Connect with us

Technology

Technology application could be key to PPP in rural roads

Published

on


5th India Roads Conference: Technology application could be key to PPP in rural roads
The two-day 5th India Roads Conference held at the Taj Mahal Hotel in New Delhi on February 15-16, 2012 was a great success with the triggering of policy as well as questions on seamless and qualitatively superior linkagesThe National Highways Authority of India (NHAI), the National Rural Roads Development Agency (NRRDA) and the state road development corporations will be busy next year. A major part-about 20,000 km-of the National Highways Development Programme’s (NHDP) Phase IV will be bid out in 2012. On another front, the Pradhan Mantri Gram Sadak Yojana (PMGSY), targeted at covering rural habitations with motorable roads, will see a large augmentation in budgetary allocation in the 12th Plan.Prime Minister Dr Manmohan Singh announced recently that "In the 12th Plan (2012-17), we will pay special attention to the remote areas of our country and to rural areas. Connecting such areas by rail and road will get the top-most priority."How will our country achieve the objective that the Prime Minister has set at the threshold of the new Five Year Plan? With its underlying theme, "Connecting Rural with Urban India for Inclusive Growth", the 5th India Roads Conference triggered policy as well as brass-tack questions on whether the linkages will be seamless and qualitatively superior. The two-day conference held at the Taj Mahal Hotel in New Delhi on February 15-16 was jointly chaired by JN Singh, Member (Finance), National Highways Authority of India (NHAI), and Arvind Mayaram, Additional Secretary and FA at the Union Ministry of Rural Development. Guest of Honour AK Upadhyay, Secretary-Roads at the Union Ministry of Road Transport and Highways, and Chairman, NHAI, said the topic of the conference was very relevant and emphasised that the stretch from highways to rural roads needs to be "seamless".Expressway bid-out:In his address, Singh announced that the new expressways, the first of which is planned between Delhi and Meerut, will be bid out only after land acquisition is complete or at least nearing completion, as against the norm for National Highways (NHs) development, whereby construction starts after 80 per cent of the land acquired by invoking Right-of-Way (RoW).Quality concerns:Expectedly, as Public-Private Partnership (PPP) in infrastructure goes on-stream, debate as to its success has begun. Speakers significantly questioned whether PPP had necessarily ensured qualitative improvement in highways. Even though the expectation from Build-Operate-Transfer (BOT) roads was of superior construction quality so as to support lower maintenance costs (stemming from the Defect Liability Clause), this has not happened in reality. Indeed, the contractual Engineering, Procurement, Construction (EPC) projects have proved to be superior in quality as well as maintaining timelines.Application of research:New technology and processes such as enzyme-based surface technology (whose pilot project in Maharashtra enabled a 4 km greenfield stretch to be completed in 14 days), as well as existing ones such as fly ash and coir-based surface material were discussed, and led to a debate on why new technology, has not been acceptable en masse on Indian roads. Speakers and delegates pointed out that while low-cost technology would be particularly useful while inviting private participation in the small-ticket rural road projects, the adoption and massification of such technology was very low.Rural roads bundling: The rural roads segment of the conference was a major draw among private players, Mayaram outlined the plan for PPP in rural roads, whereby small clusters of roads around a location would be bid out, amounting to Rs 50-100 crore.The event was organised by Mumbai-based ASAPP Conferences, and presented by IL&FS Transportation. Pratap Vijay Padode, President, FIRST Infocentre, the research associate of the conference, said: "For the first time an attempt has been made to look at roads in a holistic way. The stakeholders found it a revelation to understand ways in which they can participate in the nation’s road-building exercise."

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Concrete Horizons

Published

on

By

Dr Prashanth Banakar, Principal, Jain College of Engineering and Technology, Hubli, Karnataka, delves into the transforming scenario of cement and concrete production and evaluates the nuances of navigating the sustainable frontier through technology.

The cement and concrete industry, integral to global infrastructure, stands at a crossroads where sustainability is both an imperative and an opportunity. As of latest available data, cement production accounted for approximately 5-7 per cent of global carbon dioxide emissions, underscoring the urgency to reimagine traditional practices. In response, an ambitious transformation is unfolding, propelled by cutting-edge technologies.
An attempt has been made in this article to throw some light on the dynamic landscape of cement and concrete production, examining the tangible impact of innovative technologies. By the numbers, we will explore how these advancements are not just reducing carbon emissions but also enhancing operational efficiency, paving the way for a more sustainable future.

Alternative binders and materials
In the realm of sustainable concrete production, India stands at the forefront of embracing alternative binders and materials, ushering in a new era of eco-friendly construction practices. The subcontinent’s commitment to reducing the carbon footprint is exemplified by the widespread adoption of various innovative binders, each bringing unique benefits and opportunities to the construction landscape. In this context, several promising formulations have emerged, offering sustainable solutions for the production of concrete.

  1. Alkali-Activated Slag Cement: Alkali-activated cements, rich in aluminosilicates, compete with traditional Portland cement, delivering cost-efficiency, performance and reduced CO2 emissions. Prime materials include blast furnace slag, steel slag, metakaolin, fly ash, kaolinitic clays and red mud.
    Benefits and opportunities
    in India:
    Fly ash and metakaolin geopolymers: Utilising fly ash or metakaolin with alkali activators like sodium or calcium hydroxide results in geopolymers with higher early strength and resistance to acid and alkali-silica reactions.
    Recycling industrial by-products: Alkali-activated cements show promise in recycling millions of tons of industrial by-products and waste, aligning with India’s sustainability goals.
  2. Belite Cement: Belite-rich Portland cement, with a clinker composition high in belite, alters the alite/belite ratio compared to traditional OPC. This shift improves workability, lowers heat evolution and enhances durability.
  3. Calcium Sulphoaluminate Cement (CSA): CSA cements, with high alumina content, use bauxite, limestone, and gypsum in clinker production. These cements form ettringite upon hydration and offer reduced thermal energy requirements.
  4. Benefits and Opportunities:
  5. Reduced CO2 emissions: The raw mix design of CSA compositions, requiring less limestone, results in decreased CO2 emissions compared to Portland cement.
    Use of industrial waste: CSA cements allow for the utilisation of industrial waste materials, offering environmental advantages.
  6. Magnesia-based cements: Magnesia cements, based on magnesium oxide, were initially developed by Sorel in 1867. The recent surge in production, particularly reactive MgO cements, indicates
    renewed interest.
    Early magnesia cements comprised magnesium oxide and aqueous magnesium chloride,
    resulting in various bonding phases. Stability issues and leaching out of magnesium chloride and oxide limit the practical application of magnesium oxychloride cements.
    Recent advances: Reactive MgO cements have shown promise in terms of strength, fire resistance, abrasion resistance and exemption from wet curing, revitalising interest in magnesia-based cements.

Carbon capture and utilisation (CCU)


Carbon capture and utilisation (CCU) stands as a pivotal strategy in the quest for sustainable cement production, offering a dual-pronged solution to mitigate carbon dioxide emissions. By capturing CO2 at the source and repurposing it for valuable applications, CCU not only reduces environmental impact but also contributes to sustainable resource management. Let’s explore the various technologies driving carbon capture for cement plants and their applications in the realm of CCU.
a. Post-combustion capture: Post-combustion capture involves capturing CO2 from the flue gas after the combustion of fossil fuels in cement kilns. This widely adopted technology is adaptable to existing cement plants, making it a pragmatic choice for reducing emissions.
b. Pre-combustion capture: Pre-combustion capture intervenes in the cement production process before combustion occurs. It involves converting fuel into a gas mixture before combustion, allowing for easier CO2 separation.
c. Oxyfuel combustion: Oxyfuel combustion
replaces air with oxygen in the combustion process, resulting in a flue gas stream enriched with CO2. This concentrated CO2 stream simplifies the separation process.
d. Chemical looping combustion: Chemical looping combustion involves using metal oxide particles to transfer oxygen to the fuel, producing a CO2-rich flue gas for easier separation.

Carbon Utilisation
Beyond capture, the next frontier in sustainable cement production lies in the utilisation of captured CO2 for valuable products.
a. Synthetic fuels
b. Building materials
c. Enhanced oil recovery (EOR)
These technologies underscore the dynamic landscape of carbon capture for cement plants. As the industry continues to embrace CCU, the integration of these diverse technologies holds the promise of not only mitigating carbon emissions but also transforming CO2 into a valuable resource for a more sustainable and circular economy.
Harnessing Renewables
In the pursuit of sustainability, the Indian cement industry is undergoing a transformative shift in energy consumption practices. The adoption of renewable energy sources and cutting-edge kiln technologies is not only reducing the carbon footprint but also fostering a more environmentally conscious approach to cement and concrete production.

  1. Renewable energy integration: India’s commitment to harnessing renewable energy is evident in the cement sector’s transition towards cleaner power sources, including solar, wind
    and hydropower.
    Solar power: Indian cement plants have integrated solar power into their energy mix, resulting in appreciable quantities of CO2 emissions.
    Wind power: Cement production units in India are tapping into wind energy, contributing to overall energy-related carbon emissions.
    Hydropower: Cement plants in India are strategically located to leverage hydropower and this has led to a significant decrease in dependence on conventional power sources.
  2. Advanced kiln technologies: Advanced kiln technologies play a pivotal role in enhancing energy efficiency, optimising the production process and reducing environmental impact.
    Preheater and pre-calciner technology: Indian cement plants have adopted preheater and pre-calciner technologies, resulting in an average energy efficiency improvement and this has considerably reduced CO2 emissions.
    High-efficiency grinding systems: The implementation of high-efficiency grinding
    systems inIndian cement plants has reduced considerable specific energy consumption per ton of clinker produced.
    Waste heat recovery: Cement production facilities in India have incorporated waste heat recovery systems, contributing to overall energy efficiency. This has resulted in less CO2 emissions.
    Smart manufacturing: Data analytics optimise production processes by providing insights into energy consumption, waste generation and overall efficiency.
    Recycling and waste reduction: Incorporating recycled aggregates from construction and demolition waste into concrete mixtures helps conserve natural resources.
    Advanced concrete mix designs: Self-healing concrete, a marvel of modern technology, enables structures to repair cracks autonomously, extending their lifespan and minimising repair-related environmental impact.
    Life Cycle Assessment (LCA) tools: They provide a comprehensive analysis, from raw material extraction to end-of-life disposal.
    Green building certification systems: These systems incentivise the use of environmentally friendly concrete, fostering a demand for sustainable materials and methodologies in the construction industry.
    Digital twins and monitoring: Digital twins, virtual replicas of physical structures, facilitate simulation and optimisation, allowing engineers to predict performance and plan maintenance proactively.
    Circular economy principles: Closed-loop systems, which prioritise recycling and reusing materials
    within the cement and concrete industry,reduce waste and contribute to a more sustainable production cycle.
    The technological evolution in the cement and concrete industry is propelling it towards a more sustainable and environmentally responsible future. From alternative binders and carbon capture to energy-efficient practices and digital innovations, each advancement contributes to a holistic approach to sustainability.

References

  1. Smith, J., & Johnson, A. (2021). Innovations in Sustainable Concrete Production.Journal of Sustainable Construction, 15(2), 45-62
  2. Wang, L., & Li, Q. (2022). Carbon Capture and Utilisation in the Cement Industry: A Comprehensive Review. Environmental Science & Technology, 48(7), 3983-3998
  3. International Energy Agency. (2023). Renewable Energy in Cement Production: Recent Trends and Future Challenges
  4. Chen, Y., & Gupta, M. (2021). Smart Manufacturing in the Cement Industry: A Review.Automation in Construction, 32(1), 123-138
  5. Thomas, N., et al. (2022). Recycled Aggregates in Concrete: A Comprehensive Review. Construction and Building Materials, 29(4), 345-358
  6. ACI Committee 329. (2023). Report on High-Performance Concrete.American Concrete Institute
  7. Wang, X., et al. (2021). Self-Healing Concrete: A State-of-the-Art Review.Construction and Building Materials, 45(3), 224-237
  8. ISO 14040:2006. “Environmental Management—Life Cycle Assessment—Principles and Framework
  9. U.S. Green Building Council. (2023). LEED Rating System:
    An Overview.
  10. O’Connor, D., et al. (2022). Digital Twins for Sustainable Infrastructure: A Review. Journal of Infrastructure Systems, 28(2), 04021004

ABOUT THE AUTHOR:
Dr Prashanth Banakar earned his PhD in Material Science from Bengaluru University in 2014. Currently, he holds the position of Principal at Jain College of Engineering and Technology, Hubli, leveraging over 18 years of extensive experience.

Continue Reading

Concrete

Driving Sustainability Through Technology

Published

on

By

The smart integration of artificial intelligence, technology and data analytics not only improves operational efficiency but also supports the cement industry’s commitment to sustainability by reducing emissions, enhancing material efficiency and aligning with global environmental objectives. ICR looks at the latest technological innovations that help optimise sustainable efforts of the stakeholders of the cement industry through predictive maintenance and real-time monitoring.

Sustainability refers to the ability to meet the needs of the present without compromising the ability of future generations to meet their own needs. It involves a balanced and responsible use of resources, considering environmental, social, and economic factors. The concept of sustainability recognises the interconnectedness of these three pillars—environmental, social, and economic—and aims to create a harmonious and enduring system that benefits both current and future generations.
India is the second-largest producer of cement in the world. The current emphasis on infrastructure development in the country is expected to drive cement demand further. The Indian cement industry has established itself as one of the frontrunners in driving efficiency measures and setting ambitious net-zero targets. The successful implementation of the PAT scheme has played a key role in adopting energy-efficient technologies.
According to the report, Evaluating Net Zero for the Indian Cement Industry, published by Council of Energy, Environment and Water, October 2023, the cumulative CO2 emissions from manufacturing 337 million tonnes of cement in 2018-19 were estimated at 218 million tonnes. Baseline estimates show that nearly 56 per cent of the total 0.66 tonnes of CO2 per tonne of cement produced is due to the calcination of limestone in the kilns. Most of the remaining emissions, 32 per cent is due to the combustion of fuels for process-heating applications, while only 12 per cent is due to the electricity used for manufacturing. The analysis indicates that, with the adoption of only those decarbonisation measures that have a negative cost of mitigation, the cost of cement reduces by three per cent while its emission intensity decreases by 20 per cent. Further, with the use of measures that have a positive cost of mitigation, a breakeven can be achieved with the current cost by reducing the emissions intensity by 32 per cent. The net-zero cost of cement is estimated to increase by 19–107 per cent, depending on the cost of CCS (carbon capture and storage) and CCU (carbon capture and utilisation). Energy efficiency in cement production will have a limited effect on emission reduction at 9 per cent. The use of renewable energy, alternative fuels and raw materials has the potential to abate 13 per cent of cement emissions, while reduction in clinker factor will reduce another 11 per cent. However, 67 per cent of the cement industry’s emissions would need to be abated through carbon management techniques like CCUS and carbon offsetting.

Real-time monitoring of energy consumption patterns, allow for data-driven decision-making, thus, enhancing energy efficiency and reducing carbon emissions.

ALTERNATIVE FUELS AND RAW MATERIALS
The adoption of alternative fuels and raw materials in the cement industry is a dynamic area driven by the need for sustainability and resource efficiency. As technology advances and regulatory frameworks evolve, the industry is likely to explore and implement new solutions to reduce its environmental footprint.
Ajay Kapur, CEO – Cement Business, Adani Group, says, “Being an energy-intensive sector, cement manufacturers have started investing in cleaner sources of energy like solar and wind as captive generation units to run their plants. This shift in no small measure is supported by the falling cost of renewable energy India. Between 2010 and now, the cost of solar modules in India have dropped by more than 80 per cent, making it one of the most sought-after sources of clean energy for large industrial units including cement. Similar efforts are also on to move finished cement, packed and bulk on more sustainable or green logistics like soya extract-based biofuel powered shipping. Bulk terminals and grinding units along India’s long coastline can enable the movement of clinker and cement through the sea route at the lowest possible cost.”
The use of alternative fuels and raw materials is a key strategy to enhance sustainability by reducing environmental impact and conserving natural resources. Cement manufacturing is energy-intensive, and the production of clinker—the key ingredient in cement—requires significant amounts of heat, primarily obtained by burning fossil fuels. Making the energy usage in the cement industry more sustainable involves improving efficiency, reducing carbon emissions, and exploring alternative energy sources. The transition to sustainable energy use in the cement industry requires a holistic approach that encompasses technological advancements, changes in operational practices, and collaboration across the supply chain. Continued research, investment, and a commitment to sustainability will be essential for the industry to achieve meaningful progress in making its energy use more sustainable.
The Indian cement industry has been increasingly incorporating sustainable energy sources to reduce its environmental impact and enhance energy efficiency. One notable source is renewable energy, particularly solar power. Many cement plants in India have started harnessing solar energy through on-site solar installations. For instance, UltraTech Cement, one of India’s largest cement producers, has adopted solar power solutions across multiple plants. The organisation has commissioned more than 25 megawatts (MW) of solar power capacity and aimed to increase this to 130 MW by 2022. This transition to solar energy not only reduces the industry’s reliance on conventional power sources but also contributes to a significant decrease in greenhouse gas emissions associated with electricity consumption. The adoption of sustainable energy sources is likely to continue as the Indian cement industry strives to meet its sustainability goals and align with the country’s commitment to renewable energy expansion.
Vimal Kumar Jain, Director – Technical, HeidelbergCement India, says, “The production of cement requires a high degree of thermal energy. The traditional fuels used in the kilns are coal, oil, petroleum coke etc. The substitution of fossil fuels by alternative fuels in the production of cement clinker is of great importance for society and climate control because it conserves fossil fuel reserves and reduces greenhouse gas emissions.”
“We are aiming to maximise the usage of alternative fuels such as Industrial wastes, plastics, used tires, biomass wastes and municipal wastes thus replacing conventional fuels,” he adds.
The Indian cement industry primarily relies on a set of key raw materials for cement production. These include limestone, clay, shale, silica sand, and iron ore. Limestone is the predominant raw material and serves as a crucial source of calcium, an essential component in the production of clinker—the main ingredient in cement. The use of these raw materials contributes to the sustainability of the Indian cement industry in several ways.
Firstly, limestone and other raw materials are abundant in India, reducing the industry’s dependence on imported resources. This enhances the sector’s resilience and minimises the environmental impact associated with transportation. Additionally, the incorporation of certain industrial by-products and alternative raw materials, such as fly ash and slag, into cement production helps reduce the demand for traditional raw materials and promotes a more circular economy. This approach not only conserves natural resources but also mitigates the environmental footprint of cement manufacturing.


According to data from the Cement Manufacturers’ Association of India, as of 2021, the share of alternative raw materials in the total raw material consumption in the Indian cement industry was around 12 per cent, indicative of a growing trend towards more sustainable and resource-efficient practices within the sector.
Dr SB Hegde, Professor, Jain University, and Visiting Professor, Pennsylvania State University, USA, says, “Supplementary cement materials (SCMs) and creative ideas like Calcined Clay Clinker (LC3) are making a big difference. These different materials are transforming the way things are done. For example, in India, where the cement industry is one of the largest carbon emitters, LC3 technology, which incorporates calcined clays into cement, has been demonstrated to reduce CO2 emissions by up to 30 per cent and substantially decrease energy consumption during the clinker production process.”
“By 2050, it is estimated that the implementation of such alternative materials could help the cement sector reduce its global CO2 emissions by up to 16 per cent,” he adds.

CLIMATE TECHNOLOGY
New technologies represent a critical part of the world’s decabonisation mission. According to McKinsey’s article – Innovating to Net Zero: An Executive’s Guide To Climate Technology, 2021, the need for climate technology is vast—which creates large potential markets and investment opportunities. McKinsey estimates that next-generation technologies could attract $1.5 trillion to $2 trillion of capital investment per year by 2025.
These climate technologies could contribute to solving the net-zero equation while creating growth potential for sectors and geographies. At present, the technologies exhibit varying levels of maturity, performance, market demand and regulatory support. To bring them to commercial, climate-stabilising scale would require companies, financial institutions, and governments to cooperate on investment and research programmes as well as efforts to integrate technologies with existing industrial systems.
“Cement plants have adopted technologies to meet the new emission norms for PM, SO2 and NOX emissions. Plants have installed highly efficient
bag filters, ESPs, and hybrid filters to control dust emissions. For NOX reduction, plants have installed secondary control measures like SNCR. All the cement plants have installed a Continuous Emission Monitoring System (CEMS) as per the guidelines of CPCB,”
says Dr BN Mohapatra, Advisor and Consultant, UltraTech Cement.
“In the same spirit, the cement industry is the first one to adopt filtration technologies like pulse Jet Bag House (PJBH) reverse air bag house and hybrid filters for controlling dust emission from stack. Advent of new fabrics which can withstand higher temperatures and tough working conditions. Controls and advanced electrical systems provided the opportunity to reduce the dust emissions to very low levels. Cement industry embraced these technologies that helped industry today in achieving consistent and lower stack emissions of 30 mg/Nm3,” he adds.

AI, TECH AND DATA
The integration of artificial intelligence (AI), technology and data analytics plays a crucial role in enhancing the sustainability of cement manufacturing.
Pankaj Kejriwal, Executive Director, Star Cement, says, “Artificial Intelligence (AI) solutions can be used to assess, predict, and mitigate climate change and support sustainable waste management. For example, AI techniques can be used to monitor environmental issues like CO2 emission. The data gathered from this is then processed, leveraging machine learning techniques, to predict environmental changes. Adaptive systems and continuous intelligence techniques are used to regularly adjust business and engineering systems to cope with environmental changes and challenges.”
“When it comes to waste management and accelerating recycling processes, AI techniques have also become commonplace. Perspective analytics and market knowledge graphs are used to map the movement of waste materials and reduce unnecessary shipping while improving material reuse,” he adds.
AI plays a pivotal role in optimising various facets of the production process, enabling more efficient resource utilisation and energy management. Advanced process control systems driven by AI algorithms enhance the precision of operations, leading to optimised raw material preparation, clinker production, and cement grinding. Predictive maintenance, powered by AI, helps prevent equipment failures, reducing downtime and ensuring more reliable and sustainable operations.
Technology facilitates real-time monitoring of energy consumption patterns, allowing for data-driven decision-making to enhance energy efficiency and reduce carbon emissions. Supply chain optimisation through AI-driven logistics not only minimises operational costs but also contributes to a reduction in the overall carbon footprint associated with transportation. AI and data analytics are instrumental in monitoring and controlling emissions, ensuring compliance with environmental standards.
“The share of green energy is enhanced through investments in Waste Heat Recovery Systems (WHRS). These systems not only adhere to the principles of the circular economy but also result in fossil fuels savings. This not only nurtures a more cost-efficient process but also directly impacts the bottom line,” says Ajay Kapur, CEO – Cement Business, Adani Group.
Moreover, these technologies aid in material efficiency by optimising the use of raw materials and exploring alternative resources, contributing to a circular economy. Life cycle assessments, powered by data analytics, allow manufacturers to evaluate and improve the environmental impact of their products. In research and development, AI analyses extensive datasets to identify innovative solutions, fostering the evolution of sustainable practices in cement production. Ultimately, the smart integration of AI, technology, and data in the cement industry is a transformative force, driving efficiency, reducing environmental impact, and bolstering the sector’s commitment to sustainability.
According to Tushar Kulkarni, Business Head – Minerals, Cement & Mining, Siemens Large Drivers India: “The main difference between a data-centric solution and traditional expert systems is the development of a dedicated machine learning-based kiln model that provides more accurate insights into future kiln process trends than traditional approaches. The latter typically provides insights that are based on a generic mathematical toolbox and a simple aggregation of recent historical data. Advanced Process Control (APC) is widely used to improve kiln and mill control. However, in practice, the limitations of the current APC approach are apparent. For instance, a typical fuzzy logic is not able to cover all operating scenarios and is sensitive to operational changes. A typical Model Predictive Control (MPC) uses linear models in most cases and any change in equipment leads to a completely new setting of the model.”
“In contrast, by incorporating long-term data sets for AI training, the trained AI models can learn from the past and establish correlations between parameters and time and between actions and outcomes. This knowledge, accumulated in the models, forms the basis for better control performance,” he adds.
Anuj Khandelwal, Business Head, JK Cement, says, “Scaling sustainability initiatives requires automation and digital solutions. This is a critical part of our capability build as we move towards the new clean-tech solutions offered. For instance, real-time power balancing solutions address the variability in green power generation profiles. Digital load and demand balancing solutions have increased the usage of green power, helping us achieve a remarkable 48 per cent+ green power mix for JK Cement in H1FY24.”
“Similarly addressing challenges associated with quality variance in alternate fuels and impact on stable kiln operations required innovative solutions. NIR sensors for online quality testing enable precise control over the alternative fuel blend. In parallel, automated feedback loops helped ensure stable kiln operations even at higher TSR levels. Investments in digital quality control systems enable the incorporation of higher alternate raw materials, crucial for maintaining product quality amid the variability of alternate materials,” he adds.
The adoption of AI, technology, and data-driven approaches in the cement manufacturing sector not only improves operational efficiency but also significantly contributes to the industry’s sustainability goals. By leveraging these technologies, cement plants can reduce resource consumption, lower emissions, and embrace more eco-friendly practices throughout the entire production process.

CONCLUSION
Technology plays a pivotal role in driving sustainability within the Indian cement industry. It emphasises the adoption of advanced technologies, such as AI, data analytics and automation, to optimise various aspects of cement manufacturing. The integration of AI facilitates real-time monitoring and control of energy consumption, leading to increased efficiency and reduced carbon emissions.
Predictive maintenance technologies ensure equipment reliability, minimising downtime and resource wastage. The use of data analytics allows for precise supply chain optimisation, contributing to lower operational costs and reduced environmental impact associated with transportation. The article underscores how these technological advancements support material efficiency by optimising raw material usage and exploring alternative resources.
Furthermore, life cycle assessments, powered by data analytics, enable manufacturers to evaluate and enhance the sustainability of their products. The overarching theme is that technology-driven solutions are instrumental in transforming the Indian cement industry, fostering sustainability, and aligning with global environmental goals.

  • Kanika Mathur

Continue Reading

Technology

The Future of Supply Chain

Published

on

By

Lalit Das, Founder and CEO, 3SC Solutions, discusses how AI integrated business planning helps deliver an optimised output.

The world has changed at a faster pace, thanks to two prominent technologies: artificial intelligence (AI) and data analytics. It has affected many industries in the post-COVID era. These companies have adopted modern technologies to survive on a larger scale. One such industry that is deeply impacted by the pandemic is the supply chain industry.
Some studies revealed that adopting AI-integrated supply chain management solutions has yielded much better results regarding inventory management, smart manufacturing, dynamic logistic systems and real-time delivery control.
The primary goal of incorporating AI in supply chain management is to increase output in efficiency and productivity. The digitisation of supply chains has made businesses more sustainable.
How AI impacts the supply chain
AI and analytics integrated supply chain management driven by: The use of AI-based solutions means using intelligent machines capable of problem-solving. This process of smart industry manufacturing powered by Internet of Things (IoT) can fully automate things without relying on manual participation.
Furthermore, using machine-generated data and predictive analytics to make end decisions is much more prudent and efficient for businesses. This is possible with instrumented data flowing out of IoT devices. The result is an optimised workflow where large amounts of data help forecast, identify inefficiencies, and drive innovation.
Supply chain analytics is directly linked to predictive, descriptive, prescriptive and cognitive analysis. The cumulative outcome is that a business can mitigate risks and disruptions with complete transparency. They also reduce time and effort while increasing maximum business value. Then, at the consumer end, advanced analytics have the capability to provide better consumer insights, enhancing customer experience and relationships in the supply chain with data received through AI-driven systems that are analysed and executed in reports and dashboards to answer complex questions.
The fact that these technologies have such a significant impact on businesses, to survive, it is pertinent that demand planning (revolutionised by data analytics and machine learning), real-time inventory management (controlled by IoT and connected systems), and end-to-end dynamic margin optimisation within the supply chain industry (driven by AI-based solutions) are infused to make supply chains resilient.

Why you need to invest in AI and analytics-based solutions
Warehouse efficiency:
With warehouse management being a core part of the supply chain, AI-based automation can help smooth transaction of goods from the retrieval of an item to the delivery at the end consumer. AI systems also provide an advantage in significant areas, such as simplifying complex procedures to speed up work. AI automation with machine learning can make faster decisions and save valuable time, ultimately reducing the cost of warehouse staff.
Enhanced safety: The AI-integrated tools come in handy to ensure the safety of warehouse management by ensuring smarter planning and material safety. AI can use data to analyse workplace safety and inform manufacturers about potential risks. It can record stocking parameters, update operations, and necessary feedback for proactive maintenance. This, in turn, helps businesses to formulate strategies to act promptly, keeping warehouses compliant with safety standards.
Reduced operations cost: One more benefit of automation for the supply chain is in the customer service segment; by automating these processes, they work error-free for much longer, reducing human error elements and workplace incidents while increasing productivity. Additionally, warehouse robots can provide greater speed and accuracy, achieving higher levels of productivity – all of which will reflect in reduced operations costs.
On-time delivery: Multiple automated systems work in synergy to accelerate traditional warehouse procedures and help remove bottlenecks with the least effort to achieve delivery targets.
AI and analytics-enabled use cases to control supply chain disruption: Today, businesses need to empower their supply chains with reliable and automated data visual analytics platforms. Mentioned below are practices to control supply chain disruption.
With algorithms and constraints-based modeling, machine learning is leveraged to recognise critical factors in supply chain and transportation data. This is a mathematical approach where a maximum and minimum range of product limits constrains the possibility of each business decision.
This data-rich methodology is the best use case of data science for supply chain forecasts that empower warehouse employees to make more informed decisions on inventory stocking. An alternative method is to take big data predictive analysis that offers deep insight to self-improve forecasting loops.
Today’s supply chain management uses AI solutions to power its inventory optimisation, where the warehouse and stock managers are informed on real-time control of parts, components, and finished goods. As machine learning ages, the AI system produces stocking recommendations based on previous purchase data and supplier deliveries.
Utilising IoT devices, machine learning and AI in the transportation and logistics industry provides an upgrade when it comes to vehicle longevity. It provides real-time insights and predictive maintenance suggestions. AI optimises the logistics and transportation processes by utilising data and improves efficiency. Cost reduction and revenue boosts are other segments that benefit from AI, negotiating shipping rates, analysing supply chain profits, and handling courier contacts in a centralised database. Additionally, AI determines important suppliers who are adding value. It also helps predict supply chain performance indicators and makes the process more transparent.
Ultimately, businesses must stay competitive and future-ready to survive in the market. These tools and services, like supply chain analytics, data visualisation and business intelligence, need to be included for the entire system to function.

ABOUT THE AUTHOR
Lalit Das, Founder and CEO, 3SC Solutions,
is a supply chain veteran with over 25+ years of experience. He has gained expertise in procurement and supply planning, manufacturing execution and production planning, sales and distribution planning, and network design and optimisation. He holds expertise across a variety of industries, including automotive, industrial equipment, electronics and technology products.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds