Connect with us

Concrete

Concrete Reshaped

Published

on

Shares

Concrete is the cornerstone of modern construction as it offers both utility and creativity. In the evolving landscape of urbanisation and infrastructure, precast concrete is playing an increasingly important role. From awe-inspiring skyscrapers to intricate facades and artistic installations, the potential of concrete and precast concrete knows no bounds. In this feature, ICR explores how the future of construction is shaping up.

Precast concrete shapes are custom-made concrete components that are produced in a controlled factory environment and then transported to the construction site for installation. These specialised concrete shapes are designed to meet specific dimensions and project requirements, offering several advantages such as enhanced quality control, reduced construction time and improved durability.
In the Indian cement and construction industry, precast concrete shapes play a vital role in expediting construction processes and ensuring quality outcomes. Various types of precast concrete shapes are widely employed to meet the diverse needs of construction projects in the country.
These include precast concrete panels, which are used extensively for building facades and walls, offering both durability and aesthetic appeal. Precast beams and columns are commonly used in structural elements, providing robust support and speeding up construction timelines.
Speaking about quality control, Rais Khan, CEO, Dynamic Precast, said, “We have a Quality Manual Plan in our system. Presently, a testing laboratory is active in our manufacturing premise. Regular tests for raw materials and concrete and quality checks are done here using tools, equipment and calibrated testing machines.”
“Quality checks in our factory starts from system update, raw materials, measurements and weighing process, compaction and ultimately in finished goods,” he added.
Additionally, precast modular units, such as interlocking blocks and paving stones, are utilised for landscaping, pavements and retaining walls, offering convenience in installation and durability. In the Indian context, precast concrete shapes are particularly valuable for addressing the growing demand for rapid and cost-effective construction solutions while maintaining high-quality standards. They also contribute to the versatility and sustainability of construction practices in a rapidly developing nation like India.
Narayan Saboo, Chairman, Bigbloc Construction, said, “AAC blocks are eco-friendly and sustainable, these are green building materials, light weight, and less transport cost. This material warms the room during the winter and cools it during the summer, reducing air-conditioning system usage by at least 25 per cent.”
“Non-toxic and pest repellent, they prevent soil erosion and consume less water. When red bricks are used, it results in an upper layer of soil erosion, which makes the land barren or infertile in the long run,” he added.
Speaking about the challenges faced by precast manufacturers, Vijay Shah, Managing Partner, India Precast, “A major challenge in the precast industry is the requirement of high volumes, repeatedly. The initial investment for the same is high. It becomes more suitable for the B and C types of city transports and handling at sites.”
He further elaborated, “One of the most significant challenges in precast detailing is the design and engineering complexities of creating precast components. Precast components must be designed and engineered to meet specific load and structural requirements, which can be complicated and time-consuming. Additionally, precast elements must be prepared to fit together seamlessly during installation, which requires precise measurements and accurate detailing.”

GLOBAL PRECAST PERSPECTIVE
According to a research report by Market and Market, the global precast concrete market size is projected to grow from US$144.6 billion in 2022 to US$198.9 billion by 2027, at a CAGR of 6.6 per cent from 2022 to 2027. The precast concrete market is expected to witness significant growth in the future as concrete is a natural building material which is 100 per cent recyclable and in combination with steel, it is a safe, sustainable and earthquake-resistant material with little wear and tear.
Most of the precast concrete market worldwide in 2022 was being used for commercial buildings. According to Extrapolate’s global precast concrete market research report, that material was valued at US$42 billion in its use for housing construction, and at US$29 billion for industrial buildings.
The market size in the Asia Pacific region stood at US$46.43 billion in 2020. It is anticipated to be the fastest growing region during the forecast period. Rising investments by countries such as China, India, and Japan to develop infrastructure will increase the demand for the product. Additionally, the growing residential sector in these countries will increase demand for precast concrete due to its cost efficiency, thereby adding impetus to the market.

MANUFACTURING OF PRECAST
The manufacturing of precast concrete shapes involves several techniques and processes to ensure precise dimensions, structural integrity and durability. The specific techniques used can vary depending on the type of precast product being produced, but some common methods include:

Formwork: Formwork is used to create moulds into which concrete is poured and allowed to set. These moulds can be made of various materials, including steel, wood or reusable plastic. The choice of formwork depends on factors such as the complexity of the shape and the number of repetitions required.
Reinforcement: Many precast concrete products, especially structural elements like beams, columns, and slabs, incorporate steel reinforcement (rebar) to enhance their strength and load-bearing capacity. Proper placement of rebar within the formwork is critical.
Concrete mixing: Precise control over the concrete mix is essential to ensure consistency and strength. The concrete mix design may vary depending on the specific requirements of the precast product. Advanced techniques like self-consolidating concrete (SCC) are sometimes used to eliminate the need for vibration during casting.
Casting and pouring: Once the formwork is prepared and reinforcement is in place, the concrete is poured into the molds. Special care is taken to eliminate air voids and ensure uniform distribution of concrete within the formwork.
Curing: Proper curing is crucial to achieving the desired strength and durability of precast concrete. Various curing methods are employed, including steam curing, water curing, and the use of curing compounds. Curing time and temperature are carefully controlled.
Demoulding: After the concrete has sufficiently cured, the precast shape is removed from the mould. This step requires care to avoid damaging the newly cast concrete product.
Surface finishing: Depending on the product’s intended use and appearance, additional finishing techniques may be applied. These can include sandblasting, acid etching or the application of coatings or paints.
Quality control and testing: Stringent quality control measures are implemented throughout the manufacturing process. This includes regular testing of the concrete mix, inspection of formwork and quality checks on the finished precast shapes to ensure they meet design specifications and structural standards.
Transportation and installation: Precast shapes are transported to the construction site and installed according to project requirements. Care is taken to ensure safe handling and transportation to prevent damage.
Joining and sealing: In cases where multiple precast elements need to be assembled on-site, techniques like welding, grouting, or adhesive bonding may be used to join them together securely. Proper seals are applied to prevent water infiltration and ensure structural integrity.
Post-installation finishing: Some precast elements, especially architectural features, may undergo additional finishing or detailing after installation to achieve the desired aesthetic appearance.
These techniques, when executed with precision and attention to detail, result in high-quality precast concrete shapes that offer numerous advantages in construction, including time savings, consistency, and structural reliability. Additionally, advancements in technology and automation have further improved the efficiency and quality of precast concrete manufacturing processes.

COMPOSITION AND QUALITY OF PRECAST SHAPES
The composition of materials employed in the creation of precast shapes is a pivotal factor, tailored to meet specific construction needs and applications. Fundamental to this composition is Portland cement, serving as the binding agent that brings the components together. Aggregates, encompassing both fine materials like sand and coarser substances like crushed stone or gravel, provide bulk and strength to the concrete mixture. The precise selection of aggregates can influence the texture and overall properties of the precast product. Water, meanwhile, plays a crucial role in the hydration process of cement, facilitating the concrete’s setting. Its quality, cleanliness and chemical characteristics can significantly impact the final product’s durability and strength.
Chemical admixtures, including plasticisers, accelerators, retarders, air-entraining agents and superplasticisers, introduce versatility to concrete properties, enhancing workability, curing speed, and resistance to external factors like freeze-thaw cycles. For structural integrity, precast elements like beams and columns often incorporate steel reinforcement, in the form of rebar or mesh, to bolster tensile strength. For aesthetic considerations, pigments or colorants can be integrated into the mix, allowing for the achievement of specific colours or decorative effects in architectural precast elements. Additionally, specialised applications may necessitate the incorporation of fibres or chemical adhesives and sealants to enhance strength, control cracking or bond joints effectively. Form release agents are used to prevent adherence to moulds during curing, ensuring easy removal of the precast shape, while for specialised environments, custom concrete mixes and additives are employed to tailor the product’s properties to withstand specific challenges, such as high temperatures, acid exposure, or aggressive chemicals. Precise mix designs are meticulously crafted by engineers and concrete specialists to align with project requirements, assuring the quality, strength and durability of the resulting precast shapes.
Precast concrete has cement as the key raw material. The kind of cement used to make the concrete is what defines its properties and quality. Cement should comply with the requirements of IS 456;2000, for gaining satisfactory performance in a structure. The Ordinary Portland Cements (OPC) 43 grade (IS:8112) and 53 (IS:12269) are normally used in precast concrete construction for general purpose. Portland Pozzolana Cement (IS 1481) and Portland Slag Cement (IS 455) are preferred in making precast concrete for structures in polluted environments. High silica cement is advised to be avoided as it suffers reversion and loses a large portion of its strength in warm and humid conditions.
Supplementary cementitious materials (SCM) like fly ash, ground granulated blast- furnace slag, metakaolin and silica fume enhance the results of ordinary portland cement (OPC) hydration reactions in concrete and are either incorporated into concrete mixes as a partial replacement for portland cement or blended into the cement during manufacturing. They should comply with the requirements of the appropriate parts of IS;3812 for fly ash, IS;12089 for GGBS and IS;15388 for silica fumes. The benefits of supplementary cementitious materials include reduced cost, improved workability, lower heat of hydration, improved durability and chemical resistance.

TYPES OF PRECAST
In the Indian construction industry, a wide variety of precast concrete products are manufactured to meet the demands of diverse projects. These precast elements include panels, beams, and columns, which serve as essential structural components, providing both strength and speed in construction.
Precast slabs are commonly used for flooring and roofing applications, offering efficient solutions for horizontal surfaces. Precast staircases and boundary walls are also widely produced, ensuring durability and quick installation. Furthermore, precast drainage elements, such as manholes and stormwater drains, help manage water and sewage systems effectively.
Interlocking pavers, blocks, and decorative elements enhance landscaping and pavement options, while precast septic tanks cater to sewage treatment needs. Additionally, precast boundary markers, kerbstones, retaining walls and modular housing units address various infrastructure and housing requirements. These precast solutions not only save time but also contribute to sustainable construction practices in India’s rapidly developing urban and rural areas.
Precast concrete shapes play a multifaceted role in the construction industry, serving a diverse array of purposes. These shapes are deployed in various applications, including building facades and cladding, where precast panels and architectural elements not only enhance aesthetics but also provide weather-resistant exteriors. Precast concrete beams, columns and slabs serve as robust structural components, expediting construction and delivering dependable support for commercial buildings, bridges, and parking structures. Moreover, precast slabs find their niche in flooring and roofing applications, offering superior load-bearing capabilities and thermal insulation.
Aayush Patel, Director, Atul Projects India, explained, “The use of precast shapes for multi-story elevations provides precise and diverse solutions for a variety of design objectives. However, it comes with obstacles such as extensive design and technical needs, communication barriers among multiple teams, assuring quality control, managing complex scheduling and sequencing, and dealing with limited on-site space and transportation restrictions. Overcoming these issues is critical for fully utilising the benefits of recast detailing in multi-story projects.”
Architectural details like precast concrete staircases, balustrades, and handrails ensure both safety and visual appeal in access points within buildings and public spaces. Boundary walls constructed from precast concrete provide security and privacy while seamlessly blending with the surroundings. In infrastructure projects, precast concrete comes to the fore with elements such as manholes, stormwater drains, and culverts, adeptly managing water and sewage systems.
For landscaping and pavements, interlocking precast concrete pavers and blocks offer an easy-to-install, aesthetically pleasing solution for walkways, driveways, and outdoor spaces. Additionally, precast concrete septic tanks meet sanitation standards in residential and rural settings. Precast concrete’s versatility extends to decorative architectural features like pillars, statues, and ornamental facades, elevating the visual appeal of structures and public areas.
In civil engineering, precast concrete retaining walls stabilise slopes, prevent erosion and create terraced landscapes efficiently. Moreover, precast modular housing units are emerging as a rapid, cost-effective response to housing shortages, manufactured with embedded infrastructure systems for swift on-site assembly. These versatile precast concrete components are also widely used in infrastructure projects, encompassing utility vaults, sound barriers, bridge components and highway barriers. The myriad applications of precast concrete shapes contribute significantly to construction efficiency, quality and architectural diversity, making them an asset in the construction industry.

PRECAST AND SUSTAINABILITY
Precast concrete shapes are integral to promoting sustainability in the construction industry. These components contribute to resource efficiency by minimising material waste and often incorporating locally sourced or recycled content. Energy-efficient manufacturing processes and facilities reduce energy consumption during production, while the reduced need for on-site construction and transportation lowers greenhouse gas emissions. The durability of precast concrete structures translates to fewer replacements and repairs, reducing the environmental footprint over their lifecycle. Moreover, the precast industry supports local economies through job creation and fosters design flexibility, allowing for energy-efficient building designs.
The low-maintenance nature of precast products, coupled with their recyclability, further underscores their sustainability. Precast concrete shapes align with green building certification systems, such as LEED, and enhance site management by creating cleaner and more organised construction sites. All these factors make precast concrete a sustainable choice that contributes to environmentally responsible and efficient construction practices.

CONCLUSION
In the ever-evolving world of construction, precast concrete shapes have emerged as champions of sustainability and efficiency. These versatile components optimise resource usage, reduce energy consumption and boast remarkable durability, aligning seamlessly with the principles of green building and environmental responsibility.
By fostering resource efficiency, precast shapes minimise waste generation and make efficient use of locally sourced or recycled materials. The energy-efficient manufacturing processes employed in precast facilities help lower energy consumption, while the reduced reliance on on-site construction cuts down greenhouse gas emissions. This longevity, combined with the low maintenance requirements and recyclability of precast products, emphasises their sustainability.
As the construction industry continues to embrace environmentally conscious practices, the precast concrete sector is poised for growth, promising innovations that will further revolutionise sustainable building solutions. The future undoubtedly holds exciting prospects for an industry that is shaping the green, efficient and resilient construction landscape of tomorrow.

-Kanika Mathur

Concrete

Refractory demands in our kiln have changed

Published

on

By

Shares

Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, points out why performance, predictability and life-cycle value now matter more than routine replacement in cement kilns.

As Indian cement plants push for higher throughput, increased alternative fuel usage and tighter shutdown cycles, refractory performance in kilns and pyro-processing systems is under growing pressure. In this interview, Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, shares how refractory demands have evolved on the ground and how smarter digital monitoring is improving kiln stability, uptime and clinker quality.

How have refractory demands changed in your kiln and pyro-processing line over the last five years?
Over the last five years, refractory demands in our kiln and pyro line have changed. Earlier, the focus was mostly on standard grades and routine shutdown-based replacement. But now, because of higher production loads, more alternative fuels and raw materials (AFR) usage and greater temperature variation, the expectation from refractory has increased.
In our own case, the current kiln refractory has already completed around 1.5 years, which itself shows how much more we now rely on materials that can handle thermal shock, alkali attack and coating fluctuations. We have moved towards more stable, high-performance linings so that we don’t have to enter the kiln frequently for repairs.
Overall, the shift has been from just ‘installation and run’ to selecting refractories that give longer life, better coating behaviour and more predictable performance under tougher operating conditions.

What are the biggest refractory challenges in the preheater, calciner and cooler zones?
• Preheater: Coating instability, chloride/sulphur cycles and brick erosion.
• Calciner: AFR firing, thermal shock and alkali infiltration.
• Cooler: Severe abrasion, red-river formation and mechanical stress on linings.
Overall, the biggest challenge is maintaining lining stability under highly variable operating conditions.

How do you evaluate and select refractory partners for long-term performance?
In real plant conditions, we don’t select a refractory partner just by looking at price. First, we see their past performance in similar kilns and whether their material has actually survived our operating conditions. We also check how strong their technical support is during shutdowns, because installation quality matters as much as the material itself.
Another key point is how quickly they respond during breakdowns or hot spots. A good partner should be available on short notice. We also look at their failure analysis capability, whether they can explain why a lining failed and suggest improvements.
On top of this, we review the life they delivered in the last few campaigns, their supply reliability and their willingness to offer plant-specific custom solutions instead of generic grades. Only a partner who supports us throughout the life cycle, which includes selection, installation, monitoring and post-failure analysis, fits our long-term requirement.

Can you share a recent example where better refractory selection improved uptime or clinker quality?
Recently, we upgraded to a high-abrasion basic brick at the kiln outlet. Earlier we had frequent chipping and coating loss. With the new lining, thermal stability improved and the coating became much more stable. As a result, our shutdown interval increased and clinker quality remained more consistent. It had a direct impact on our uptime.

How is increased AFR use affecting refractory behaviour?
Increased AFR use is definitely putting more stress on the refractory. The biggest issue we see daily is the rise in chlorine, alkalis and volatiles, which directly attack the lining, especially in the calciner and kiln inlet. AFR firing is also not as stable as conventional fuel, so we face frequent temperature fluctuations, which cause more thermal shock and small cracks in the lining.
Another real problem is coating instability. Some days the coating builds too fast, other days it suddenly drops, and both conditions impact refractory life. We also notice more dust circulation and buildup inside the calciner whenever the AFR mix changes, which again increases erosion.
Because of these practical issues, we have started relying more on alkali-resistant, low-porosity and better thermal shock–resistant materials to handle the additional stress coming from AFR.

What role does digital monitoring or thermal profiling play in your refractory strategy?
Digital tools like kiln shell scanners, IR imaging and thermal profiling help us detect weakening areas much earlier. This reduces unplanned shutdowns, helps identify hotspots accurately and allows us to replace only the critical sections. Overall, our maintenance has shifted from reactive to predictive, improving lining life significantly.

How do you balance cost, durability and installation speed during refractory shutdowns?
We focus on three points:
• Material quality that suits our thermal profile and chemistry.
• Installation speed, in fast turnarounds, we prefer monolithic.
• Life-cycle cost—the cheapest material is not the most economical. We look at durability, future downtime and total cost of ownership.
This balance ensures reliable performance without unnecessary expenditure.

What refractory or pyro-processing innovations could transform Indian cement operations?
Some promising developments include:
• High-performance, low-porosity and nano-bonded refractories
• Precast modular linings to drastically reduce shutdown time
• AI-driven kiln thermal analytics
• Advanced coating management solutions
• More AFR-compatible refractory mixes

These innovations can significantly improve kiln stability, efficiency and maintenance planning across the industry.

Continue Reading

Concrete

Digital supply chain visibility is critical

Published

on

By

Shares

MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, discusses how data, discipline and scale are turning Industry 4.0 into everyday business reality.

Over the past five years, digitalisation in Indian cement manufacturing has moved decisively beyond experimentation. Today, it is a strategic lever for cost control, operational resilience and sustainability. In this interview, MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, explains how integrated digital foundations, advanced analytics and real-time visibility are helping deliver measurable business outcomes.

How has digitalisation moved from pilot projects to core strategy in Indian cement manufacturing over the past five years?
Digitalisation in Indian cement has evolved from isolated pilot initiatives into a core business strategy because outcomes are now measurable, repeatable and scalable. The key shift has been the move away from standalone solutions toward an integrated digital foundation built on standardised processes, governed data and enterprise platforms that can be deployed consistently across plants and functions.
At Shree Cement, this transition has been very pragmatic. The early phase focused on visibility through dashboards, reporting, and digitisation of critical workflows. Over time, this has progressed into enterprise-level analytics and decision support across manufacturing and the supply chain,
with clear outcomes in cost optimisation, margin protection and revenue improvement through enhanced customer experience.
Equally important, digital is no longer the responsibility of a single function. It is embedded into day-to-day operations across planning, production, maintenance, despatch and customer servicing, supported by enterprise systems, Industrial Internet of Things (IIoT) data platforms, and a structured approach to change management.

Which digital interventions are delivering the highest ROI across mining, production and logistics today?
In a capital- and cost-intensive sector like cement, the highest returns come from digital interventions that directly reduce unit costs or unlock latent capacity without significant capex.
Supply chain and planning (advanced analytics): Tools for demand forecasting, S&OP, network optimisation and scheduling deliver strong returns by lowering logistics costs, improving service levels, and aligning production with demand in a fragmented and regionally diverse market.
Mining (fleet and productivity analytics): Data-led mine planning, fleet analytics, despatch discipline, and idle-time reduction improve fuel efficiency and equipment utilisation, generating meaningful savings in a cost-heavy operation.
Manufacturing (APC and process analytics): Advanced Process Control, mill optimisation, and variability reduction improve thermal and electrical efficiency, stabilise quality and reduce rework and unplanned stoppages.
Customer experience and revenue enablement (digital platforms): Dealer and retailer apps, order visibility and digitally enabled technical services improve ease of doing business and responsiveness. We are also empowering channel partners with transparent, real-time information on schemes, including eligibility, utilisation status and actionable recommendations, which improves channel satisfaction and market execution while supporting revenue growth.
Overall, while Artificial Intelligence (AI) and IIoT are powerful enablers, it is advanced analytics anchored in strong processes that typically delivers the fastest and most reliable ROI.

How is real-time data helping plants shift from reactive maintenance to predictive and prescriptive operations?
Real-time and near real-time data is driving a more proactive and disciplined maintenance culture, beginning with visibility and progressively moving toward prediction and prescription.
At Shree Cement, we have implemented a robust SAP Plant Maintenance framework to standardise maintenance workflows. This is complemented by IIoT-driven condition monitoring, ensuring consistent capture of equipment health indicators such as vibration, temperature, load, operating patterns and alarms.
Real-time visibility enables early detection of abnormal conditions, allowing teams to intervene before failures occur. As data quality improves and failure histories become structured, predictive models can anticipate likely failure modes and recommend timely interventions, improving MTBF and reducing downtime. Over time, these insights will evolve into prescriptive actions, including spares readiness, maintenance scheduling, and operating parameter adjustments, enabling reliability optimisation with minimal disruption.
A critical success factor is adoption. Predictive insights deliver value only when they are embedded into daily workflows, roles and accountability structures. Without this, they remain insights without action.

In a cost-sensitive market like India, how do cement companies balance digital investment with price competitiveness?
In India’s intensely competitive cement market, digital investments must be tightly linked to tangible business outcomes, particularly cost reduction, service improvement, and faster decision-making.
This balance is achieved by prioritising high-impact use cases such as planning efficiency, logistics optimisation, asset reliability, and process stability, all of which typically deliver quick payback. Equally important is building scalable and governed digital foundations that reduce the marginal cost of rolling out new use cases across plants.
Digitally enabled order management, live despatch visibility, and channel partner platforms also improve customer centricity while controlling cost-to-serve, allowing service levels to improve without proportionate increases in headcount or overheads.
In essence, the most effective digital investments do not add cost. They protect margins by reducing variability, improving planning accuracy, and strengthening execution discipline.

How is digitalisation enabling measurable reductions in energy consumption, emissions, and overall carbon footprint?
Digitalisation plays a pivotal role in improving energy efficiency, reducing emissions and lowering overall carbon intensity.
Real-time monitoring and analytics enable near real-time tracking of energy consumption and critical operating parameters, allowing inefficiencies to be identified quickly and corrective actions to be implemented. Centralised data consolidation across plants enables benchmarking, accelerates best-practice adoption, and drives consistent improvements in energy performance.
Improved asset reliability through predictive maintenance reduces unplanned downtime and process instability, directly lowering energy losses. Digital platforms also support more effective planning and control of renewable energy sources and waste heat recovery systems, reducing dependence on fossil fuels.
Most importantly, digitalisation enables sustainability progress to be tracked with greater accuracy and consistency, supporting long-term ESG commitments.

What role does digital supply chain visibility play in managing demand volatility and regional market dynamics in India?
Digital supply chain visibility is critical in India, where demand is highly regional, seasonality is pronounced, and logistics constraints can shift rapidly.
At Shree Cement, planning operates across multiple horizons. Annual planning focuses on capacity, network footprint and medium-term demand. Monthly S&OP aligns demand, production and logistics, while daily scheduling drives execution-level decisions on despatch, sourcing and prioritisation.
As digital maturity increases, this structure is being augmented by central command-and-control capabilities that manage exceptions such as plant constraints, demand spikes, route disruptions and order prioritisation. Planning is also shifting from aggregated averages to granular, cost-to-serve and exception-based decision-making, improving responsiveness, lowering logistics costs and strengthening service reliability.

How prepared is the current workforce for Industry 4.0, and what reskilling strategies are proving most effective?
Workforce preparedness for Industry 4.0 is improving, though the primary challenge lies in scaling capabilities consistently across diverse roles.
The most effective approach is to define capability requirements by role and tailor enablement accordingly. Senior leadership focuses on digital literacy for governance, investment prioritisation, and value tracking. Middle management is enabled to use analytics for execution discipline and adoption. Frontline sales and service teams benefit from
mobile-first tools and KPI-driven workflows, while shop-floor and plant teams focus on data-driven operations, APC usage, maintenance discipline, safety and quality routines.
Personalised, role-based learning paths, supported by on-ground champions and a clear articulation of practical benefits, drive adoption far more effectively than generic training programmes.

Which emerging digital technologies will fundamentally reshape cement manufacturing in the next decade?
AI and GenAI are expected to have the most significant impact, particularly when combined with connected operations and disciplined processes.
Key technologies likely to reshape the sector include GenAI and agentic AI for faster root-cause analysis, knowledge access, and standardisation of best practices; industrial foundation models that learn patterns across large sensor datasets; digital twins that allow simulation of process changes before implementation; and increasingly autonomous control systems that integrate sensors, AI, and APC to maintain stability with minimal manual intervention.
Over time, this will enable more centralised monitoring and management of plant operations, supported by strong processes, training and capability-building.

Continue Reading

Concrete

Redefining Efficiency with Digitalisation

Published

on

By

Shares

Professor Procyon Mukherjee discusses how as the cement industry accelerates its shift towards digitalisation, data-driven technologies are becoming the mainstay of sustainability and control across the value chain.

The cement industry, long perceived as traditional and resistant to change, is undergoing a profound transformation driven by digital technologies. As global infrastructure demand grows alongside increasing pressure to decarbonise and improve productivity, cement manufacturers are adopting data-centric tools to enhance performance across the value chain. Nowhere is this shift more impactful than in grinding, which is the energy-intensive final stage of cement production, and in the materials that make grinding more efficient: grinding media and grinding aids.

The imperative for digitalisation
Cement production accounts for roughly 7 per cent to 8 per cent of global CO2 emissions, largely due to the energy intensity of clinker production and grinding processes. Digital solutions, such as AI-driven process controls and digital twins, are helping plants improve stability, cut fuel use and reduce emissions while maintaining consistent product quality. In one deployment alongside ABB’s process controls at a Heidelberg plant in Czechia, AI tools cut fuel use by 4 per cent and emissions by 2 per cent, while also improving operational stability.
Digitalisation in cement manufacturing encompasses a suite of technologies, broadly termed as Industrial Internet of Things (IIoT), AI and machine learning, predictive analytics, cloud-based platforms, advanced process control and digital twins, each playing a role in optimising various stages of production from quarrying to despatch.

Grinding: The crucible of efficiency and cost
Of all the stages in cement production, grinding is among the most energy-intensive, historically consuming large amounts of electricity and representing a significant portion of plant operating costs. As a result, optimising grinding operations has become central to digital transformation strategies.
Modern digital systems are transforming grinding mills from mechanical workhorses into intelligent, interconnected assets. Sensors throughout the mill measure parameters such as mill load, vibration, mill speed, particle size distribution, and power consumption. This real-time data, fed into machine learning and advanced process control (APC) systems, can dynamically adjust operating conditions to maintain optimal throughput and energy usage.
For example, advanced grinding systems now predict inefficient conditions, such as impending mill overload, by continuously analysing acoustic and vibration signatures. The system can then proactively adjust clinker feed rates and grinding media distribution to sustain optimal conditions, reducing energy consumption and improving consistency.

Digital twins: Seeing grinding in the virtual world
One of the most transformative digital tools applied in cement grinding is the digital twin, which a real-time virtual replica of physical equipment and processes. By integrating sensor data and
process models, digital twins enable engineers to simulate process variations and run ‘what-if’
scenarios without disrupting actual production. These simulations support decisions on variables such as grinding media charge, mill speed and classifier settings, allowing optimisation of energy use and product fineness.
Digital twins have been used to optimise kilns and grinding circuits in plants worldwide, reducing unplanned downtime and allowing predictive maintenance to extend the life of expensive grinding assets.

Grinding media and grinding aids in a digital era
While digital technologies improve control and prediction, materials science innovations in grinding media and grinding aids have become equally crucial for achieving performance gains.
Grinding media, which comprise the balls or cylinders inside mills, directly influence the efficiency of clinker comminution. Traditionally composed of high-chrome cast iron or forged steel, grinding media account for nearly a quarter of global grinding media consumption by application, with efficiency improvements translating directly to lower energy intensity.
Recent advancements include ceramic and hybrid media that combine hardness and toughness to reduce wear and energy losses. For example, manufacturers such as Sanxin New Materials in China and Tosoh Corporation in Japan have developed sub-nano and zirconia media with exceptional wear resistance. Other innovations include smart media embedded with sensors to monitor wear, temperature, and impact forces in real time, enabling predictive maintenance and optimal media replacement scheduling. These digitally-enabled media solutions can increase grinding efficiency by as much as 15 per cent.
Complementing grinding media are grinding aids, which are chemical additives that improve mill throughput and reduce energy consumption by altering the surface properties of particles, trapping air, and preventing re-agglomeration. Technology leaders like SIKA AG and GCP Applied Technologies have invested in tailored grinding aids compatible with AI-driven dosing platforms that automatically adjust additive concentrations based on real-time mill conditions. Trials in South America reported throughput improvements nearing 19 per cent when integrating such digital assistive dosing with process control systems.
The integration of grinding media data and digital dosing of grinding aids moves the mill closer to a self-optimising system, where AI not only predicts media wear or energy losses but prescribes optimal interventions through automated dosing and operational adjustments.

Global case studies in digital adoption
Several cement companies around the world exemplify digital transformation in practice.
Heidelberg Materials has deployed digital twin technologies across global plants, achieving up to 15 per cent increases in production efficiency and 20 per cent reductions in energy consumption by leveraging real-time analytics and predictive algorithms.
Holcim’s Siggenthal plant in Switzerland piloted AI controllers that autonomously adjusted kiln operations, boosting throughput while reducing specific energy consumption and emissions.
Cemex, through its AI and predictive maintenance initiatives, improved kiln availability and reduced maintenance costs by predicting failures before they occurred. Global efforts also include AI process optimisation initiatives to reduce energy consumption and environmental impact.

Challenges and the road ahead
Despite these advances, digitalisation in cement grinding faces challenges. Legacy equipment may lack sensor readiness, requiring retrofits and edge-cloud connectivity upgrades. Data governance and integration across plants and systems remains a barrier for many mid-tier producers. Yet, digital transformation statistics show momentum: more than half of cement companies have implemented IoT sensors for equipment monitoring, and digital twin adoption is growing rapidly as part of broader Industry 4.0 strategies.
Furthermore, as digital systems mature, they increasingly support sustainability goals: reduced energy use, optimised media consumption and lower greenhouse gas emissions. By embedding intelligence into grinding circuits and material inputs like grinding aids, cement manufacturers can strike a balance between efficiency and environmental stewardship.
Conclusion
Digitalisation is not merely an add-on to cement manufacturing. It is reshaping the competitive and sustainability landscape of an industry often perceived as inertia-bound. With grinding representing a nexus of energy intensity and cost, digital technologies from sensor networks and predictive analytics to digital twins offer new levers of control. When paired with innovations in grinding media and grinding aids, particularly those with embedded digital capabilities, plants can achieve unprecedented gains in efficiency, predictability and performance.
For global cement producers aiming to reduce costs and carbon footprints simultaneously, the future belongs to those who harness digital intelligence not just to monitor operations, but to optimise and evolve them continuously.

About the author:
Professor Procyon Mukherjee, ex-CPO Lafarge-Holcim India, ex-President Hindalco, ex-VP Supply Chain Novelis Europe,
has been an industry leader in logistics, procurement, operations and supply chain management. His career spans 38 years starting from Philips, Alcan Inc (Indian Aluminum Company), Hindalco, Novelis and Holcim. He authored the book, ‘The Search for Value in Supply Chains’. He serves now as Visiting Professor in SP Jain Global, SIOM and as the Adjunct Professor at SBUP. He advises leading Global Firms including Consulting firms on SCM and Industrial Leadership and is a subject matter expert in aluminum and cement. An Alumnus of IIM Calcutta and Jadavpur University, he has completed the LH Senior Leadership Programme at IVEY Academy at Western University, Canada.

Continue Reading

Trending News