Connect with us

Technology

FLSmidth Laboratory Automation Solution

Published

on

Shares

FLSmidth, an important cement industry equipment and service provider, has its own version of a robotic laboratory. The facility helps to control cement quality and fully meets industry standards for reliability and robustness in an industrial environment.

Cement plants are facing increasingly tough requirements for sample analysis quality and complexity, and for sample throughput. This is partly a result of environmental regulations placing stricter controls on cement production, both in terms of pollution and energy consumption.

In addition, the current economic climate demands 24/7/365 cement plant operation, with as little manpower as possible, with increased productivity.

Many cement plants are in areas where it is difficult to recruit skilled engineers, and people who are available often spend less time in the same job. Remote operation, support from distant locations, and online assistance are all vital for the smooth operation of quality control systems in modern cement plants. The trend in cement plant quality control systems is to meet the following requirements:
Improve the speed and accuracy of sample results;
Meet the stricter controls required for the cement market;
Support 24/7/365 operations;
Achieve zero health and safety incidents.

Supporting product quality control at all stages
The QCX? system from FLSmidth is designed to control cement quality in cement plants and it fully meets industry standards for reliability and robustness in an industrial environment. Automated sampling, sample preparation and analysis provide fast, reliable and consistent information for quality and process control.

The system supports quality control at all relevant stages of cement production in a single, integrated system. Combined with FLSmidth’s extensive experience in cement plant process control, the system incorporates in-depth understanding of production environments and the high requirements for speed and performance. The modular system architecture allows for any degree of automation.

It can be scaled from small task-targeted automation units to large, fully automated laboratories.

KPI for the Quality Laboratory

  • Cost-effective production with high quality;
  • Strict documentation requirements;
  • Continuous plant operation.

Cost-effective production with high quality
Cement production requires fast and correct results to improve quality and reduce operational costs. The Laboratory Automation System transports the samples from the plant to the laboratory; the samples travel 1,500 metres in seconds. The Centaurus, Combined Mill and Press prepare the sample for XRF analysis. The entire process of sampling, preparation and analysis of various equipment like XRF, Free Lime Analysis and Blaine analysis can be done together in the automated laboratory in a foolproof system.

Strict documentation requirements
Stricter QC and audit trail requirements are part of the daily operation of cement plants. The QCX system supports unmanned documented handling of material from process to analysis, avoiding introducing human errors.

Continuous plant operation
For 24/7 plant operation, the process laboratory must operate constantly with only very few, short stops. This means that efficient maintenance and service of all equipment is crucial. To support 24/7 plant operation, the QCX system monitors key components’ KPIs, enabling verification of run hours and end of lifetime for wear parts facilitating spare-part sourcing and reducing downtime for maintenance is part of FLSmidth ‘s global support organisation for fast and easy remote troubleshooting.

A solution for every need
FLSmidth’s comprehensive equipment portfolio, designed specifically for cement production laboratories, ranges from manual machines and automated units to fully automated, high-capacity laboratories. By design, most of FLSmidth’s laboratory equipment is semi-automated and can also be operated manually, as standalone equipment. This means you have the advantage of implementing stepwise automation and of ensuring operation, even when part of the automated laboratory is being serviced.

The QCX system ensures that your process laboratory delivers safe, efficient and accurate analysis quickly and with as few operators as possible. The advanced, user-friendly system can be tailored according to your specific cement production needs, including special cement and fuels, and supports 24/7/365 operation. More than 40 years of development across multiple hardware platforms and a comprehensive base of installed systems has made the QCX system the frontrunner in the cement industry. Automated laboratory solutions from FLSmidth are setting new industrial standards in terms of ease of use, flexibility, reliability and scalability.

Inconsistency in sampling
Sampling inconsistency and inaccurate analysis results contribute to laboratory errors, creating process fluctuations and disrupting productivity, equipment lifetime and especially product quality.

Sampling is the critical first step in the quality control chain. Without correct sampling, preparation and analysis are only a lottery. Balancing your cement plant’s chemistry can be challenging. Sampling inconsistency and inaccurate analysis results contribute to laboratory errors. These errors create process fluctuations and disrupt productivity, reducing equipment life while jeopardizing product quality. According to ‘Sample Theory Studies’, the quality errors come from: Sampling (86.5 per cent); preparation (9 per cent) and analysis (4.5 per cent).

Accurate, automatic sample analysis assists you to take control of your cement plant’s chemistry, its performance and the quality of its output.

QCX/AutoSampling V8 from FLSmidth controls automatic sampling and pneumatic transport of sampled material from the process areas to the production laboratory, and it remains unmatched in its software functionality and performance.

Automated sampling results in samples being taken at the right time, at the right place and consistently. It’s a safe choice. It also:

  • Ensures sampling quality remains high and samples are representative of the larger production;
  • Allows for fail-safe sample identification, including timestamp;
  • Minimises sample-to-sample cross contamination;
  • Provides automated composite/average sampling.

Automated sampling combined with automatic transportation results in:

  • Fast turnaround times from sampling to analysis;
  • Full sample traceability – where and when was this sample taken;
  • Improved quality control;
  • Optimised overall sample-taking schedule;
  • Flexible operator call for additional samples;
  • High system availability;
  • Easy connectivity to automatic sample preparation systems;
  • No health and safety issues as no humans are needed for sample taking;
  • Less labour requirements, allowing the workforce to undertake other important tasks;
  • Improved and fast troubleshooting and maintenance through informative faceplates describing all information from the samplers and sending stations;
  • Tube transport systems have been employed for fast sample transportation in harsh industrial environments since the 1960s. FLSmidth has been involved since the early days and has gained a market-leading position within this technology through execution of hundreds of projects with automated sampling and sample transportation to customers worldwide;
  • QCX/AutoSampling provides automatic sampling and pneumatic transport of sampled material from the process areas to a central production laboratory or to designated ‘satellite’ laboratories;
  • Manual, semi-automatic, or fully automated send/receive stations are available both at the process end and at the laboratory end of a pneumatic sample transport system. Sampling equipment for powder, granulate or and lumpy materials can be connected to the process send/receive stations, thereby ensuring fully automated procedures;
  • Samples are transported in sample cartridges (or carriers or shuttles). For dry powder/granulates, typically 200-500 cc material is sent to the laboratory;
  • The applied advanced logic control programming techniques (oQCXSYSo) ensures cost-effective engineering for the specific project as well as providing a very high quality and consistency in both overall and device control. Directly from the PC screen, mimic diagrams (so-called ‘face-plates’) provide easy accessible operational and diagnostic details from the device control level.
  • Samples are sent from the process stations to receive/send stations in the laboratory in accordance with individual sample priorities and wait list status. Sample entities like sampling location, product type, sampling time, etc., are automatically passed on to the next handling stage, whether manual or automatic. The integrated automation concept includes advanced priority handling schemes: in case an equipment error leads to reduced capacity in the automated preparation system, it is possible to automatically scale down the automatic sampling & sample transport activity, so that lower priority samples are skipped or called for less frequently;
  • Automatic sample transport complements automatic sampling and creates fully automated sampling procedures;
  • Fast turnaround time from sampling to analysisl;
  • Improved product quality and related operational savings;
  • Optimised overall sample taking schedule;
  • High system availability;
  • Easy connectivity to automatic sample preparation systems;
  • Worldwide service & support.

Sampling made easy
QCX/AutoSampling V8 can be seamlessly configured to suit your work processes. FLSmidth has semi- and fully-automated samplers for all cement plant applications – from raw material to cement dispatch including a new hot kiln outlet sampler that enables very fast clinker analysis, and thereby fast feedback to chemical changes introduced in the kiln. With its intuitive user interfaces, and informative faceplates, the system provides a complete overview of all sampling issues directly at the laboratory. Most importantly, it delivers reliable samples!

FLSmidth has more than 200 QCX/AutoSampling systems installed worldwide. Fast and accurate sample preparation and analysis results in greater quality control. It sets your production capabilities apart from the rest.

FLSmidth QCX Robolab
FLSmidth’s QCX/RoboLab aims to simplify some of those complexities. The single, integrated QCX/RoboLab system uses leading-edge technology to deliver automated sampling, sample pre?paration and analysis that’s fast and reliable, and provides consistent information for quality and process control at all stages of cement production.

QCX/RoboLab V8 – improved quality, reduced variance
QCX/RoboLab reduces the hard, repetitive and sometimes hazardous work in the laboratory, to reduce human errors, and to ensure safe, fast, reliable and accurate analysis. It is instrumental in achieving optimum performance.

A QCX/RoboLab system consists of semi-automated sample preparation equipment, sample manipulators, such as a robot or conveyers and manipulators, and state-of-the-art software to handle both the automation and the sample control and laboratory information management system (LIMS) functionalities.

QCX/RoboLab allows for varying degrees of automation. It can be scaled from small, task-targeted automation units to large, fully automated laboratories. Installations have ranged from systems with one robot, one sample preparation machine and one analyser to systems with eight robots and numerous other equipment.

All-in-one combined mill & press
The only all-in-one automated solution that can grind and press or just grind or just press.

FLSmidth’s ‘Centaurus’ automatic sample preparation machine combines laboratory mill and press functions in a compact, easy-to-operate unit. Centaurus consists of an automatic fine grinding mill and an automatic pelletising press. The components for both these main functionalities are integrated in a space-saving and ergonomically designed (award-winning) housing with a footprint of only 1 m2.

The fully automatic Centaurus produces pressed powder test tablets from granular materials such as raw meal, clinker, cement, ore, slag and mine exploration samples for XRF and XRD analysis. Automated quality control systems help improve the product quality in industrial processes. FLSmidth has taken product quality one step further with the unique Centaurus sample preparation machine.

Functionality
The Centaurus houses a sample dosing device, an automatic fine-grinding mill and an automatic pelletising press in a soundproof 1m2 unit. It fits seamlessly into new or existing production laboratory set-ups.

Designed to function as a standalone system or to be integrated with linear or robotics automation systems, the Centaurus has two different operation sides – a human and an automatic side, which allows a smoothly integration into FLSmidth’s QCX/RoboLab system, as well as the use as a standalone machine, because the Centaurus supports automatic feed of samples directly to any X-ray analyser.

The unique thing about Centaurus is its ability to grind sample material without pressing it, or to press sample material without grinding it.

The ‘grinding only’ feature is a standard functionality, while the ‘pressing only’ feature is an available option. Before the grinding and pressing stage, the sample material type is identified from the operator terminal, or via the interface of a supervisory quality control system such as the QCX system.

The preparation method and associated parameters are then selected and the fully automatic sample preparation process begins:
In the flagship of fully-automated sample processing, QCX/RoboLab, the Centaurus plays the main role in sample preparation.

Arriving in the automatic receiving station and filled in the cups, the robot transfers the sample to the Centaurus where the fully automatic sample preparation cycle starts.

From the output position the pressed tablet is placed on the belt leading to the X-ray machine.

QCX/Blend Expert V8
FLSmidth has more than 700 QCX/Blend Expert applications installed worldwide. With QCX/Blend Expert, the complex task of controlling varying raw materials is no longer manual. Its tight control of raw material blending reduces fuel consumption in the kiln, and it delivers kiln feed quality out of the mill, eliminating the need for well working blending silos.

Easy to install, easier to use
FLSmidth has combined more than 40 years of experience in material proportioning in the development of QCX/BlendExpert V8. The software offers significant improvements for all cement plants.

It has been designed using the latest control technologies and can be installed on a standard PC, physical or virtual, standalone or on top of another QCX system. It has an easy-to-interpret graphical interface and advanced alarm and trend capabilities.

For further details, contact: S. Sankaralingam
(Ph. +91 7358058894); Altrin Prabahar. S.
(Ph.+91 7358046923), FLSmidth Ltd.

Maximum efficiency, higher productivity
QCX/BlendExpert provides cement plants with a competitive edge and allows plant owners and managers to achieve what other plants without advanced quality control systems can’t achieve.

  • Up to 60% lower standard deviation of quality targets.
  • Fast payback of system investment
  • due to:
  • Lower fuel consumption in the kiln and pre-heater;
  • Reduced equipment wear and longer lifetime of mechanical parts – less thermal stress is a direct benefit of QCX/BlendExpert’s stable burning.
  • Reduced need for blending silos.
  • Higher kiln alternative fuel substitution rate.
  • Steady 24/7/365 control philosophy.
  • Intuitive user interface, providing easy overview of ‘next step’ process control.
  • Fast troubleshooting of material feeders through direct monitoring of feeder operation.
  • Improved accuracy and benefits of online analysers through dynamic bias correction and automated handling.
  • Optimal use of raw materials and additives, leading to cost savings.
  • Optimal control of material blending during upset conditions – no need to switch to manual control.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Economy & Market

From Vision to Action: Fornnax Global Growth Strategy for 2026

Published

on

By

Shares

Jignesh Kundaria, Director & CEO, Fornnax Recycling Technology

As 2026 begins, Fornnax is accelerating its global growth through strategic expansion, large-scale export-led installations, and technology-driven innovation across multiple recycling streams. Backed by manufacturing scale-up and a strong people-first culture, the company aims to lead sustainable, high-capacity recycling solutions worldwide.

As 2026 begins, Fornnax stands at a pivotal stage in its growth journey. Over the past few years, the company has built a strong foundation rooted in engineering excellence, innovation, and a firm commitment to sustainable recycling. The focus ahead is clear: to grow faster, stronger, and on a truly global scale.

“Our 2026 strategy is driven by four key priorities,” explains Mr. Jignesh Kundaria, Director & CEO of Fornnax.

First, Global Expansion

We will strengthen our presence in major markets such as Europe, Australia, and the GCC, while continuing to grow across our existing regions. By aligning with local regulations and customer requirements, we aim to establish ourselves as a trusted global partner for advanced recycling solutions.

A major milestone in this journey will be export-led global installations. In 2026, we will commission Europe’s highest-capacity shredding line, reinforcing our leadership in high-capacity recycling solutions.

Second, Product Innovation and Technology Leadership

Innovation remains at the heart of our vision to become a global leader in recycling technology by 2030. Our focus is on developing solutions that are state-of-the-art, economical, efficient, reliable, and environmentally responsible.

Building on a decade-long legacy in tyre recycling, we have expanded our portfolio into new recycling applications, including municipal solid waste (MSW), e-waste, cable, and aluminium recycling. This diversification has already created strong momentum across the industry, marked by key milestones scheduled to become operational this year, such as:

  • Installation of India’s largest e-waste and cable recycling line.
  • Commissioning of a high-capacity MSW RDF recycling line.

“Sustainable growth must be scalable and profitable,” emphasizes Mr. Kundaria. In 2026, Fornnax will complete Phase One of our capacity expansion by establishing the world’s largest shredding equipment manufacturing facility. This 23-acre manufacturing unit, scheduled for completion in July 2026, will significantly enhance our production capability and global delivery capacity.

Alongside this, we will continue to improve efficiency across manufacturing, supply chain, and service operations, while strengthening our service network across India, Australia, and Europe to ensure faster and more reliable customer support.

Finally: People and Culture

“People remain the foundation of Fornnax’s success. We will continue to invest in talent, leadership development, and a culture built on ownership, collaboration, and continuous improvement,” states Mr. Kundaria.

With a strong commitment to sustainability in everything we do, our ambition is not only to grow our business, but also to actively support the circular economy and contribute to a cleaner, more sustainable future.

Guided by a shared vision and disciplined execution, 2026 is set to be a defining year for us, driven by innovation across diverse recycling applications, large-scale global installations, and manufacturing excellence.

Continue Reading

Concrete

Technology plays a critical role in achieving our goals

Published

on

By

Shares

Arasu Shanmugam, Director and CEO-India, IFGL, discusses the diversification of the refractory sector into the cement industry with sustainable and innovative solutions, including green refractories and advanced technologies like shotcrete.

Tell us about your company, it being India’s first refractory all Indian MNC.
IFGL Refractories has traditionally focused on the steel industry. However, as part of our diversification strategy, we decided to expand into the cement sector a year ago, offering a comprehensive range of solutions. These solutions cover the entire process, from the preheater stage to the cooler. On the product side, we provide a full range, including alumina bricks, monolithics, castables, and basic refractories.
In a remarkably short span of time, we have built the capability to offer complete solutions to the cement industry using our own products. Although the cement segment is new for IFGL, the team handling this business vertical has 30 years of experience in the cement industry. This expertise has been instrumental in establishing a brand-new greenfield project for alumina bricks, which is now operational. Since production began in May, we are fully booked for the next six months, with orders extending until May 2025. This demonstrates the credibility we have quickly established, driven by our team’s experience and the company’s agility, which has been a core strength for us in the steel industry and will now benefit our cement initiatives.
As a 100 per cent Indian-owned multinational company, IFGL stands out in the refractory sector, where most leading players providing cement solutions are foreign-owned. We are listed on the stock exchange and have a global footprint, including plants in the United Kingdom, where we are the largest refractory producer, thanks to our operations with Sheffield Refractories and Monocon. Additionally, we have a plant in the United States that produces state-of-the-art black refractories for critical steel applications, a plant in Germany providing filtering solutions for the foundry sector, and a base in China, ensuring secure access to high-quality raw materials.
China, as a major source of pure raw materials for refractories, is critical to the global supply chain. We have strategically developed our own base there, ensuring both raw material security and technological advancements. For instance, Sheffield Refractories is a leader in cutting-edge shotcreting technology, which is particularly relevant to the cement industry. Since downtime in cement plants incurs costs far greater than refractory expenses, this technology, which enables rapid repairs and quicker return to production, is a game-changer. Leading cement manufacturers in the country have already expressed significant interest in this service, which we plan to launch in March 2025.
With this strong foundation, we are entering the cement industry with confidence and a commitment to delivering innovative and efficient solutions.
Could you share any differences you’ve observed in business operations between regions like Europe, India, and China? How do their functionalities and approaches vary?
When it comes to business functionality, Europe is unfortunately a shrinking market. There is a noticeable lack of enthusiasm, and companies there often face challenges in forming partnerships with vendors. In contrast, India presents an evolving scenario where close partnerships with vendors have become a key trend. About 15 years ago, refractory suppliers were viewed merely as vendors supplying commodities. Today, however, they are integral to the customer’s value creation chain.
We now have a deep understanding of our customers’ process variations and advancements. This integration allows us to align our refractory solutions with their evolving processes, strengthening our role as a value chain partner. This collaborative approach is a major differentiator, and I don’t see it happening anywhere else on the same scale. Additionally, India is the only region globally experiencing significant growth. As a result, international players are increasingly looking at India as a potential market for expansion. Given this, we take pride in being an Indian company for over four decades and aim to contribute to making Aatma Nirbhar Bharat (self-reliant India) a reality.
Moving on to the net-zero mission, it’s crucial to discuss our contributions to sustainability in the cement industry. Traditionally, we focused on providing burnt bricks, which require significant fuel consumption during firing and result in higher greenhouse gas emissions, particularly CO2. With the introduction of Sheffield Refractories’ green technology, we are now promoting the use of green refractories in cement production. Increasing the share of green refractories naturally reduces CO2 emissions per ton of clinker produced.
Our honourable Prime Minister has set the goal of achieving net-zero emissions by 2070. We are committed to being key enablers of this vision by expanding the use of green refractories and providing sustainable solutions to the cement industry, reducing reliance on burnt refractories.

Technology is advancing rapidly. What role does it play in helping you achieve your targets and support the cement industry?
Technology plays a critical role in achieving our goals and supporting the cement industry. As I mentioned earlier, the reduction in specific refractory consumption is driven by two key factors: refining customer processes and enhancing refractory quality. By working closely as partners with our customers, we gain a deeper understanding of their evolving needs, enabling us to continuously innovate. For example, in November 2022, we established a state-of-the-art research centre in India for IFGL, something we didn’t have before.
The primary objective of this centre is to leverage in-house technology to enhance the utilisation of recycled materials in manufacturing our products. By increasing the proportion of recycled materials, we reduce the depletion of natural resources and greenhouse gas emissions. In essence, our focus is on developing sustainable, green refractories while promoting circularity in our business processes. This multi-faceted approach ensures we contribute to environmental sustainability while meeting the industry’s demands.

Of course, this all sounds promising, but there must be challenges you’re facing along the way. Could you elaborate on those?
One challenge we face is related to India’s mineral resources. For instance, there are oxide deposits in the Saurashtra region of Gujarat, but unfortunately, they contain a higher percentage of impurities. On the magnesite side, India has deposits in three regions: Salem in Tamil Nadu, Almora in Uttarakhand, and Jammu. However, these magnesite deposits also have impurities. We believe the government should take up research and development initiatives to beneficiate these minerals, which are abundantly available in India, and make them suitable for producing high-end refractories. This task is beyond the capacity of an individual refractories company and requires focused policy intervention. While the government is undertaking several initiatives, beneficiation of minerals like Indian magnesite and Indian oxide needs to become a key area of focus.
Another crucial policy support we require is recognising the importance of refractories in industrial production. The reality is that without refractories, not even a single kilogram of steel or cement can be produced. Despite this, refractories are not included in the list of core industries. We urge the government to designate refractories as a core industry, which would ensure dedicated focus, including R&D allocations for initiatives like raw material beneficiation. At IFGL, we are taking proactive steps to address some of these challenges. For instance, we own Sheffield Refractories, a global leader in shotcrete technology. We are bringing this technology to India, with implementation planned from March onwards. Additionally, our partnership with Marvel Refractories in China enables us to leverage their expertise in providing high-quality refractories for steel and cement industries worldwide.
While we are making significant efforts at our level, policy support from the government—such as recognising refractories as a core industry and fostering research for local raw material beneficiation—would accelerate progress. This combined effort would greatly enhance India’s capability to produce high-end refractories and meet the growing demands of critical industries.

Could you share your opinion on the journey toward achieving net-zero emissions? How do you envision this journey unfolding?
The journey toward net zero is progressing steadily. For instance, even at this conference, we can observe the commitment as a country toward this goal. Achieving net zero involves having a clear starting point, a defined objective, and a pace to progress. I believe we are already moving at an impressive speed toward realising this goal. One example is the significant reduction in energy consumption per ton of clinker, which has halved over the past 7–8 years—a remarkable achievement.
Another critical aspect is the emphasis on circularity in the cement industry. The use of gypsum, which is a byproduct of the fertiliser and chemical industries, as well as fly ash generated by the power industry, has been effectively incorporated into cement production. Additionally, a recent advancement involves the use of calcined clay as an active component in cement. I am particularly encouraged by discussions around incorporating 12 per cent to 15 per cent limestone into the mix without the need for burning, which does not compromise the quality of the final product. These strategies demonstrate the cement industry’s constructive and innovative approach toward achieving net-zero emissions. The pace at which these advancements are being adopted is highly encouraging, and I believe we are on a fast track to reaching this critical milestone.

– Kanika Mathur

Continue Reading

Technology

ARAPL Reports 175% EBITDA Growth, Expands Global Robotics Footprint

Affordable Robotic & Automation posts strong Q2 and H1 FY26 results driven by innovation and overseas orders

Published

on

By

Shares

Affordable Robotic & Automation Limited (ARAPL), India’s first listed robotics firm and a pioneer in industrial automation and smart robotic solutions, has reported robust financial results for the second quarter and half year ended September 30, 2025.
The company achieved a 175 per cent year-on-year rise in standalone EBITDA and strong revenue growth across its automation and robotics segments. The Board of Directors approved the unaudited financial results on October 10, 2025.

Key Highlights – Q2 FY2026
• Strong momentum across core automation and robotics divisions
• Secured the first order for the Atlas AC2000, an autonomous truck loading and unloading forklift, from a leading US logistics player
• Rebranded its RaaS product line as Humro (Human + Robot), symbolising collaborative automation between people and machines
• Expanded its Humro range in global warehouse automation markets
• Continued investment in deep-tech innovations, including AI-based route optimisation, autonomy kits, vehicle controllers, and digital twins
Global Milestone: First Atlas AC2000 Order in the US

ARAPL’s US-based subsidiary, ARAPL RaaS (Humro), received its first order for the next-generation Atlas AC2000 autonomous forklift from a leading logistics company. Following successful prototype trials, the client placed an order for two robots valued at Rs 36 million under a three-year lease. The project opens opportunities for scaling up to 15–16 robots per site across 15 US warehouses within two years.
The product addresses an untapped market of 10 million loading docks across 21,000 warehouses in the US, positioning ARAPL for exponential growth.

Financial Performance – Q2 FY2026 (Standalone)
Net Revenue: Rs 25.7587 million, up 37 per cent quarter-on-quarter
EBITDA: Rs 5.9632 million, up 396 per cent QoQ
Profit Before Tax: Rs 4.3808 million, compared to a Rs 360.46 lakh loss in Q1
Profit After Tax: Rs 4.1854 lakh, representing 216 per cent QoQ growth
On a half-year basis, ARAPL reported a 175 per cent rise in EBITDA and returned to profitability with Rs 58.08 lakh PAT, highlighting strong operational efficiency and improved contribution from core businesses.
Consolidated Performance – Q2 FY2026
Net Revenue: Rs 29.566 million, up 57% QoQ
EBITDA: Rs 6.2608 million, up 418 per cent QoQ
Profit After Tax: Rs 4.5672 million, marking a 224 per cent QoQ improvement

Milind Padole, Managing Director, ARAPL said, “Our Q2 results reflect the success of our innovation-led growth strategy and the growing global confidence in ARAPL’s technology. The Atlas AC2000 order marks a defining milestone that validates our engineering strength and accelerates our global expansion. With a healthy order book and continued investment in AI and autonomous systems, ARAPL is positioned to lead the next phase of intelligent industrial transformation.”
Founded in 2005 and headquartered in Pune, Affordable Robotic & Automation Ltd (ARAPL) delivers turnkey robotic and automation solutions across automotive, general manufacturing, and government sectors. Its offerings include robotic welding, automated inspection, assembly automation, automated parking systems, and autonomous driverless forklifts.
ARAPL operates five advanced plants in Pune spanning 350,000 sq ft, supported by over 400 engineers in India and seven team members in the US. The company also maintains facilities in North Carolina and California, and service centres in Faridabad, Mumbai, and San Francisco.

Continue Reading

Trending News