Connect with us

Concrete

Material Benefits

Published

on

Environmental concerns and depleting natural resources, and the impact of cement production on the two are imminent issues that cement companies need to address on priority. Supplementary cementitious materials procured from industrial wastes is one way of looking at this colossal problem. ICR examines the changes made in company protocol with regards to sourcing of alternative materials and their overall impact.

Before we dive into the subject of supplementary cementitious materials, let us look at some of the key facts about cement production. India is the second largest producer of cement in the world. Limestone is at the core of its production as it is the prime raw material used for production. The process of making cement involves extraction of this limestone from its quarries, crushing and processing it at the cement plant under extreme temperatures for calcination to form what is called a clinker (a mixture of raw materials like limestone, silica, iron ore, fly ash etc.). This clinker is then cooled down and is ground to a fine powder and mixed with gypsum or other additives to make the final product – cement. The reason we are elucidating the cement production process is to look at how supplementary cementitious materials or SCM can be incorporated into it to make the process not only more cost effective but also environmentally responsible.
Limestone is a sedimentary rock composed typically of calcium carbonate (calcite) or the double carbonate of calcium and magnesium (dolomite). It is commonly composed of tiny fossils, shell fragments and other fossilised debris. This sediment is usually available in grey colour, but it may also be white, yellow or brown. It is a soft rock and is easily scratched. It will effervesce readily in any common acid. This naturally occurring deposit is depleting from the environment due to its extensive use in cement manufacturing process. Its extraction is the cause of dust pollution as well as some erosion in the nearby areas.
The process of calcination while manufacturing cement is a major contributor to carbon emission in the environment. This gives rise to the need of using alternative raw materials to the cement making process. The industry is advancing in its production swiftly to meet the needs of development happening across the nation.
According to the India Brand Equity Foundation (IBEF), the cement demand in India is estimated to touch 419.92 MT by FY 2027. As India has a high quantity and quality of limestone deposits through-out the country, the cement industry promises huge potential for growth. India has a total of 210 large cement plants out of which 77 are in the states of Andhra Pradesh, Rajasthan, and Tamil Nadu. Nearly 33 per cent of India’s cement production capacity is based in South India, 22 per cent in North India, 13 per cent in Central and West India, and the remaining 19 per cent is based in East India. As per Crisil Ratings, the Indian cement industry is likely to add approximately 80 million tonnes (MT) capacity by FY24, the highest since the last 10 years, driven by increasing spending on housing and infrastructure activities.
The Indian cement production overall stood at 263.12 million tonnes in 2021, and it is expected to reach 404.11 million tonnes by 2029 with a CAGR of 5.51 per cent during the forecast period, suggests a report published by Maximize Market Research in September 2022.
The production capacity and demand of cement in the country is increasing and is expected to grow at a steady rate in the years to come. The country is moving towards urbanisation and is building projects for the development of the nation. However, it is also imperative that the industry holds accountability of the environment and emission from this production activity and creates sustainable solutions to meet the demands as well as safeguard the planet as well.
India has pledged to achieve Net Zero by 2070 at the Glasgow Climate summits.
Environmental concerns and depleting natural resources are edging the cement industry to look at alternative materials for their manufacturing process.

Composition and Impact of SCM
Cement manufacturers know that to reduce CO2 emissions in the process of cement making, it is essential to change its composition. The raw mix of approximately 90 per cent limestone should be substituted with other materials with similar properties.
These materials, known as supplementary cementitious materials contribute to the properties of hardened concrete through hydraulic or pozzolanic activity. Typical examples are fly ashes, slag cement (ground, granulated blast-furnace slag), silica fumes etc. These can be used individually with portland or blended cement or in different combinations. SCM are often added to concrete to make concrete mixtures more economical, reduce permeability, increase strength, or influence other concrete properties. SCM may be added during cement manufacturing for a more consistent blended cement.
Some of the commonly used supplementary cementitious materials are:
Fly Ash: This material contains a substantial amount of silicone dioxide and calcium oxide. It is a fine, light, glassy residue, most widely used SCM in concrete and is a byproduct of coal combustion in electric power generating plants. Fly ash can compensate for fine materials that may be lacking in sand quantities and can be very beneficial
in improving the flowability and finishability of concrete mixtures.
Ground Granulated Blast-furnace Slag (GGBS): It is a by-product of the iron and steel industry. In the blast furnace, slag floats to the top of the iron and is removed. GGBS is produced through quenching the molten slag in water and then grinding it into a fine powder. Chemically it is like, but less reactive than, Portland cement.
Silica Fume: It is a by-product from the manufacture of silicon. It is an extremely fine powder (as fine as smoke) and therefore it is used in concrete production in either a densified or slurry form.
Slag: It is a by-product of the production of iron and steel in blast furnaces. The benefits of the partial substitution of slag for cement are improved durability, reduction of life-cycle costs, lower maintenance costs, and greater concrete sustainability. The molten slag is cooled in water and then ground into a fine powder.
Limestone Fines: These can be added in a proportion of 6 to 10 per cent as a constituent to produce cement. The advantages of using these fines are reduced energy consumption and reduced CO2 emissions.
Gypsum: A useful binding material, commonly known as the Plaster of Paris (POP), it requires a temperature of about 150oC to convert itself into a binding material. Retarded plaster of Paris can be used on its own or mixed with up to three parts of clean, sharp sand. Hydrated lime can be added to increase its strength and water resistance.
Cement Kiln Dust: Kilns are the location where clinkerisation takes place. It leaves behind dust that contains raw feed, partially calcined feed and clinker dust, free lime, alkali sulphate salts, and other volatile compounds. After the alkalis are removed, the cement kiln dust can be blended with clinker to produce acceptable cement.
Pozzolanas: These materials are not necessarily cementitious. However, they can combine chemically with lime in the presence of water to form a strong cementing material. They can include – volcanic ash, power station fly ash, burnt clays, ash from burnt plant materials or siliceous earth materials.
SCM used in conjunction with Portland cement contribute beneficially to the properties of concrete through hydraulic or pozzolanic activity or both. Hydraulic materials (e.g., slag cement), like Portland cement itself, will set and harden when mixed with water. Pozzolanic materials require a source of calcium hydroxide (CH) to set, which is supplied by Portland cement during the hydration process. The right dosage of strategically chosen SCM can improve both the fresh and hardened properties of a concrete mixture.
Prakhar Shrivastava, Head – Corporate Quality, JK Cement Limited, says, “We manufacture Portland Pozzolana Cement (PPC) from all our plants with addition of flyash up to 35 per cent and PPC in premium category with 20 per cent flyash to promote usage of only blended cement to fulfil customer requirements by achieving equivalent strength properties of Ordinary Portland Cement (OPC). At our south India plant in Muddapur, we also manufacture Portland Slag Cement (PSC) with the addition of slag at approximately 65 per cent, meeting all the internal product quality norms.”
“The production of Ordinary Portland Cement (OPC) is continuously declining, with a simultaneous increase in the production of blended cement like PPC, PSC, and Composite Cement based on flyash and granulated blast furnace slag. SCMs are increasingly used to minimise cement-related CO2 emissions and increase plant efficiency from an economic and environmental perspective,” he adds.

Demand for cement in India is estimated to touch 419.92 MT by FY 2027.
Table 1: Effects of SCMs on fresh concrete properties
Table 2: Effects of SCMs on hardened concrete properties


Achieving Sustainability through Substitution
Cement is the most used man-made material globally. The rising demand for infrastructure and development of the nation is showing a clear indication of increased production of cement, thus raising concerns about natural resources, environment, and emission of carbon. One of the widely adopted solutions for ensuring sustainability in cement manufacturing is reducing the clinker-to-cement ratio by adding supplementary cementitious materials.
In his authored article, Dr S B Hegde, Visiting Professor, Pennsylvania State University, United States of America, states, “Concrete is one of the most widely used materials after water worldwide by volume. Portland cement production is highly energy intensive, and emits significant amounts of CO2 through the calcination process, which contributes substantial adverse impact on global warming. Efforts are needed to produce more ecologically friendly concrete with improved performance and durability.”

CO2 emission from cement production are the third largest source of difficult-to-eliminate emissions globally


“The conventional SCM are not enough considering the quantity of concrete requirement for infra development worldwide and to mitigate global warming issue; there is a pressing need to explore the new SCM, its characterisation, performance evaluation, standardisation and adoption,” he adds.
The CO2 emissions from cement production are the third largest source of difficult-to-eliminate emissions, after load-following electricity and iron and steel. Beyond greenhouse gas (GHG) emissions, the production of concrete and mortar causes over approximately three per cent of global energy demand, over five per cent of global anthropogenic particulate matter (PM10) emissions, and approximately two per cent of global water withdrawals. These environmental impacts may be reduced through various technical (energy, emissions, and material efficiency) measures, of which cementitious materials (CM) substitution (including complete and partial substitution) is one of the most promising.
The manufacturing process of cement can become sustainable by measuring the impact of supplementary materials that can be added to the raw meal of cement. Various materials, naturally occurring or man-made or wastes should be studied and consequently should be included in the cement production process to create blended cements that not only meet the rising demands of the world in terms of quality and strength, but at the same time meet environmental concerns. Research, innovation and technology is key to making a difference in the segment of cement manufacturing by studying more materials that can be used as supplementary materials in cement and concrete, by crafting new compositions and blends of cement and crafting equipment that support the same.
One of the most important ways of reducing carbon emission in cement manufacturing is the use of alternative raw materials from various other industries. This gives way to a circular economy, utilising waste from other industries and bettering the environment with reduced emission of harmful gases, especially carbon dioxide. It also helps the avoidance of landfills or ocean pollution, as waste of industries is utilised in manufacturing cement. Overall, new compositions of cement are the future. The nation’s economy can greatly benefit from a growing cement industry and business sector, however, it should pay keen attention on finding pathways to safeguard the environment its people reside in.

-Kanika Mathur

Concrete

Delhi to hold FCC’s India Roads Conference on 12th Oct

Published

on

By

To be hosted at Hotel Shangri-La Eros, New Delhi, the conference will witness more than 25 experts, policymakers, and industry leaders discussing innovative technologies, sustainable practices, and funding opportunities that promise to revolutionise the road construction landscape in India.

Mumbai (India)

FIRST Construction Council (FCC) – an infrastructure think tank – will be hosting the 13th India Roads Conference (IRC) on October 12, 2023 at Hotel Shangri-La Eros, New Delhi, to explore new opportunities in the road construction business. To be hosted as a part of India Construction Festival 2023 (ICF 2023) along with Construction World Global Awards 2023 (CWGA 2023) and Equipment India Awards 2023 (EI Awards 2023), IRC 2023 will focus on transforming India’s road infrastructure by presenting an unique platform for networking, knowledge-sharing, and collaboration. 

India’s road development sector is poised for unprecedented growth, housing one of the largest road networks in the world, spanning over 6.3 million km. The National Infrastructure Pipeline (NIP) forecasts a substantial investment of Rs 111 trillion in infrastructure projects during fiscals 2020-25, with a a significant portion allocated to the road sector. Against this backdrop, the 13th India Roads Conference intends to discover the abundant market opportunities, the latest trends, and how the industry can capitalise on this thriving sector.

Renowned experts, policymakers, and industry leaders will converge to discuss innovative technologies, sustainable practices, and funding opportunities that promise to revolutionise the road construction landscape in India. Some of the confirmed speakers for IRC 2023 are Lt. General Harpal Singh, Former Engineer-In-Chief, Indian Army; Dr Manoranjan Parida, Director, CSIR-CRRI; Ajay Kumar Mishra, President, Dilip Buildcon; RK Pandey, Former Member Projects, NHAI & Former ADG, MoRTH; SK Nirmal, Secretary General, India Roads Congress; Premjit Singh, CEO – Transportation, Welspun Enterprises; TR Rao, Director (Infra), PNC Infratech; Hardik Agrawal, Director at Dineshchandra R Agrawal Infracon Pvt Ltd, Thumu Karthik, CEO, LivSYT (DevIndia Technologies); Pawan Kant, CEO, LTIDPL IndVIT Services Ltd (IM to IndInfraVIT Trust); and Palash Srivastava, CEO, IIFCL Projects among others.

The roadmap of the future

India currently has one of the largest road networks in the world, spanning over 6.3 million km. Of this, around 2 per cent are National Highways, 3 per cent are State Highways and the rest are part of the district and rural road network. Over 64.5 per cent of all goods and 90 per cent of passenger traffic move by road. 

India has seen significant growth in its road network over the last five years, as the government has given priority to this sector. For the financial year 2022-23, the Central budget allocated more than Rs 2.70 trillion to the Ministry of Road Transport and Highways (MoRTH). The importance attached to the sector is also evinced by the fact that it accounts for approximately 18 per cent of the National Infrastructure Pipeline (NIP). Various state governments are also developing critical road corridors as a catalyst of economic development. Lately the focus has been on road safety, green initiatives, digital transformation and augmentation of funding sources.

Explaining the significance of IRC 2023, Pratap Padode, President, FIRST Construction Council, said, “India, not China, has the second-largest road network in the world after the US, spanning about 63.32 lakh km. NHAI awarded total projects of 6,003 km with a value of Rs 1.26 trillion during FY23. A provisional target of constructing about 13,800 km has been set for 2023-24. This presents excellent opportunity for all the stakeholders in the sector. India Roads Conference 2023 will explore ways on how to build a robust, safe road network by using latest technologies while meeting environment norms.”

In line with the market trends, experts during the India Roads Conference 2023 will deliberate on following relevant topics:

  • Shaping regulations for safe and sustainable roads 
  • Revolutionising road construction with technology
  • Accelerating road infrastructure with better financing opportunities 
  • Safer roads: Innovative designs for enhanced safety 

Attendees can gain valuable insights from dynamic panel discussions, insightful keynotes, and cutting-edge innovation showcases. Thus, by participating in India Roads Conference 2023, delegates can stay ahead of industry trends, forge valuable partnerships, and contribute to building safer, greener, and more efficient road networks.

IRC 2023 is supported by Tiki Tar and Shell India (Silver Partner), Tata Hitachi (Equipment Partner), PNC Infratech Ltd (Associate Partner), and LivSYT (Technology Partner).

About India Construction Festival 2023

Organised by the FIRST Construction Council in collaboration with Construction World and Equipment India magazines, the 9th India Construction Festival (ICF) stands as a cornerstone in the construction and infrastructure industry. India Construction Festival serves as the single largest platform for celebrating India’s remarkable infrastructure journey, bringing together all stakeholders in the industry under one roof. This comprehensive approach fosters collaboration, facilitates knowledge sharing, and creates networking opportunities that are pivotal for the growth and development of India’s infrastructure sector. ICF 2023 will comprise three major events: 13th India Roads Conference, 11th Equipment India Awards and 21st Construction World Global Awards.

About FIRST Construction Council:

FIRST Construction Council (FCC), an infrastructure think tank established in 2003, focuses on providing the latest updates on the construction industry in India, and is dedicated to promoting its causes and needs. FCC provides a platform to promote the adoption of best practices and be the torchbearer for all policy initiatives that are needed to enhance the importance and welfare of the construction industry and the industry’s unified voice. FCC also hosts conferences/events like India Construction FestivalMetro Rail ConferenceInfrastructure Today Conclave 2023, etc.

Continue Reading

Concrete

Responsible Energy Management

Published

on

By

Adani Cement is playing an instrumental role in responsible energy management in the Indian industrial sector. Here’s looking at their comprehensive efforts at sourcing alternative fuel and energy and optimising energy consumption in the cement manufacturing process.

Cement production stands as a prime example of an energy-intensive industry, where the role of energy is paramount in shaping both production costs and sustainability efforts.
One essential application of energy is in the transformation of raw materials, including limestone and additives, into clinker. This heat-intensive process is fundamental to cement production. Electricity plays a critical role in various phases of manufacturing. From grinding raw materials to achieving the final cement product, electricity consumption ranges between 56 to 73 kWh per metric tonne. Notably, the stages of raw material grinding, kiln operation and cement grinding contribute a significant 75-80 per cent to the overall electrical energy consumption.
Our dependence on energy is underscored by the consumption of fuels. For our 3 million tonnes per annum (MTPA) kilns, the daily consumption of fuels fluctuates between 1200 to 1600 tonnes. This sizeable amount of fuel is a prerequisite for sustaining our production operations. The electricity requirements are equally substantial. It surpasses 70 units of electricity per tonne of cement produced, encompassing the entire manufacturing cycle.
However, we are committed to enhancing our energy efficiency. Our efforts include ongoing initiatives to optimise existing installations and systems. Notable investments have been directed toward activities like cooler replacement, burner upgrades, and the incorporation of advanced thin liners in the cement mill. Several of these initiatives have already been implemented, underscoring our dedication to improved energy management.

Diverse Energy Sources
Our organisation employs a diverse array of energy sources to meet its manufacturing requirements, aligning with our commitment to sustainability and responsible energy management. At the heart of our production process, primary heat comes from fossil fuels, which are pivotal in the clinkering stage of cement manufacturing. We are progressively integrating alternative fuels, and we have set a robust roadmap to escalate this figure from present 7 per cent to 25 per cent. In terms of electrical energy, we draw power from both our captive/thermal power plant and the state grid to ensure a reliable supply.
Our emphasis on green energy is a cornerstone of our energy strategy. Solar energy plays a significant role as we harness its power through solar panels to contribute substantially to our electricity requirements. Additionally, wind energy further enriches our energy mix, tapping into wind turbines’ potential. Leveraging waste heat recovery systems (WHRS), we are innovatively converting waste heat from our processes into usable
energy, thereby reducing waste and optimising energy utilisation.

Sourcing Energy Sustainably
Our energy sourcing strategy is a comprehensive blend of primary and secondary sources, underscoring our dedication to both sustainability and efficiency. In the pivotal clinkering phase of cement production, our primary heat source encompasses a mixture of fossil and alternative fuels.
We engage in co-processing alternative fuels in our cement kilns. This includes a diverse spectrum of waste materials, like hazardous and non-hazardous waste from industrial processes, segregated municipal waste sourced from both fresh and legacy sites, as well as biomass like rice husk, soya husk and tuar husk. This innovative stride not only optimises energy use but also significantly contributes to conservation of natural resources and reduction of CO2 emissions.
Currently, around 7 per cent of our total heat requirement is met through alternative fuels, and our roadmap outlines a determined path to elevate this ratio to 25 per cent, aligning seamlessly with our mission to curtail environmental impact and foster sustainable practices. Our energy strategy embraces the robust use of green energy, comprising of solar, wind and WHRS. We are steadfastly working towards elevating both solar and WHRS contributions to at least 40 per cent of our total electricity demand.
All these initiatives serve as a testament to our unwavering commitment to responsible energy management and the stewardship of our environment.

Impact on Cost
The introduction of greener sources of electricity has had a negligible impact on our operations, whereas the influence is more nuanced in the context of our primary energy source, specifically heat generation. For instance, incorporating even a minor proportion of 1 per cent alternative fuel in clinker manufacturing could marginally increase thermal energy by approximately 1-1.5 kcal per kg clinker. It is important to note that this effect might not hold true for alternative fuels like dry biomass due to their distinct characteristics. However, our kiln system is equipped with inherent capabilities designed to mitigate such impacts, ensuring a balanced approach.
Considering the inherent volatility of fuel prices, the increased integration of green energy into our processes yields a significant advantage in terms of reducing the overall cost of cement production. By relying more on these sustainable sources, we can potentially mitigate the financial fluctuations associated with traditional fuel sources, leading to more stable and predictable production costs.

Optimising the Use of Energy
Automation and technology play an instrumental role in optimising energy utilisation within cement plants. These advancements contribute to enhanced productivity and heightened system reliability, creating a stable manufacturing environment. The harmonious synergy between automation and technology facilitates the most efficient allocation of energy resources, minimising wastage and enhancing overall energy efficiency. In line with this, we have implemented High-Level Control (HLC) systems for each kiln and cement mill circuit. These technologies not only streamline operations but also empower us to respond proactively to energy consumption patterns, driving us closer to our efficiency and sustainability goals.

Hurdles along the Way
The availability of fuels, particularly coal and petcoke, presents a significant challenge due to factors such as supply constraints and the volatility of their prices. This unpredictability in fuel availability and costs can impact the stability of our operations and cost structures. Additionally, the limited quantity of linkage coal further exacerbates this challenge, necessitating careful resource management and exploring alternative options.
Another notable challenge arises from the non-uniform regulatory procedures governing the utilisation of renewable power sources, namely solar and wind energy. The intricacies of these regulations vary geographically. This disparity introduces complexities in adopting renewable energy solutions consistently across regions, potentially impeding a streamlined transition to cleaner energy sources. Overcoming these regulatory hurdles demands strategic coordination and harmonisation of policies to ensure a more cohesive and efficient integration of renewable energy into our operations.

Compliance and Regulations
Effective energy management is a fundamental aspect of our operations, supported by well-established systems and dedicated professionals. Certified energy managers are stationed at each of our locations, underscoring our commitment to optimal energy utilisation and sustainability. Regular energy audits are a crucial part of our practices, with each site undergoing thorough assessments. The insights derived from
these audits inform actionable plans that are diligently tracked and implemented to enhance energy efficiency.
Furthermore, our commitment to responsible energy management is evident through our collaboration with the Bureau of Energy Efficiency (BEE). We actively share data on both electrical and thermal energy consumption with the BEE, aligning with the regulations and objectives of the Perform Achieve and Trade (PAT) programme. This proactive approach reinforces our dedication to not only internal efficiency but also broader national energy goals.
Adhering to the ‘golden rule’ of energy efficiency improvement, we place stringent monitoring and controls in place. This ensures that our energy management strategies remain dynamic and responsive, adapting to changes and consistently
driving efficiency enhancements. Our comprehensive approach to energy management is a testament to our commitment to sustainable practices, cost optimisation and environmental responsibility.
We employ an internal digital dashboard to meticulously track daily energy consumption encompassing both heat and electricity. However, the benchmarking of thermal and electrical
energy utilisation occurs monthly, both within our organisation and within the broader external context. This practice culminates in the acknowledgment of exceptional accomplishments by the most improved plant team through internal commendations and accolades.
Furthermore, our commitment to optimal energy utilisation is evidenced by annual external energy audits. These audits serve as a comprehensive evaluation of our energy practices, ensuring alignment with stringent standards. The resulting action plan, aimed at continuous enhancement, undergoes a rigorous assessment every three months. This iterative approach underscores our unwavering dedication to refining energy efficiency and reinforcing our sustainable commitments.

Conclusion
In the context of the cement industry, driving advancements in energy consumption is imperative. Regarding heat, it is essential to harness technological progress to curtail energy usage. Shifting the focus to electricity consumption, the installation of green energy sources like solar, wind and WRHS stand out as a promising approach.
Further, by enhancing overall efficiency of individual components, striving to minimise the impact of fluctuations in process parameters collectively hold the potential to revolutionise
energy consumption within the cement industry, driving it towards a more sustainable and
efficient future.
(Communication by the management of the company)

Continue Reading

Concrete

Concrete Reshaped

Published

on

By

Concrete is the cornerstone of modern construction as it offers both utility and creativity. In the evolving landscape of urbanisation and infrastructure, precast concrete is playing an increasingly important role. From awe-inspiring skyscrapers to intricate facades and artistic installations, the potential of concrete and precast concrete knows no bounds. In this feature, ICR explores how the future of construction is shaping up.

Precast concrete shapes are custom-made concrete components that are produced in a controlled factory environment and then transported to the construction site for installation. These specialised concrete shapes are designed to meet specific dimensions and project requirements, offering several advantages such as enhanced quality control, reduced construction time and improved durability.
In the Indian cement and construction industry, precast concrete shapes play a vital role in expediting construction processes and ensuring quality outcomes. Various types of precast concrete shapes are widely employed to meet the diverse needs of construction projects in the country.
These include precast concrete panels, which are used extensively for building facades and walls, offering both durability and aesthetic appeal. Precast beams and columns are commonly used in structural elements, providing robust support and speeding up construction timelines.
Speaking about quality control, Rais Khan, CEO, Dynamic Precast, said, “We have a Quality Manual Plan in our system. Presently, a testing laboratory is active in our manufacturing premise. Regular tests for raw materials and concrete and quality checks are done here using tools, equipment and calibrated testing machines.”
“Quality checks in our factory starts from system update, raw materials, measurements and weighing process, compaction and ultimately in finished goods,” he added.
Additionally, precast modular units, such as interlocking blocks and paving stones, are utilised for landscaping, pavements and retaining walls, offering convenience in installation and durability. In the Indian context, precast concrete shapes are particularly valuable for addressing the growing demand for rapid and cost-effective construction solutions while maintaining high-quality standards. They also contribute to the versatility and sustainability of construction practices in a rapidly developing nation like India.
Narayan Saboo, Chairman, Bigbloc Construction, said, “AAC blocks are eco-friendly and sustainable, these are green building materials, light weight, and less transport cost. This material warms the room during the winter and cools it during the summer, reducing air-conditioning system usage by at least 25 per cent.”
“Non-toxic and pest repellent, they prevent soil erosion and consume less water. When red bricks are used, it results in an upper layer of soil erosion, which makes the land barren or infertile in the long run,” he added.
Speaking about the challenges faced by precast manufacturers, Vijay Shah, Managing Partner, India Precast, “A major challenge in the precast industry is the requirement of high volumes, repeatedly. The initial investment for the same is high. It becomes more suitable for the B and C types of city transports and handling at sites.”
He further elaborated, “One of the most significant challenges in precast detailing is the design and engineering complexities of creating precast components. Precast components must be designed and engineered to meet specific load and structural requirements, which can be complicated and time-consuming. Additionally, precast elements must be prepared to fit together seamlessly during installation, which requires precise measurements and accurate detailing.”

GLOBAL PRECAST PERSPECTIVE
According to a research report by Market and Market, the global precast concrete market size is projected to grow from US$144.6 billion in 2022 to US$198.9 billion by 2027, at a CAGR of 6.6 per cent from 2022 to 2027. The precast concrete market is expected to witness significant growth in the future as concrete is a natural building material which is 100 per cent recyclable and in combination with steel, it is a safe, sustainable and earthquake-resistant material with little wear and tear.
Most of the precast concrete market worldwide in 2022 was being used for commercial buildings. According to Extrapolate’s global precast concrete market research report, that material was valued at US$42 billion in its use for housing construction, and at US$29 billion for industrial buildings.
The market size in the Asia Pacific region stood at US$46.43 billion in 2020. It is anticipated to be the fastest growing region during the forecast period. Rising investments by countries such as China, India, and Japan to develop infrastructure will increase the demand for the product. Additionally, the growing residential sector in these countries will increase demand for precast concrete due to its cost efficiency, thereby adding impetus to the market.

MANUFACTURING OF PRECAST
The manufacturing of precast concrete shapes involves several techniques and processes to ensure precise dimensions, structural integrity and durability. The specific techniques used can vary depending on the type of precast product being produced, but some common methods include:

Formwork: Formwork is used to create moulds into which concrete is poured and allowed to set. These moulds can be made of various materials, including steel, wood or reusable plastic. The choice of formwork depends on factors such as the complexity of the shape and the number of repetitions required.
Reinforcement: Many precast concrete products, especially structural elements like beams, columns, and slabs, incorporate steel reinforcement (rebar) to enhance their strength and load-bearing capacity. Proper placement of rebar within the formwork is critical.
Concrete mixing: Precise control over the concrete mix is essential to ensure consistency and strength. The concrete mix design may vary depending on the specific requirements of the precast product. Advanced techniques like self-consolidating concrete (SCC) are sometimes used to eliminate the need for vibration during casting.
Casting and pouring: Once the formwork is prepared and reinforcement is in place, the concrete is poured into the molds. Special care is taken to eliminate air voids and ensure uniform distribution of concrete within the formwork.
Curing: Proper curing is crucial to achieving the desired strength and durability of precast concrete. Various curing methods are employed, including steam curing, water curing, and the use of curing compounds. Curing time and temperature are carefully controlled.
Demoulding: After the concrete has sufficiently cured, the precast shape is removed from the mould. This step requires care to avoid damaging the newly cast concrete product.
Surface finishing: Depending on the product’s intended use and appearance, additional finishing techniques may be applied. These can include sandblasting, acid etching or the application of coatings or paints.
Quality control and testing: Stringent quality control measures are implemented throughout the manufacturing process. This includes regular testing of the concrete mix, inspection of formwork and quality checks on the finished precast shapes to ensure they meet design specifications and structural standards.
Transportation and installation: Precast shapes are transported to the construction site and installed according to project requirements. Care is taken to ensure safe handling and transportation to prevent damage.
Joining and sealing: In cases where multiple precast elements need to be assembled on-site, techniques like welding, grouting, or adhesive bonding may be used to join them together securely. Proper seals are applied to prevent water infiltration and ensure structural integrity.
Post-installation finishing: Some precast elements, especially architectural features, may undergo additional finishing or detailing after installation to achieve the desired aesthetic appearance.
These techniques, when executed with precision and attention to detail, result in high-quality precast concrete shapes that offer numerous advantages in construction, including time savings, consistency, and structural reliability. Additionally, advancements in technology and automation have further improved the efficiency and quality of precast concrete manufacturing processes.

COMPOSITION AND QUALITY OF PRECAST SHAPES
The composition of materials employed in the creation of precast shapes is a pivotal factor, tailored to meet specific construction needs and applications. Fundamental to this composition is Portland cement, serving as the binding agent that brings the components together. Aggregates, encompassing both fine materials like sand and coarser substances like crushed stone or gravel, provide bulk and strength to the concrete mixture. The precise selection of aggregates can influence the texture and overall properties of the precast product. Water, meanwhile, plays a crucial role in the hydration process of cement, facilitating the concrete’s setting. Its quality, cleanliness and chemical characteristics can significantly impact the final product’s durability and strength.
Chemical admixtures, including plasticisers, accelerators, retarders, air-entraining agents and superplasticisers, introduce versatility to concrete properties, enhancing workability, curing speed, and resistance to external factors like freeze-thaw cycles. For structural integrity, precast elements like beams and columns often incorporate steel reinforcement, in the form of rebar or mesh, to bolster tensile strength. For aesthetic considerations, pigments or colorants can be integrated into the mix, allowing for the achievement of specific colours or decorative effects in architectural precast elements. Additionally, specialised applications may necessitate the incorporation of fibres or chemical adhesives and sealants to enhance strength, control cracking or bond joints effectively. Form release agents are used to prevent adherence to moulds during curing, ensuring easy removal of the precast shape, while for specialised environments, custom concrete mixes and additives are employed to tailor the product’s properties to withstand specific challenges, such as high temperatures, acid exposure, or aggressive chemicals. Precise mix designs are meticulously crafted by engineers and concrete specialists to align with project requirements, assuring the quality, strength and durability of the resulting precast shapes.
Precast concrete has cement as the key raw material. The kind of cement used to make the concrete is what defines its properties and quality. Cement should comply with the requirements of IS 456;2000, for gaining satisfactory performance in a structure. The Ordinary Portland Cements (OPC) 43 grade (IS:8112) and 53 (IS:12269) are normally used in precast concrete construction for general purpose. Portland Pozzolana Cement (IS 1481) and Portland Slag Cement (IS 455) are preferred in making precast concrete for structures in polluted environments. High silica cement is advised to be avoided as it suffers reversion and loses a large portion of its strength in warm and humid conditions.
Supplementary cementitious materials (SCM) like fly ash, ground granulated blast- furnace slag, metakaolin and silica fume enhance the results of ordinary portland cement (OPC) hydration reactions in concrete and are either incorporated into concrete mixes as a partial replacement for portland cement or blended into the cement during manufacturing. They should comply with the requirements of the appropriate parts of IS;3812 for fly ash, IS;12089 for GGBS and IS;15388 for silica fumes. The benefits of supplementary cementitious materials include reduced cost, improved workability, lower heat of hydration, improved durability and chemical resistance.

TYPES OF PRECAST
In the Indian construction industry, a wide variety of precast concrete products are manufactured to meet the demands of diverse projects. These precast elements include panels, beams, and columns, which serve as essential structural components, providing both strength and speed in construction.
Precast slabs are commonly used for flooring and roofing applications, offering efficient solutions for horizontal surfaces. Precast staircases and boundary walls are also widely produced, ensuring durability and quick installation. Furthermore, precast drainage elements, such as manholes and stormwater drains, help manage water and sewage systems effectively.
Interlocking pavers, blocks, and decorative elements enhance landscaping and pavement options, while precast septic tanks cater to sewage treatment needs. Additionally, precast boundary markers, kerbstones, retaining walls and modular housing units address various infrastructure and housing requirements. These precast solutions not only save time but also contribute to sustainable construction practices in India’s rapidly developing urban and rural areas.
Precast concrete shapes play a multifaceted role in the construction industry, serving a diverse array of purposes. These shapes are deployed in various applications, including building facades and cladding, where precast panels and architectural elements not only enhance aesthetics but also provide weather-resistant exteriors. Precast concrete beams, columns and slabs serve as robust structural components, expediting construction and delivering dependable support for commercial buildings, bridges, and parking structures. Moreover, precast slabs find their niche in flooring and roofing applications, offering superior load-bearing capabilities and thermal insulation.
Aayush Patel, Director, Atul Projects India, explained, “The use of precast shapes for multi-story elevations provides precise and diverse solutions for a variety of design objectives. However, it comes with obstacles such as extensive design and technical needs, communication barriers among multiple teams, assuring quality control, managing complex scheduling and sequencing, and dealing with limited on-site space and transportation restrictions. Overcoming these issues is critical for fully utilising the benefits of recast detailing in multi-story projects.”
Architectural details like precast concrete staircases, balustrades, and handrails ensure both safety and visual appeal in access points within buildings and public spaces. Boundary walls constructed from precast concrete provide security and privacy while seamlessly blending with the surroundings. In infrastructure projects, precast concrete comes to the fore with elements such as manholes, stormwater drains, and culverts, adeptly managing water and sewage systems.
For landscaping and pavements, interlocking precast concrete pavers and blocks offer an easy-to-install, aesthetically pleasing solution for walkways, driveways, and outdoor spaces. Additionally, precast concrete septic tanks meet sanitation standards in residential and rural settings. Precast concrete’s versatility extends to decorative architectural features like pillars, statues, and ornamental facades, elevating the visual appeal of structures and public areas.
In civil engineering, precast concrete retaining walls stabilise slopes, prevent erosion and create terraced landscapes efficiently. Moreover, precast modular housing units are emerging as a rapid, cost-effective response to housing shortages, manufactured with embedded infrastructure systems for swift on-site assembly. These versatile precast concrete components are also widely used in infrastructure projects, encompassing utility vaults, sound barriers, bridge components and highway barriers. The myriad applications of precast concrete shapes contribute significantly to construction efficiency, quality and architectural diversity, making them an asset in the construction industry.

PRECAST AND SUSTAINABILITY
Precast concrete shapes are integral to promoting sustainability in the construction industry. These components contribute to resource efficiency by minimising material waste and often incorporating locally sourced or recycled content. Energy-efficient manufacturing processes and facilities reduce energy consumption during production, while the reduced need for on-site construction and transportation lowers greenhouse gas emissions. The durability of precast concrete structures translates to fewer replacements and repairs, reducing the environmental footprint over their lifecycle. Moreover, the precast industry supports local economies through job creation and fosters design flexibility, allowing for energy-efficient building designs.
The low-maintenance nature of precast products, coupled with their recyclability, further underscores their sustainability. Precast concrete shapes align with green building certification systems, such as LEED, and enhance site management by creating cleaner and more organised construction sites. All these factors make precast concrete a sustainable choice that contributes to environmentally responsible and efficient construction practices.

CONCLUSION
In the ever-evolving world of construction, precast concrete shapes have emerged as champions of sustainability and efficiency. These versatile components optimise resource usage, reduce energy consumption and boast remarkable durability, aligning seamlessly with the principles of green building and environmental responsibility.
By fostering resource efficiency, precast shapes minimise waste generation and make efficient use of locally sourced or recycled materials. The energy-efficient manufacturing processes employed in precast facilities help lower energy consumption, while the reduced reliance on on-site construction cuts down greenhouse gas emissions. This longevity, combined with the low maintenance requirements and recyclability of precast products, emphasises their sustainability.
As the construction industry continues to embrace environmentally conscious practices, the precast concrete sector is poised for growth, promising innovations that will further revolutionise sustainable building solutions. The future undoubtedly holds exciting prospects for an industry that is shaping the green, efficient and resilient construction landscape of tomorrow.

-Kanika Mathur

Continue Reading

Trending News

© COPYRIGHT 2021 ASAPP Info Global Services Pvt. Ltd. All Right Reserved.