80 units and thermal energy ranges from 2.9 to 3.25 GigaJoule per tonne. Therefore, clinkering stage is the one that becomes the focus of attention when it comes to adopting new technologies. Cement companies are always on a lookout for energy efficient kilns that are capable of operating with a combination of fuel mix and low on energy consumption. Resultant benefit also flows in by way of low CO2 generation.
To achieve economies of scale, mass continuous production needs to be achieved. For example, a million tonne kiln in today’s time is termed as an energy guzzler. As a thumb rule, a kiln of 5500 TPD is now the entry level. The general trend is to flog kilns of 5,000 TPD to deliver 6,000 TPD at the same time keeping MTBF (Mean Time Between Failure) at maximum, one would be able to optimise energy consumption.
Significant development has happened during the years and now we have fourth generation cross bar coolers which are energy efficient. Another potential area to reduce energy is by deploying VFDs in an optimal manner. Since VFDs are costly, payback analysis on case to case basis should be taken up and replacement of direct drives to be prioritised with a goal to do away with less efficient equipment.
Post clinkering, it’s the grinding stage that consumes a good amount of electrical energy. The industry has worked upon this area and have succeeded in implementing solutions to reduce energy consumption.
At one point of time, cement grinding used to take up to 50 to 60 units of power. The latest energy efficient mills we separator are able to grind clinker consuming as low as 20 to 25 units of energy.
Deployment of vertical roller mills (VRM) and prepress roller mills have led to productivity enhancement and reduced energy consumption on per ton output.
Use of AFR (Alternative Fuel Resource), is yet another avenue available to the cement industry to reduce its thermal energy cost and reduce CO2 footprint. Although, the heat requirement for the pyro-process remains the same, energy substituted from AFR has good potential in reducing costs. Power generation from waste heat recovery (WHR). has come a long way and the cement industry has wisely adopted this technology gainfully.
The drive to reduce energy consumption by the cement industry is now compelling us to embrace digital technology. Digitalisation is fast catching up in the cement industry and is becoming the harbinger in the area of energy optimisation and reduction of CO2 footprint.
How does automation and technology help in optimising the use of energy in cement plants?
Talking about automation, earlier we used to have a significant human interface for plant operations. For example, highly skilled workmen called “Burners” were required for operating kilns. These workmen used their experienced based judgement for controlling the kiln fuel to the kiln by watching the condition of the flame. Today, all of this is controlled from the Central Control Room (CCR) using state of the art digital technology making it possible to monitor plant operations with deft accuracy and speed At HeidelbergCement, we use Px Trends – a system that gathers system data and does trend analysis based on which it provides solutions to the operators for controlling various equipment. The big data gathered over the years offers immense potential to deploy Artificial Intelligence (AI) engines and optimise various operating parameters in real time automatically. Cement manufacturing deals with large volumes of raw materials and this compromises accuracy when it comes to measurement in real time. Given the volumes processed every minute, it’s humanly not possible to regulate their flows with accuracy nor easy to predict accurately the quality of raw materials being mined. By digitalising, we have created processes and methodologies custom built by HeidelbergCement that facilitate optimisation of fuel and energy.
HeidelbergCement Group has also invested in IT companies with a long term aim to digitalise its operations and become future ready. Our Group is relentlessly working to deploy digital technology as we believe that it holds the key to a better future. Remote management of our cement mills is one such example deployed in India to achieve improved productivity and control of the processes.
What is the energy consumption in one cycle of cement manufacturing process? Which process is the most energy intensive?
On average, the electrical energy consumption for producing a tonne of cement ranges from 60 units to 90 units and is dependent on the type of cement produced and the technology deployed. In the same company, there could be multiple kilns and processes installed over different time horizons and the energy consumption for the same would not be similar. The latest technologies bank on large production lines that deliver optimal energy efficiency and would consume about 60 to 65 units.
What are the major challenges your organisation faces in managing the energy needs of the cement manufacturing process?
In today’s times and especially since the fuel prices have more than tripled, managing energy has become a fulltime job. Energy which used to constitute about 30 per cent of the manufacturing cost has now become close to 45 per cent. Therefore, managing our energy needs becomes one of the bigger challenges for us and the industry as well. HeidelbergCement has developed several ways to manage its energy needs and deploy customised systems that have been developed by the Group.
Energy consumed to manufacture a tonne of cement is measured in Kcal or Giga Joules but more relevant is how do we achieve the lowest cost per Kcal or Gj. It therefore becomes prudent to manage the fuel mix based on its landed cost at the plant. To be able to optimise the energy consumption and its cost, we constantly evaluate and keep altering our fuel recipes.
On one hand is the cost of various fuels and on the other is its consumption. In the cement manufacturing process, a lot of heat is lost if thermal radiation is not contained. “Heat Contained is Heat Saved”. Periodic and astute maintenance schedules not only hold the key to improve plant availability but go a long way in reducing energy consumption.
We constantly endeavor to replace fossil fuels with AFR and maximise power generation from WHR. Replacing high cost grid power with low cost renewable power such as solar and wind have remained in sharp focus for HeidelbergCement India. Over a period of the last few years, we have been able to reduce our energy consumption by upgrading the plant and machinery in our plants.
How does energy conservation impact the profitability of the organisation? What impact does it have on the productivity of the process?
As I mentioned, reduction in energy consumption results in reduction of manufacturing costs as well and adds to the bottom line. Replacing high cost conventional energy sources with WHR and low renewable energy sources helps us save enough to be able to invest and adapt to newer technologies. It’s a self-fulfilling cycle that improves the competitive advantage which in the Indian context is a necessity for survival and growth.
Productivity and Energy efficiency go hand in hand and every employee in our organisation understands this. Drop in productivity of any equipment gets reflected in terms of higher energy consumption per unit of cement produced. For example, a kiln of 5,000 TPD if operated to deliver an output of 5800 TPD clinker, the incremental energy requirement will be marginally higher in relation to the energy consumed when operated at 5000 TPD.
With oil prices shooting through the roof, what has been its impact on the cement industry?
Escalated fuel cost has dealt a severe blow to the cement industry. Fuel related costs have added the most to our woes. The costs have gone up by 20 per cent to 30 per cent during the last two years and continue to rise unabated. Due to overhang of capacity and intense competition, the cement industry has not been able to pass on the price increases to the consumers.
In December 2020, pet coke prices were about $50 per tonne. Today the same is close to US$ 220 which makes the increase 3x of what it was. Today imported coal is hovering in the range of US$195 to $200 per tonne. Looking at the geopolitical situation and the state of economies across the globe, it does not seem that fuel prices would relent much in the coming year or so.
While industry continues to strive and contain its costs by deploying efficient technologies, it has its limitations. The cost savings thus achieved fall significantly short when it comes to matching the pace at which raw material costs have been increasing.
The recent past declared quarterly financial results of cement companies, makes it obvious that if the industry fails to pass on the cost increases to the customers, it could have a debilitating effect on the foreseeable future of the industry.
What are the major compliances and standards for efficiently handling fuel and energy in the organisation?
The statutory compliances to be fulfilled by cement manufacturers are well defined by the respective Government agencies. When it comes to improving energy efficiencies, we have to achieve the targets under the PAT cycle. We have been witnessing over the years as to how the PAT cycle has shaped the industry’s approach to becoming energy efficient.
A few of the environmental compliances in India are more stringent than those applicable in developed economies. Nevertheless, the Indian Cement Manufacturers have time and again demonstrated their commitment to meet all the norms and standards laid down by the MoEF. As a good corporate citizen, we at HeidelbergCement take pride in ensuring total compliance with the laws of the land and the industry.
How often are audits done to ensure optimum use of energy and what is the suggested duration for the same?
We undertake all requisite audits periodically and file our reports as required under the law. As a responsible corporate, we do our own energy audits as well.
We believe in the philosophy of “Continuous Improvement”. Besides our internal standards, we benchmark our performance with our past best achievements and also that of our competitors and replicate the same. We strive to become better than the previous year.
At our India operations, we pursue a target to achieve a two-degree lower ambient temperature in our plants compared to than prevailing a Km away.
This journey we commenced in 2014 and now two of our cement plants have achieved the goal and the remaining ones are close to emerging winners. The average reduction for all our units operating in India now stands at 1.4 degree Celsius lower. This act of ours has led to creation of a cooler work environment and is resulting in higher productivity.
How have been the carbon emission norms for the cement industry in India vis-à-vis the World? What percentage of your carbon emission reduction target are you set to achieve by 2030?
The CO2 emission by the cement industry worldwide in 2018-19 reduced to 640 kg per tonne of cement from 760 kg per tonne in 1990 thereby recording a significant reduction of 16 per cent. At our India operations, we take pride in having achieved 585 kg CO2 per tonne of cement in 2018-19 from a level of 800 kg per tonne in 1990.
During FY 2021, CO2 emissions for our India operations stood at 570 kg per tonne of cement and now we strive to further reduce it to 550 kg by 2025. By 2030, we have the ambition to touch 534 kg CO2. In Central India, we manufacture 100 per cent blended cement with a CO2 footprint of 510 kg per tonne of cement pursuing a target to further reduce it to 495 kg by 2030. The group is pushing us to achieve this target and compete at Global levels.
CO2 emissions while manufacturing Cement is inevitable. When we say that we are going to achieve carbon neutrality, it implies that going forward deploying carbon capture or utilisation will come into play.
HeidelbergCement Group is poised to emerge as a pioneer in the cement industry as it continues to build the first of its king state of art carbon capture units in Norway. A delegation comprising members of DPIIT and NCCBM, visited the establishment to witness the same.
HeidelbergCement Group is working on close to eight carbon capture technologies which are at various Technological Readiness Levels (TRLs).
These include processes like post combustion, oxy fuel, lilac technology, direct separation, micro algae, hydrogen burning and kiln electrification. These pioneering efforts of our Group are poised to become a boon for the cement industry and the society as well.
Our slogan “Materials to Build Our Future” energises us day after day to renew our commitment to “making the world a wonderful place to live for our generations to come”.
Concrete
Delhi to hold FCC’s India Roads Conference on 12th Oct
Published
1 day agoon
September 22, 2023By
admin
To be hosted at Hotel Shangri-La Eros, New Delhi, the conference will witness more than 25 experts, policymakers, and industry leaders discussing innovative technologies, sustainable practices, and funding opportunities that promise to revolutionise the road construction landscape in India.
Mumbai (India)
FIRST Construction Council (FCC) – an infrastructure think tank – will be hosting the 13th India Roads Conference (IRC) on October 12, 2023 at Hotel Shangri-La Eros, New Delhi, to explore new opportunities in the road construction business. To be hosted as a part of India Construction Festival 2023 (ICF 2023) along with Construction World Global Awards 2023 (CWGA 2023) and Equipment India Awards 2023 (EI Awards 2023), IRC 2023 will focus on transforming India’s road infrastructure by presenting an unique platform for networking, knowledge-sharing, and collaboration.
India’s road development sector is poised for unprecedented growth, housing one of the largest road networks in the world, spanning over 6.3 million km. The National Infrastructure Pipeline (NIP) forecasts a substantial investment of Rs 111 trillion in infrastructure projects during fiscals 2020-25, with a a significant portion allocated to the road sector. Against this backdrop, the 13th India Roads Conference intends to discover the abundant market opportunities, the latest trends, and how the industry can capitalise on this thriving sector.
Renowned experts, policymakers, and industry leaders will converge to discuss innovative technologies, sustainable practices, and funding opportunities that promise to revolutionise the road construction landscape in India. Some of the confirmed speakers for IRC 2023 are Lt. General Harpal Singh, Former Engineer-In-Chief, Indian Army; Dr Manoranjan Parida, Director, CSIR-CRRI; Ajay Kumar Mishra, President, Dilip Buildcon; RK Pandey, Former Member Projects, NHAI & Former ADG, MoRTH; SK Nirmal, Secretary General, India Roads Congress; Premjit Singh, CEO – Transportation, Welspun Enterprises; TR Rao, Director (Infra), PNC Infratech; Hardik Agrawal, Director at Dineshchandra R Agrawal Infracon Pvt Ltd, Thumu Karthik, CEO, LivSYT (DevIndia Technologies); Pawan Kant, CEO, LTIDPL IndVIT Services Ltd (IM to IndInfraVIT Trust); and Palash Srivastava, CEO, IIFCL Projects among others.
The roadmap of the future
India currently has one of the largest road networks in the world, spanning over 6.3 million km. Of this, around 2 per cent are National Highways, 3 per cent are State Highways and the rest are part of the district and rural road network. Over 64.5 per cent of all goods and 90 per cent of passenger traffic move by road.
India has seen significant growth in its road network over the last five years, as the government has given priority to this sector. For the financial year 2022-23, the Central budget allocated more than Rs 2.70 trillion to the Ministry of Road Transport and Highways (MoRTH). The importance attached to the sector is also evinced by the fact that it accounts for approximately 18 per cent of the National Infrastructure Pipeline (NIP). Various state governments are also developing critical road corridors as a catalyst of economic development. Lately the focus has been on road safety, green initiatives, digital transformation and augmentation of funding sources.
Explaining the significance of IRC 2023, Pratap Padode, President, FIRST Construction Council, said, “India, not China, has the second-largest road network in the world after the US, spanning about 63.32 lakh km. NHAI awarded total projects of 6,003 km with a value of Rs 1.26 trillion during FY23. A provisional target of constructing about 13,800 km has been set for 2023-24. This presents excellent opportunity for all the stakeholders in the sector. India Roads Conference 2023 will explore ways on how to build a robust, safe road network by using latest technologies while meeting environment norms.”
In line with the market trends, experts during the India Roads Conference 2023 will deliberate on following relevant topics:
- Shaping regulations for safe and sustainable roads
- Revolutionising road construction with technology
- Accelerating road infrastructure with better financing opportunities
- Safer roads: Innovative designs for enhanced safety
Attendees can gain valuable insights from dynamic panel discussions, insightful keynotes, and cutting-edge innovation showcases. Thus, by participating in India Roads Conference 2023, delegates can stay ahead of industry trends, forge valuable partnerships, and contribute to building safer, greener, and more efficient road networks.
IRC 2023 is supported by Tiki Tar and Shell India (Silver Partner), Tata Hitachi (Equipment Partner), PNC Infratech Ltd (Associate Partner), and LivSYT (Technology Partner).
About India Construction Festival 2023
Organised by the FIRST Construction Council in collaboration with Construction World and Equipment India magazines, the 9th India Construction Festival (ICF) stands as a cornerstone in the construction and infrastructure industry. India Construction Festival serves as the single largest platform for celebrating India’s remarkable infrastructure journey, bringing together all stakeholders in the industry under one roof. This comprehensive approach fosters collaboration, facilitates knowledge sharing, and creates networking opportunities that are pivotal for the growth and development of India’s infrastructure sector. ICF 2023 will comprise three major events: 13th India Roads Conference, 11th Equipment India Awards and 21st Construction World Global Awards.
About FIRST Construction Council:
FIRST Construction Council (FCC), an infrastructure think tank established in 2003, focuses on providing the latest updates on the construction industry in India, and is dedicated to promoting its causes and needs. FCC provides a platform to promote the adoption of best practices and be the torchbearer for all policy initiatives that are needed to enhance the importance and welfare of the construction industry and the industry’s unified voice. FCC also hosts conferences/events like India Construction Festival, Metro Rail Conference, Infrastructure Today Conclave 2023, etc.

Adani Cement is playing an instrumental role in responsible energy management in the Indian industrial sector. Here’s looking at their comprehensive efforts at sourcing alternative fuel and energy and optimising energy consumption in the cement manufacturing process.
Cement production stands as a prime example of an energy-intensive industry, where the role of energy is paramount in shaping both production costs and sustainability efforts.
One essential application of energy is in the transformation of raw materials, including limestone and additives, into clinker. This heat-intensive process is fundamental to cement production. Electricity plays a critical role in various phases of manufacturing. From grinding raw materials to achieving the final cement product, electricity consumption ranges between 56 to 73 kWh per metric tonne. Notably, the stages of raw material grinding, kiln operation and cement grinding contribute a significant 75-80 per cent to the overall electrical energy consumption.
Our dependence on energy is underscored by the consumption of fuels. For our 3 million tonnes per annum (MTPA) kilns, the daily consumption of fuels fluctuates between 1200 to 1600 tonnes. This sizeable amount of fuel is a prerequisite for sustaining our production operations. The electricity requirements are equally substantial. It surpasses 70 units of electricity per tonne of cement produced, encompassing the entire manufacturing cycle.
However, we are committed to enhancing our energy efficiency. Our efforts include ongoing initiatives to optimise existing installations and systems. Notable investments have been directed toward activities like cooler replacement, burner upgrades, and the incorporation of advanced thin liners in the cement mill. Several of these initiatives have already been implemented, underscoring our dedication to improved energy management.
Diverse Energy Sources
Our organisation employs a diverse array of energy sources to meet its manufacturing requirements, aligning with our commitment to sustainability and responsible energy management. At the heart of our production process, primary heat comes from fossil fuels, which are pivotal in the clinkering stage of cement manufacturing. We are progressively integrating alternative fuels, and we have set a robust roadmap to escalate this figure from present 7 per cent to 25 per cent. In terms of electrical energy, we draw power from both our captive/thermal power plant and the state grid to ensure a reliable supply.
Our emphasis on green energy is a cornerstone of our energy strategy. Solar energy plays a significant role as we harness its power through solar panels to contribute substantially to our electricity requirements. Additionally, wind energy further enriches our energy mix, tapping into wind turbines’ potential. Leveraging waste heat recovery systems (WHRS), we are innovatively converting waste heat from our processes into usable
energy, thereby reducing waste and optimising energy utilisation.
Sourcing Energy Sustainably
Our energy sourcing strategy is a comprehensive blend of primary and secondary sources, underscoring our dedication to both sustainability and efficiency. In the pivotal clinkering phase of cement production, our primary heat source encompasses a mixture of fossil and alternative fuels.
We engage in co-processing alternative fuels in our cement kilns. This includes a diverse spectrum of waste materials, like hazardous and non-hazardous waste from industrial processes, segregated municipal waste sourced from both fresh and legacy sites, as well as biomass like rice husk, soya husk and tuar husk. This innovative stride not only optimises energy use but also significantly contributes to conservation of natural resources and reduction of CO2 emissions.
Currently, around 7 per cent of our total heat requirement is met through alternative fuels, and our roadmap outlines a determined path to elevate this ratio to 25 per cent, aligning seamlessly with our mission to curtail environmental impact and foster sustainable practices. Our energy strategy embraces the robust use of green energy, comprising of solar, wind and WHRS. We are steadfastly working towards elevating both solar and WHRS contributions to at least 40 per cent of our total electricity demand.
All these initiatives serve as a testament to our unwavering commitment to responsible energy management and the stewardship of our environment.
Impact on Cost
The introduction of greener sources of electricity has had a negligible impact on our operations, whereas the influence is more nuanced in the context of our primary energy source, specifically heat generation. For instance, incorporating even a minor proportion of 1 per cent alternative fuel in clinker manufacturing could marginally increase thermal energy by approximately 1-1.5 kcal per kg clinker. It is important to note that this effect might not hold true for alternative fuels like dry biomass due to their distinct characteristics. However, our kiln system is equipped with inherent capabilities designed to mitigate such impacts, ensuring a balanced approach.
Considering the inherent volatility of fuel prices, the increased integration of green energy into our processes yields a significant advantage in terms of reducing the overall cost of cement production. By relying more on these sustainable sources, we can potentially mitigate the financial fluctuations associated with traditional fuel sources, leading to more stable and predictable production costs.
Optimising the Use of Energy
Automation and technology play an instrumental role in optimising energy utilisation within cement plants. These advancements contribute to enhanced productivity and heightened system reliability, creating a stable manufacturing environment. The harmonious synergy between automation and technology facilitates the most efficient allocation of energy resources, minimising wastage and enhancing overall energy efficiency. In line with this, we have implemented High-Level Control (HLC) systems for each kiln and cement mill circuit. These technologies not only streamline operations but also empower us to respond proactively to energy consumption patterns, driving us closer to our efficiency and sustainability goals.
Hurdles along the Way
The availability of fuels, particularly coal and petcoke, presents a significant challenge due to factors such as supply constraints and the volatility of their prices. This unpredictability in fuel availability and costs can impact the stability of our operations and cost structures. Additionally, the limited quantity of linkage coal further exacerbates this challenge, necessitating careful resource management and exploring alternative options.
Another notable challenge arises from the non-uniform regulatory procedures governing the utilisation of renewable power sources, namely solar and wind energy. The intricacies of these regulations vary geographically. This disparity introduces complexities in adopting renewable energy solutions consistently across regions, potentially impeding a streamlined transition to cleaner energy sources. Overcoming these regulatory hurdles demands strategic coordination and harmonisation of policies to ensure a more cohesive and efficient integration of renewable energy into our operations.
Compliance and Regulations
Effective energy management is a fundamental aspect of our operations, supported by well-established systems and dedicated professionals. Certified energy managers are stationed at each of our locations, underscoring our commitment to optimal energy utilisation and sustainability. Regular energy audits are a crucial part of our practices, with each site undergoing thorough assessments. The insights derived from
these audits inform actionable plans that are diligently tracked and implemented to enhance energy efficiency.
Furthermore, our commitment to responsible energy management is evident through our collaboration with the Bureau of Energy Efficiency (BEE). We actively share data on both electrical and thermal energy consumption with the BEE, aligning with the regulations and objectives of the Perform Achieve and Trade (PAT) programme. This proactive approach reinforces our dedication to not only internal efficiency but also broader national energy goals.
Adhering to the ‘golden rule’ of energy efficiency improvement, we place stringent monitoring and controls in place. This ensures that our energy management strategies remain dynamic and responsive, adapting to changes and consistently
driving efficiency enhancements. Our comprehensive approach to energy management is a testament to our commitment to sustainable practices, cost optimisation and environmental responsibility.
We employ an internal digital dashboard to meticulously track daily energy consumption encompassing both heat and electricity. However, the benchmarking of thermal and electrical
energy utilisation occurs monthly, both within our organisation and within the broader external context. This practice culminates in the acknowledgment of exceptional accomplishments by the most improved plant team through internal commendations and accolades.
Furthermore, our commitment to optimal energy utilisation is evidenced by annual external energy audits. These audits serve as a comprehensive evaluation of our energy practices, ensuring alignment with stringent standards. The resulting action plan, aimed at continuous enhancement, undergoes a rigorous assessment every three months. This iterative approach underscores our unwavering dedication to refining energy efficiency and reinforcing our sustainable commitments.
Conclusion
In the context of the cement industry, driving advancements in energy consumption is imperative. Regarding heat, it is essential to harness technological progress to curtail energy usage. Shifting the focus to electricity consumption, the installation of green energy sources like solar, wind and WRHS stand out as a promising approach.
Further, by enhancing overall efficiency of individual components, striving to minimise the impact of fluctuations in process parameters collectively hold the potential to revolutionise
energy consumption within the cement industry, driving it towards a more sustainable and
efficient future.
(Communication by the management of the company)

Concrete is the cornerstone of modern construction as it offers both utility and creativity. In the evolving landscape of urbanisation and infrastructure, precast concrete is playing an increasingly important role. From awe-inspiring skyscrapers to intricate facades and artistic installations, the potential of concrete and precast concrete knows no bounds. In this feature, ICR explores how the future of construction is shaping up.
Precast concrete shapes are custom-made concrete components that are produced in a controlled factory environment and then transported to the construction site for installation. These specialised concrete shapes are designed to meet specific dimensions and project requirements, offering several advantages such as enhanced quality control, reduced construction time and improved durability.
In the Indian cement and construction industry, precast concrete shapes play a vital role in expediting construction processes and ensuring quality outcomes. Various types of precast concrete shapes are widely employed to meet the diverse needs of construction projects in the country.
These include precast concrete panels, which are used extensively for building facades and walls, offering both durability and aesthetic appeal. Precast beams and columns are commonly used in structural elements, providing robust support and speeding up construction timelines.
Speaking about quality control, Rais Khan, CEO, Dynamic Precast, said, “We have a Quality Manual Plan in our system. Presently, a testing laboratory is active in our manufacturing premise. Regular tests for raw materials and concrete and quality checks are done here using tools, equipment and calibrated testing machines.”
“Quality checks in our factory starts from system update, raw materials, measurements and weighing process, compaction and ultimately in finished goods,” he added.
Additionally, precast modular units, such as interlocking blocks and paving stones, are utilised for landscaping, pavements and retaining walls, offering convenience in installation and durability. In the Indian context, precast concrete shapes are particularly valuable for addressing the growing demand for rapid and cost-effective construction solutions while maintaining high-quality standards. They also contribute to the versatility and sustainability of construction practices in a rapidly developing nation like India.
Narayan Saboo, Chairman, Bigbloc Construction, said, “AAC blocks are eco-friendly and sustainable, these are green building materials, light weight, and less transport cost. This material warms the room during the winter and cools it during the summer, reducing air-conditioning system usage by at least 25 per cent.”
“Non-toxic and pest repellent, they prevent soil erosion and consume less water. When red bricks are used, it results in an upper layer of soil erosion, which makes the land barren or infertile in the long run,” he added.
Speaking about the challenges faced by precast manufacturers, Vijay Shah, Managing Partner, India Precast, “A major challenge in the precast industry is the requirement of high volumes, repeatedly. The initial investment for the same is high. It becomes more suitable for the B and C types of city transports and handling at sites.”
He further elaborated, “One of the most significant challenges in precast detailing is the design and engineering complexities of creating precast components. Precast components must be designed and engineered to meet specific load and structural requirements, which can be complicated and time-consuming. Additionally, precast elements must be prepared to fit together seamlessly during installation, which requires precise measurements and accurate detailing.”
GLOBAL PRECAST PERSPECTIVE
According to a research report by Market and Market, the global precast concrete market size is projected to grow from US$144.6 billion in 2022 to US$198.9 billion by 2027, at a CAGR of 6.6 per cent from 2022 to 2027. The precast concrete market is expected to witness significant growth in the future as concrete is a natural building material which is 100 per cent recyclable and in combination with steel, it is a safe, sustainable and earthquake-resistant material with little wear and tear.
Most of the precast concrete market worldwide in 2022 was being used for commercial buildings. According to Extrapolate’s global precast concrete market research report, that material was valued at US$42 billion in its use for housing construction, and at US$29 billion for industrial buildings.
The market size in the Asia Pacific region stood at US$46.43 billion in 2020. It is anticipated to be the fastest growing region during the forecast period. Rising investments by countries such as China, India, and Japan to develop infrastructure will increase the demand for the product. Additionally, the growing residential sector in these countries will increase demand for precast concrete due to its cost efficiency, thereby adding impetus to the market.
MANUFACTURING OF PRECAST
The manufacturing of precast concrete shapes involves several techniques and processes to ensure precise dimensions, structural integrity and durability. The specific techniques used can vary depending on the type of precast product being produced, but some common methods include:
Formwork: Formwork is used to create moulds into which concrete is poured and allowed to set. These moulds can be made of various materials, including steel, wood or reusable plastic. The choice of formwork depends on factors such as the complexity of the shape and the number of repetitions required.
Reinforcement: Many precast concrete products, especially structural elements like beams, columns, and slabs, incorporate steel reinforcement (rebar) to enhance their strength and load-bearing capacity. Proper placement of rebar within the formwork is critical.
Concrete mixing: Precise control over the concrete mix is essential to ensure consistency and strength. The concrete mix design may vary depending on the specific requirements of the precast product. Advanced techniques like self-consolidating concrete (SCC) are sometimes used to eliminate the need for vibration during casting.
Casting and pouring: Once the formwork is prepared and reinforcement is in place, the concrete is poured into the molds. Special care is taken to eliminate air voids and ensure uniform distribution of concrete within the formwork.
Curing: Proper curing is crucial to achieving the desired strength and durability of precast concrete. Various curing methods are employed, including steam curing, water curing, and the use of curing compounds. Curing time and temperature are carefully controlled.
Demoulding: After the concrete has sufficiently cured, the precast shape is removed from the mould. This step requires care to avoid damaging the newly cast concrete product.
Surface finishing: Depending on the product’s intended use and appearance, additional finishing techniques may be applied. These can include sandblasting, acid etching or the application of coatings or paints.
Quality control and testing: Stringent quality control measures are implemented throughout the manufacturing process. This includes regular testing of the concrete mix, inspection of formwork and quality checks on the finished precast shapes to ensure they meet design specifications and structural standards.
Transportation and installation: Precast shapes are transported to the construction site and installed according to project requirements. Care is taken to ensure safe handling and transportation to prevent damage.
Joining and sealing: In cases where multiple precast elements need to be assembled on-site, techniques like welding, grouting, or adhesive bonding may be used to join them together securely. Proper seals are applied to prevent water infiltration and ensure structural integrity.
Post-installation finishing: Some precast elements, especially architectural features, may undergo additional finishing or detailing after installation to achieve the desired aesthetic appearance.
These techniques, when executed with precision and attention to detail, result in high-quality precast concrete shapes that offer numerous advantages in construction, including time savings, consistency, and structural reliability. Additionally, advancements in technology and automation have further improved the efficiency and quality of precast concrete manufacturing processes.
COMPOSITION AND QUALITY OF PRECAST SHAPES
The composition of materials employed in the creation of precast shapes is a pivotal factor, tailored to meet specific construction needs and applications. Fundamental to this composition is Portland cement, serving as the binding agent that brings the components together. Aggregates, encompassing both fine materials like sand and coarser substances like crushed stone or gravel, provide bulk and strength to the concrete mixture. The precise selection of aggregates can influence the texture and overall properties of the precast product. Water, meanwhile, plays a crucial role in the hydration process of cement, facilitating the concrete’s setting. Its quality, cleanliness and chemical characteristics can significantly impact the final product’s durability and strength.
Chemical admixtures, including plasticisers, accelerators, retarders, air-entraining agents and superplasticisers, introduce versatility to concrete properties, enhancing workability, curing speed, and resistance to external factors like freeze-thaw cycles. For structural integrity, precast elements like beams and columns often incorporate steel reinforcement, in the form of rebar or mesh, to bolster tensile strength. For aesthetic considerations, pigments or colorants can be integrated into the mix, allowing for the achievement of specific colours or decorative effects in architectural precast elements. Additionally, specialised applications may necessitate the incorporation of fibres or chemical adhesives and sealants to enhance strength, control cracking or bond joints effectively. Form release agents are used to prevent adherence to moulds during curing, ensuring easy removal of the precast shape, while for specialised environments, custom concrete mixes and additives are employed to tailor the product’s properties to withstand specific challenges, such as high temperatures, acid exposure, or aggressive chemicals. Precise mix designs are meticulously crafted by engineers and concrete specialists to align with project requirements, assuring the quality, strength and durability of the resulting precast shapes.
Precast concrete has cement as the key raw material. The kind of cement used to make the concrete is what defines its properties and quality. Cement should comply with the requirements of IS 456;2000, for gaining satisfactory performance in a structure. The Ordinary Portland Cements (OPC) 43 grade (IS:8112) and 53 (IS:12269) are normally used in precast concrete construction for general purpose. Portland Pozzolana Cement (IS 1481) and Portland Slag Cement (IS 455) are preferred in making precast concrete for structures in polluted environments. High silica cement is advised to be avoided as it suffers reversion and loses a large portion of its strength in warm and humid conditions.
Supplementary cementitious materials (SCM) like fly ash, ground granulated blast- furnace slag, metakaolin and silica fume enhance the results of ordinary portland cement (OPC) hydration reactions in concrete and are either incorporated into concrete mixes as a partial replacement for portland cement or blended into the cement during manufacturing. They should comply with the requirements of the appropriate parts of IS;3812 for fly ash, IS;12089 for GGBS and IS;15388 for silica fumes. The benefits of supplementary cementitious materials include reduced cost, improved workability, lower heat of hydration, improved durability and chemical resistance.
TYPES OF PRECAST
In the Indian construction industry, a wide variety of precast concrete products are manufactured to meet the demands of diverse projects. These precast elements include panels, beams, and columns, which serve as essential structural components, providing both strength and speed in construction.
Precast slabs are commonly used for flooring and roofing applications, offering efficient solutions for horizontal surfaces. Precast staircases and boundary walls are also widely produced, ensuring durability and quick installation. Furthermore, precast drainage elements, such as manholes and stormwater drains, help manage water and sewage systems effectively.
Interlocking pavers, blocks, and decorative elements enhance landscaping and pavement options, while precast septic tanks cater to sewage treatment needs. Additionally, precast boundary markers, kerbstones, retaining walls and modular housing units address various infrastructure and housing requirements. These precast solutions not only save time but also contribute to sustainable construction practices in India’s rapidly developing urban and rural areas.
Precast concrete shapes play a multifaceted role in the construction industry, serving a diverse array of purposes. These shapes are deployed in various applications, including building facades and cladding, where precast panels and architectural elements not only enhance aesthetics but also provide weather-resistant exteriors. Precast concrete beams, columns and slabs serve as robust structural components, expediting construction and delivering dependable support for commercial buildings, bridges, and parking structures. Moreover, precast slabs find their niche in flooring and roofing applications, offering superior load-bearing capabilities and thermal insulation.
Aayush Patel, Director, Atul Projects India, explained, “The use of precast shapes for multi-story elevations provides precise and diverse solutions for a variety of design objectives. However, it comes with obstacles such as extensive design and technical needs, communication barriers among multiple teams, assuring quality control, managing complex scheduling and sequencing, and dealing with limited on-site space and transportation restrictions. Overcoming these issues is critical for fully utilising the benefits of recast detailing in multi-story projects.”
Architectural details like precast concrete staircases, balustrades, and handrails ensure both safety and visual appeal in access points within buildings and public spaces. Boundary walls constructed from precast concrete provide security and privacy while seamlessly blending with the surroundings. In infrastructure projects, precast concrete comes to the fore with elements such as manholes, stormwater drains, and culverts, adeptly managing water and sewage systems.
For landscaping and pavements, interlocking precast concrete pavers and blocks offer an easy-to-install, aesthetically pleasing solution for walkways, driveways, and outdoor spaces. Additionally, precast concrete septic tanks meet sanitation standards in residential and rural settings. Precast concrete’s versatility extends to decorative architectural features like pillars, statues, and ornamental facades, elevating the visual appeal of structures and public areas.
In civil engineering, precast concrete retaining walls stabilise slopes, prevent erosion and create terraced landscapes efficiently. Moreover, precast modular housing units are emerging as a rapid, cost-effective response to housing shortages, manufactured with embedded infrastructure systems for swift on-site assembly. These versatile precast concrete components are also widely used in infrastructure projects, encompassing utility vaults, sound barriers, bridge components and highway barriers. The myriad applications of precast concrete shapes contribute significantly to construction efficiency, quality and architectural diversity, making them an asset in the construction industry.
PRECAST AND SUSTAINABILITY
Precast concrete shapes are integral to promoting sustainability in the construction industry. These components contribute to resource efficiency by minimising material waste and often incorporating locally sourced or recycled content. Energy-efficient manufacturing processes and facilities reduce energy consumption during production, while the reduced need for on-site construction and transportation lowers greenhouse gas emissions. The durability of precast concrete structures translates to fewer replacements and repairs, reducing the environmental footprint over their lifecycle. Moreover, the precast industry supports local economies through job creation and fosters design flexibility, allowing for energy-efficient building designs.
The low-maintenance nature of precast products, coupled with their recyclability, further underscores their sustainability. Precast concrete shapes align with green building certification systems, such as LEED, and enhance site management by creating cleaner and more organised construction sites. All these factors make precast concrete a sustainable choice that contributes to environmentally responsible and efficient construction practices.
CONCLUSION
In the ever-evolving world of construction, precast concrete shapes have emerged as champions of sustainability and efficiency. These versatile components optimise resource usage, reduce energy consumption and boast remarkable durability, aligning seamlessly with the principles of green building and environmental responsibility.
By fostering resource efficiency, precast shapes minimise waste generation and make efficient use of locally sourced or recycled materials. The energy-efficient manufacturing processes employed in precast facilities help lower energy consumption, while the reduced reliance on on-site construction cuts down greenhouse gas emissions. This longevity, combined with the low maintenance requirements and recyclability of precast products, emphasises their sustainability.
As the construction industry continues to embrace environmentally conscious practices, the precast concrete sector is poised for growth, promising innovations that will further revolutionise sustainable building solutions. The future undoubtedly holds exciting prospects for an industry that is shaping the green, efficient and resilient construction landscape of tomorrow.
-Kanika Mathur

Delhi to hold FCC’s India Roads Conference on 12th Oct

Responsible Energy Management

Concrete Reshaped

Technology has the potential to revolutionise the energy sector

Evolving with Time

Environment Ministry revises rules of solid waste management

M-sand boards new terrain

Process and quality optimization in cement plant.

Concrete: A Highly Sustainable Building Material
