Economy & Market
Green cement: Smart strategy
Published
9 months agoon
By
admin
As India races to build its future, green cement emerges as a powerful tool to balance growth with sustainability. Through innovative technologies and supportive policies, the cement industry is sculpting a low-carbon pathway for construction—toward climate-resilient infrastructure.
India’s rapid urbanisation and infrastructure development have positioned it as the second-largest cement producer globally. However, this growth comes with environmental challenges, as the cement industry contributes approximately six per cent of the country’s total greenhouse gas emissions. In response, the industry is increasingly turning to green cement—a sustainable alternative that aims to reduce the environmental footprint of construction activities.
According to a report by Ernst & Young Parthenon (published February 2025), India is positioning itself as a pivotal force in the global green hydrogen economy, leveraging hydrogen’s potential as a clean and adaptable energy source to drive its decarbonisation. The National Green Hydrogen Mission, launched in January 2023, encourages the production and utilisation of this clean energy source. Green hydrogen is set to play a vital role in decarbonising sectors like steel, cement, and transportation, significantly reducing the nation’s carbon footprint.
Hard-to-abate industries like steel, cement, power and utilities, oil and gas, auto-OEMs are high energy consuming and high emitting. These industries are pivotal for economic growth and hence its quintessential for them to decarbonise their production processes if India is to meet its emissions-reduction goals. The emission contribution of these sectors is expected to grow in the coming years. EY analysis indicates that the critical manufacturing sectors would reach a mark of ~2 gigaton CO2 emissions annually in the next 15 years.
Green cement minimises emissions by using alternative materials and low-carbon production techniques. Primary raw materials for this include industrial waste products like blast furnace slag and fly ash, reducing the clinker-to-cement ratio and an effort to close the loop across the cement production value chain as well.
Satish Maheshwari, Chief Manufacturing Officer, Shree Cement, says, “The future of green cement in global construction is set for rapid transformation, driven by sustainability goals and evolving industry demands. With stricter carbon regulations and a growing push for green-certified buildings, the shift toward low-carbon materials is accelerating. Green cement offers more than just environmental benefits. Its superior tensile strength and corrosion resistance make it a viable alternative to traditional cement. Builders are increasingly recognising its role in enhancing long-term project value while reducing carbon footprints.”
India’s cement industry, the world’s second-largest, plays a pivotal role in the nation’s infrastructure and economic development. However, it also contributes approximately 5.8 per cent of the country’s CO2 emissions as of 2022. Recognising this environmental challenge, India has committed to achieving net-zero emissions by 2070, with an interim goal of sourcing 50 per cent of its electricity from renewable sources by 2030. The transition to green cement—produced using alternative fuels and raw materials—offers a viable pathway to reduce the industry’s carbon footprint while supporting sustainable growth.
Understanding green cement
Green cement refers to cementitious materials produced using sustainable methods, incorporating alternative raw materials and energy-efficient processes. Unlike traditional Portland cement, which relies heavily on clinker—a primary source of CO2 emissions—green cement utilises industrial by-products such as fly ash, slag and silica fume. These substitutions not only reduce carbon emissions but also enhance the durability and performance of the final product.
The IMARC Group’s report on the India Green Cement Market highlights the pivotal role of alternative raw materials in driving the sector’s growth. In 2024, the market was valued at USD 1.6 billion and is projected to reach USD 2.8 billion by 2033, exhibiting a CAGR of 6.11 per cent during 2025–2033. This growth is largely attributed to the increasing incorporation of industrial by-products such as fly ash, slag and silica fume in green cement production. These materials, by substituting traditional inputs like limestone and clay, not only reduce the reliance on finite natural resources but also lower the carbon emissions associated with cement manufacturing. Additionally, certain green cement formulations have the capability to absorb carbon dioxide during the curing process, further mitigating their environmental impact.
The report also underscores a broader industry shift towards sustainable construction practices in India. The adoption of alternative raw materials aligns with national efforts to reduce the environmental footprint of the construction sector. By leveraging industrial waste products, the green cement industry not only addresses waste management challenges but also contributes to the creation of more sustainable building materials. This approach supports India’s commitment to environmental sustainability and positions green cement as a viable solution for eco-conscious construction projects.
Market dynamics: Growth and projections
The Indian green cement market has witnessed significant growth, valued at US$ 2.31 billion in 2024 and projected to reach US$ 3.28 billion by 2030, growing at a CAGR of 5.85 per cent. This upward trajectory is driven by increasing environmental awareness, government initiatives promoting sustainable construction, and the rising demand for eco-friendly building materials.
A key driver of the Indian green cement market is the growing environmental awareness among consumers, builders and developers. Heightened by visible climate change impacts, media coverage, and educational initiatives, this awareness has fuelled demand for eco-friendly construction materials that reduce the carbon footprint. Green cement, with its lower embodied carbon, reduced energy consumption during production, and responsible use of raw materials, is increasingly preferred over traditional alternatives. Certifications such as Leadership in Energy and Environmental Design (LEED) and recognition from the Green Building Council of India (GBCI) have further incentivised the use of sustainable materials, motivating developers to
adopt green cement in order to meet regulatory and client expectations.
Manoj Rustagi, Chief Sustainability Officer, JSW Cement says, “In India, in the last couple of years, there have been many policy interventions which have been initiated. One of them, namely the carbon market is under notification; others like Green Public Procurement, Green Cement taxonomy and National CCUS Mission are in the advanced stages and are expected to be implemented in the next couple of years.”
This shift aligns with India’s broader sustainability goals. The country, one of the world’s largest producers of renewable energy, had achieved over 175 GW of renewable energy capacity—including solar and wind power—by 2024. With an ambitious target of reaching 500 GW by 2030, the focus on reducing environmental impact across sectors, including construction, is stronger than ever. As a result, green cement is emerging as a crucial component in India’s transition toward sustainable infrastructure and development.
Environmental impact: Reducing the carbon footprint
Traditional cement production emits approximately 0.66 tonnes of CO2 per tonne of cement. By adopting green cement technologies, this emission intensity can be reduced to 0.53 tonnes, representing a significant step toward decarbonising the sector. Moreover, the utilisation of industrial waste materials not only mitigates environmental pollution but also conserves natural resources.
Ganesh W Jirkuntwar, Senior Executive Director and National Manufacturing Head, Dalmia Cement (Bharat), says, “Low carbon cement not only matches but, in some cases, exceeds the durability of traditional cement. It offers superior resistance to chemical attack, chloride penetration and sulphate exposure, making it particularly well-suited for marine and industrial environments. Cements made with materials like fly ash or slag can achieve compressive strength comparable to that of Ordinary Portland Cement (OPC), though they may exhibit a slower initial strength gain that improves significantly over time.”
The Council on Energy, Environment and Water (CEEW) report, Evaluating Net-zero for the Indian Cement Industry, underscores the significant environmental impact of cement production in India. In the fiscal year 2018-19, the industry produced 337 million tonnes of cement, resulting in approximately 218 million tonnes of CO2 emissions. Notably, 56 per cent of these emissions stemmed from the calcination process during clinker production, 32 per cent from fuel combustion for process heating, and the remaining 12 per cent from electricity consumption. The report emphasises that while energy efficiency measures can reduce emissions intensity by 9 per cent, and the use of renewable energy and alternative fuels can contribute an additional 13 per cent reduction, a substantial 67 per cent of emissions would still need to be addressed through carbon management solutions such as carbon capture, utilisation and storage (CCUS).
Financially, the transition to a net-zero cement industry is substantial. The report estimates a requirement of US$ 334 billion in capital expenditure and an additional US$ 3 billion in annual operating costs to achieve full decarbonisation. However, it also highlights that implementing decarbonisation measures with negative mitigation costs can reduce emissions intensity by 20 per cent and even lower the cost of cement by 3 per cent. Further reductions up to 32 per cent in emissions intensity can be achieved without increasing current production costs by adopting efficient technologies and practices. Nevertheless, achieving net-zero emissions would necessitate the adoption of more expensive technologies like CCUS, which could increase the cost of cement by 19 to 107 per cent, depending on the specific methods employed.
Radhika Choudary, Co-Founder and Director, Freyr Energy, says, “Solar-powered plants amplify the environmental benefits of green cement by ensuring that its production processes—from raw material handling to kiln operations—are powered by clean energy. This reduces greenhouse gas emissions across every stage of the cement’s lifecycle. In addition, leveraging solar energy aligns with emerging green building certifications and sustainability frameworks, making the final product more attractive to eco-conscious developers and construction companies. By adopting solar energy holistically, cement manufacturers not only meet regulatory standards but also position themselves as industry leaders in climate-resilient infrastructure.”
Technological innovations driving green cement
Advancements in technology are central to the production of green cement in India. Innovations include the use of alternative raw materials such as fly ash, slag, and calcined clay, which reduce the reliance on traditional clinker and lower CO2 emissions. Additionally, energy-efficient manufacturing processes and the adoption of renewable energy sources are contributing to more sustainable cement production. By embracing these technological advancements, India’s cement sector can progress towards its decarbonisation goals, aligning with national and global sustainability targets.
Several technological advancements are propelling the adoption of green cement in India:
- Alternative raw materials: Incorporating fly ash, slag, and other industrial by-products reduces reliance on clinker and lowers CO2 emissions.
- Energy-efficient processes: Implementing waste heat recovery systems and optimising kiln operations enhance energy efficiency and reduce greenhouse gas emissions.
- Carbon capture, utilisation and storage (CCUS): CCUS is emerging as a critical strategy for decarbonising India’s cement sector. Given that cement production is responsible for a significant share of industrial CO2 emissions, integrating CCUS technologies can substantially mitigate environmental impacts. The Global Cement and Concrete Association (GCCA) and the Global CCS Institute have identified potential CO2 storage sites across India, including saline formations and depleted oil and gas fields, which could be instrumental in implementing CCUS at scale.
Implementing CCUS in India requires a collaborative approach involving industry stakeholders, policymakers, and financial institutions. Developing supportive policy frameworks and financing mechanisms is essential to facilitate the deployment of CCUS technologies. Moreover, establishing CO2 hubs and infrastructure for transportation and storage will be crucial to the success of CCUS initiatives in the cement industry.
Dr Yogendra Kanitkar, VP – Research and Development, Pi Green Innovations, says, “CCUS is highly critical. If you are exporting to carbon-sensitive markets, you are likely to be hit with a carbon tariff. The Carbon Border Adjustment Mechanism (CBAM) is one such example. Even within India, the Carbon Credit Trading Scheme (CCTS) has been notified, and around 283 entities have been obligated to reduce their CO2 footprints. So, it’s extremely important for Indian industries to wake up to this reality. If you want to remain competitive in foreign markets, adopting CCUS is non-negotiable.”
Policy framework and government initiatives
The Indian government has introduced several policies to promote sustainable construction practices:
- Perform, Achieve, and Trade (PAT) Scheme: Encourages industries to improve energy efficiency and reduce emissions.
- National Action Plan on Climate Change (NAPCC): Outlines strategies for promoting sustainable development and reducing carbon emissions across various sectors.
- Incentives for green buildings: Provides tax benefits and subsidies for adopting eco-friendly construction materials and practices.
These initiatives aim to align the cement industry with India’s commitment to achieving net-zero emissions by 2070.
Challenges and barriers to adoption
Despite the promising outlook, several challenges hinder the widespread adoption of green cement:
- Cost implications: The initial investment for green cement technologies can be high, deterring small and medium-sized enterprises. The cost for decarbonising India’s cement industry amounts to more than US$330 billion in capital expenses and over US$3 billion in annual operating expenses, according to a report by Ernst & Young Parthenon (published February 2025)
- Lack of awareness: Limited knowledge about the benefits and availability of green cement among consumers and builders affects demand.
- Regulatory hurdles: Inconsistent regulations and standards across states can create confusion and impede adoption.
- Supply chain constraints: Ensuring a consistent supply of alternative raw materials like fly ash and slag is crucial for sustained production.
Future outlook: Strategies for sustainable growth
To overcome these challenges and promote the adoption of green cement, the following strategies can be implemented:
- Research and development: Investing in R&D to develop cost-effective and efficient green cement technologies.
- Public-private partnerships: Collaborations between government bodies and private companies can facilitate knowledge sharing and resource pooling.
- Education and training: Conducting awareness campaigns and training programs for stakeholders in the construction industry.
- Standardisation of regulations: Establishing uniform standards and certifications for green cement to streamline adoption.
Conclusion
The transition to green cement represents a transformative opportunity for India’s cement industry to align economic growth with environmental responsibility. As the country continues to urbanise and expand its infrastructure, the adoption of sustainable practices becomes not just desirable, but essential. Green cement offers a viable pathway to reduce the carbon intensity of construction through innovative technologies, alternative raw materials, and energy-efficient production processes. With the support of robust policy frameworks like the National Green Hydrogen Mission and Perform, Achieve and Trade (PAT) Scheme, the industry is well-positioned to meet the dual goals of reducing greenhouse gas emissions and maintaining its critical role in national development.
However, realising the full potential of green cement requires a coordinated, multi-stakeholder approach involving government, industry, academia, and financial institutions. Addressing cost barriers, improving supply chain logistics, and raising awareness among end-users are essential for scaling adoption. As India targets net-zero emissions by 2070, with interim renewable energy and efficiency milestones, green cement will play a pivotal role in the nation’s decarbonisation journey. By investing in innovation, standardisation, and education, India can emerge as a global leader in sustainable construction and set a powerful precedent for other developing economies facing similar climate and infrastructure challenges.
– Kanika Mathur
Concrete
Refractory demands in our kiln have changed
Published
21 hours agoon
February 20, 2026By
admin
Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, points out why performance, predictability and life-cycle value now matter more than routine replacement in cement kilns.
As Indian cement plants push for higher throughput, increased alternative fuel usage and tighter shutdown cycles, refractory performance in kilns and pyro-processing systems is under growing pressure. In this interview, Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, shares how refractory demands have evolved on the ground and how smarter digital monitoring is improving kiln stability, uptime and clinker quality.
How have refractory demands changed in your kiln and pyro-processing line over the last five years?
Over the last five years, refractory demands in our kiln and pyro line have changed. Earlier, the focus was mostly on standard grades and routine shutdown-based replacement. But now, because of higher production loads, more alternative fuels and raw materials (AFR) usage and greater temperature variation, the expectation from refractory has increased.
In our own case, the current kiln refractory has already completed around 1.5 years, which itself shows how much more we now rely on materials that can handle thermal shock, alkali attack and coating fluctuations. We have moved towards more stable, high-performance linings so that we don’t have to enter the kiln frequently for repairs.
Overall, the shift has been from just ‘installation and run’ to selecting refractories that give longer life, better coating behaviour and more predictable performance under tougher operating conditions.
What are the biggest refractory challenges in the preheater, calciner and cooler zones?
• Preheater: Coating instability, chloride/sulphur cycles and brick erosion.
• Calciner: AFR firing, thermal shock and alkali infiltration.
• Cooler: Severe abrasion, red-river formation and mechanical stress on linings.
Overall, the biggest challenge is maintaining lining stability under highly variable operating conditions.
How do you evaluate and select refractory partners for long-term performance?
In real plant conditions, we don’t select a refractory partner just by looking at price. First, we see their past performance in similar kilns and whether their material has actually survived our operating conditions. We also check how strong their technical support is during shutdowns, because installation quality matters as much as the material itself.
Another key point is how quickly they respond during breakdowns or hot spots. A good partner should be available on short notice. We also look at their failure analysis capability, whether they can explain why a lining failed and suggest improvements.
On top of this, we review the life they delivered in the last few campaigns, their supply reliability and their willingness to offer plant-specific custom solutions instead of generic grades. Only a partner who supports us throughout the life cycle, which includes selection, installation, monitoring and post-failure analysis, fits our long-term requirement.
Can you share a recent example where better refractory selection improved uptime or clinker quality?
Recently, we upgraded to a high-abrasion basic brick at the kiln outlet. Earlier we had frequent chipping and coating loss. With the new lining, thermal stability improved and the coating became much more stable. As a result, our shutdown interval increased and clinker quality remained more consistent. It had a direct impact on our uptime.
How is increased AFR use affecting refractory behaviour?
Increased AFR use is definitely putting more stress on the refractory. The biggest issue we see daily is the rise in chlorine, alkalis and volatiles, which directly attack the lining, especially in the calciner and kiln inlet. AFR firing is also not as stable as conventional fuel, so we face frequent temperature fluctuations, which cause more thermal shock and small cracks in the lining.
Another real problem is coating instability. Some days the coating builds too fast, other days it suddenly drops, and both conditions impact refractory life. We also notice more dust circulation and buildup inside the calciner whenever the AFR mix changes, which again increases erosion.
Because of these practical issues, we have started relying more on alkali-resistant, low-porosity and better thermal shock–resistant materials to handle the additional stress coming from AFR.
What role does digital monitoring or thermal profiling play in your refractory strategy?
Digital tools like kiln shell scanners, IR imaging and thermal profiling help us detect weakening areas much earlier. This reduces unplanned shutdowns, helps identify hotspots accurately and allows us to replace only the critical sections. Overall, our maintenance has shifted from reactive to predictive, improving lining life significantly.
How do you balance cost, durability and installation speed during refractory shutdowns?
We focus on three points:
• Material quality that suits our thermal profile and chemistry.
• Installation speed, in fast turnarounds, we prefer monolithic.
• Life-cycle cost—the cheapest material is not the most economical. We look at durability, future downtime and total cost of ownership.
This balance ensures reliable performance without unnecessary expenditure.
What refractory or pyro-processing innovations could transform Indian cement operations?
Some promising developments include:
• High-performance, low-porosity and nano-bonded refractories
• Precast modular linings to drastically reduce shutdown time
• AI-driven kiln thermal analytics
• Advanced coating management solutions
• More AFR-compatible refractory mixes
These innovations can significantly improve kiln stability, efficiency and maintenance planning across the industry.
Concrete
Digital supply chain visibility is critical
Published
21 hours agoon
February 20, 2026By
admin
MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, discusses how data, discipline and scale are turning Industry 4.0 into everyday business reality.
Over the past five years, digitalisation in Indian cement manufacturing has moved decisively beyond experimentation. Today, it is a strategic lever for cost control, operational resilience and sustainability. In this interview, MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, explains how integrated digital foundations, advanced analytics and real-time visibility are helping deliver measurable business outcomes.
How has digitalisation moved from pilot projects to core strategy in Indian cement manufacturing over the past five years?
Digitalisation in Indian cement has evolved from isolated pilot initiatives into a core business strategy because outcomes are now measurable, repeatable and scalable. The key shift has been the move away from standalone solutions toward an integrated digital foundation built on standardised processes, governed data and enterprise platforms that can be deployed consistently across plants and functions.
At Shree Cement, this transition has been very pragmatic. The early phase focused on visibility through dashboards, reporting, and digitisation of critical workflows. Over time, this has progressed into enterprise-level analytics and decision support across manufacturing and the supply chain,
with clear outcomes in cost optimisation, margin protection and revenue improvement through enhanced customer experience.
Equally important, digital is no longer the responsibility of a single function. It is embedded into day-to-day operations across planning, production, maintenance, despatch and customer servicing, supported by enterprise systems, Industrial Internet of Things (IIoT) data platforms, and a structured approach to change management.
Which digital interventions are delivering the highest ROI across mining, production and logistics today?
In a capital- and cost-intensive sector like cement, the highest returns come from digital interventions that directly reduce unit costs or unlock latent capacity without significant capex.
Supply chain and planning (advanced analytics): Tools for demand forecasting, S&OP, network optimisation and scheduling deliver strong returns by lowering logistics costs, improving service levels, and aligning production with demand in a fragmented and regionally diverse market.
Mining (fleet and productivity analytics): Data-led mine planning, fleet analytics, despatch discipline, and idle-time reduction improve fuel efficiency and equipment utilisation, generating meaningful savings in a cost-heavy operation.
Manufacturing (APC and process analytics): Advanced Process Control, mill optimisation, and variability reduction improve thermal and electrical efficiency, stabilise quality and reduce rework and unplanned stoppages.
Customer experience and revenue enablement (digital platforms): Dealer and retailer apps, order visibility and digitally enabled technical services improve ease of doing business and responsiveness. We are also empowering channel partners with transparent, real-time information on schemes, including eligibility, utilisation status and actionable recommendations, which improves channel satisfaction and market execution while supporting revenue growth.
Overall, while Artificial Intelligence (AI) and IIoT are powerful enablers, it is advanced analytics anchored in strong processes that typically delivers the fastest and most reliable ROI.
How is real-time data helping plants shift from reactive maintenance to predictive and prescriptive operations?
Real-time and near real-time data is driving a more proactive and disciplined maintenance culture, beginning with visibility and progressively moving toward prediction and prescription.
At Shree Cement, we have implemented a robust SAP Plant Maintenance framework to standardise maintenance workflows. This is complemented by IIoT-driven condition monitoring, ensuring consistent capture of equipment health indicators such as vibration, temperature, load, operating patterns and alarms.
Real-time visibility enables early detection of abnormal conditions, allowing teams to intervene before failures occur. As data quality improves and failure histories become structured, predictive models can anticipate likely failure modes and recommend timely interventions, improving MTBF and reducing downtime. Over time, these insights will evolve into prescriptive actions, including spares readiness, maintenance scheduling, and operating parameter adjustments, enabling reliability optimisation with minimal disruption.
A critical success factor is adoption. Predictive insights deliver value only when they are embedded into daily workflows, roles and accountability structures. Without this, they remain insights without action.
In a cost-sensitive market like India, how do cement companies balance digital investment with price competitiveness?
In India’s intensely competitive cement market, digital investments must be tightly linked to tangible business outcomes, particularly cost reduction, service improvement, and faster decision-making.
This balance is achieved by prioritising high-impact use cases such as planning efficiency, logistics optimisation, asset reliability, and process stability, all of which typically deliver quick payback. Equally important is building scalable and governed digital foundations that reduce the marginal cost of rolling out new use cases across plants.
Digitally enabled order management, live despatch visibility, and channel partner platforms also improve customer centricity while controlling cost-to-serve, allowing service levels to improve without proportionate increases in headcount or overheads.
In essence, the most effective digital investments do not add cost. They protect margins by reducing variability, improving planning accuracy, and strengthening execution discipline.
How is digitalisation enabling measurable reductions in energy consumption, emissions, and overall carbon footprint?
Digitalisation plays a pivotal role in improving energy efficiency, reducing emissions and lowering overall carbon intensity.
Real-time monitoring and analytics enable near real-time tracking of energy consumption and critical operating parameters, allowing inefficiencies to be identified quickly and corrective actions to be implemented. Centralised data consolidation across plants enables benchmarking, accelerates best-practice adoption, and drives consistent improvements in energy performance.
Improved asset reliability through predictive maintenance reduces unplanned downtime and process instability, directly lowering energy losses. Digital platforms also support more effective planning and control of renewable energy sources and waste heat recovery systems, reducing dependence on fossil fuels.
Most importantly, digitalisation enables sustainability progress to be tracked with greater accuracy and consistency, supporting long-term ESG commitments.
What role does digital supply chain visibility play in managing demand volatility and regional market dynamics in India?
Digital supply chain visibility is critical in India, where demand is highly regional, seasonality is pronounced, and logistics constraints can shift rapidly.
At Shree Cement, planning operates across multiple horizons. Annual planning focuses on capacity, network footprint and medium-term demand. Monthly S&OP aligns demand, production and logistics, while daily scheduling drives execution-level decisions on despatch, sourcing and prioritisation.
As digital maturity increases, this structure is being augmented by central command-and-control capabilities that manage exceptions such as plant constraints, demand spikes, route disruptions and order prioritisation. Planning is also shifting from aggregated averages to granular, cost-to-serve and exception-based decision-making, improving responsiveness, lowering logistics costs and strengthening service reliability.
How prepared is the current workforce for Industry 4.0, and what reskilling strategies are proving most effective?
Workforce preparedness for Industry 4.0 is improving, though the primary challenge lies in scaling capabilities consistently across diverse roles.
The most effective approach is to define capability requirements by role and tailor enablement accordingly. Senior leadership focuses on digital literacy for governance, investment prioritisation, and value tracking. Middle management is enabled to use analytics for execution discipline and adoption. Frontline sales and service teams benefit from
mobile-first tools and KPI-driven workflows, while shop-floor and plant teams focus on data-driven operations, APC usage, maintenance discipline, safety and quality routines.
Personalised, role-based learning paths, supported by on-ground champions and a clear articulation of practical benefits, drive adoption far more effectively than generic training programmes.
Which emerging digital technologies will fundamentally reshape cement manufacturing in the next decade?
AI and GenAI are expected to have the most significant impact, particularly when combined with connected operations and disciplined processes.
Key technologies likely to reshape the sector include GenAI and agentic AI for faster root-cause analysis, knowledge access, and standardisation of best practices; industrial foundation models that learn patterns across large sensor datasets; digital twins that allow simulation of process changes before implementation; and increasingly autonomous control systems that integrate sensors, AI, and APC to maintain stability with minimal manual intervention.
Over time, this will enable more centralised monitoring and management of plant operations, supported by strong processes, training and capability-building.
Concrete
Cement Additives for Improved Grinding Efficiency
Published
21 hours agoon
February 20, 2026By
admin
Shreesh A Khadilkar discusses how advanced additive formulations allow customised, high-performance and niche cements—offering benefits while supporting blended cements and long-term cost and carbon reduction.
Cement additives are chemicals (inorganic and organic) added in small amounts (0.01 per cent to 0.2 per cent by weight) during cement grinding. Their main job? Reduce agglomeration, prevent pack-set, and keep the mill running smoother. Thus, these additions primarily improve, mill thru-puts, achieve lower clinker factor in blended cements PPC/PSC/PCC. Additionally, these additives improve concrete performance of cements or even for specific special premium cements with special USPs like lower setting times or for reduced water permeability in the resultant cement mortars and concrete (water repellent /permeation resistant cements), corrosion resistance etc.
The cement additives are materials which could be further differentiated as:
Grinding aids:
• Bottlenecks in cement grinding capacity, such materials can enhance throughputs
• Low specific electrical energy consumption during cement grinding
• Reduce “Pack set” problem and improve powder flowability
Quality improvers:
• Opportunity for further clinker factor reduction
• Solution for delayed cement setting or strength development issues at early or later ages.
Others: materials which are used for specific special cements with niche properties as discussed in the subsequent pages.
When cement additives are used as grinding aids or quality improvers, in general the additives reduce the inter-particle forces; reduce coating over grinding media and mill internals. Due to creation of like charges on cement particles, there is decreased agglomeration, much improved flowability, higher generation of fines better dispersion of particles in separator feed and reduction of mill filling level (decrease of residence time). However, in VRM grinding; actions need to be taken to have stable bed formation on the table.
It has been reported in literature and also substantiated by a number of detailed evaluations of different cement additive formulations in market, that the cement additive formulations are a combination of different chemical compounds, typically composed of:
- Accelerator/s for the hydration reaction of cements which are dependent on the acceleration effect desired in mortar compressive strengths at early or later ages, the choice of the materials is also dependent on clinker quality and blending components (flyash / slag) or a mix of both.
- Water reducer / workability / wet-ability enhancer, which would show impact on the resultant cement mortars and concrete. Some of the compounds (retarders) like polysaccharide derivatives, gluconates etc., show an initial retarding action towards hydration which result in reducing the water requirements for the cements thus act as water reducers, or it could be some appropriate polymeric molecules which show improved wet-ability and reduce water demand. These are selected based on the mineral component and type of cements (PPC/PSC /PCC).
- Grinding aids: Compounds that work as Grinding Aid i.e. which would enhance Mill thru-put on one hand as well as would increase the early strengths due to the higher fines generation/ or activation of cement components. These compounds could be like alkanol-amines such as TIPA, DEIPA, TEA etc. or could be compounds like glycols and other poly-ols, depending on whether it is OPC or PPC or PSC or PCC manufacture.
Mechanism of action — Step By Step—
- Reduce Agglomeration, Cement particles get electrostatically charged during grinding, stick together, form “flocs”, block mill efficiency, waste energy. Grinding aid molecules adsorb onto particle surfaces, neutralise charge, prevent re-agglomeration.
- Improve Powder Flowability, Adsorbed molecules create a lubricating layer, particles slide past each other easier, better mill throughput, less “dead zone” buildup.
Also reduces caking on mill liners, diaphragms, and separator screens, less downtime for cleaning. - Enhance Grinding Efficiency (Finer Product Faster), By preventing agglomeration, particles stay dispersed more surface area exposed to grinding media, finer grind achieved with same energy input, Or: same fineness achieved with less energy, huge savings.
Example:
• Without aid ? 3500 cm²/g Blaine needs 40 kWh/ton
• With use of optimum grinding aid same fineness at 32 kWh/ton 20 per cent energy savings - Reduce Pack Set and Silo Caking Grinding aids (GA) inhibit hydration of free lime (CaO) during storage prevents premature hardening or “pack set” in silos. especially critical in humid climates or with high free lime clinker.
It may be stated here that Overdosing of GA can cause: – Foaming in mill (especially with glycols) reduces grinding efficiency, retardation of cement setting (especially with amines/acids), odor issues (in indoor mills) – Corrosion of mill components (if acidic aids used improperly)
The best practice to optimise use of GA is Start with 0.02 per cent to 0.05 per cent dosage test fineness, flow, and set time adjust up/down. Due to static charge of particles, the sample may stick to the sides of sampler pipe and so sampling need to be properly done.
Depending on type of cements i.e. OPC, PPC, PSC, PCC, the grinding aids combinations need to be optimised, a typical Poly carboxylate ether also could be a part of the combo grinding aids
Cement additives for niche properties of the cement in concrete.
The cement additives can also be tailor made to create specific niche properties in cements, OPC, PPC, PSC and PCC to create premium or special brands. The special niche properties of the cement being its additional USP of such cement products, and are useful for customers to build a durable concrete structure with increased service life.
Such properties could be:
• Additives for improved concrete performance of cements, high early strength in PPC/PSC/PCC, much reduced water demand in cement, cements with improved slump retentivity in concrete, self-compacting, self levelling in concrete, cements with improved adhesion property of the cement mortar
• Water repellence / water proofing, permeability resistance in mortars and concrete.
• Biocidal cement
• Photo catalytic cements
• Cements with negligible ASR reactions etc.
Additives for cements for improved concrete performance
High early strengths: Use of accelerators. These are chemical compounds which enhance the degree of hydration of cement. These can include setting or hardening accelerators depending on whether their action occurs in the plastic or hardened state respectively. Thus, the setting accelerators reduce the setting time, whereas the hardening accelerators increase the early age strengths. The setting accelerators act during the initial minutes of the cement hydration, whereas the hardening accelerators act mainly during the initial days of hydration.
Chloride salts are the best in class. However, use of chloride salts as hardening accelerators are strongly discouraged for their action in promoting the corrosion of rebar, thus, chloride-free accelerators are preferred. The hardening accelerators could be combinations of compounds like nitrate, nitrite and thiocyanate salts of alkali or alkaline earth metals or thiosulphate, formate, and alkanol amines depending on the cement types.
However, especially in blended cements (PPC/PSC/PCC the increased early strengths invariably decrease the 28 day strengths. These aspects lead to creating combo additives along with organic polymers to achieve improved early strengths as well as either same or marginally improved 28 days strengths with reduced clinker factor in the blended cement, special OPC with reduced admixture requirements. With use of appropriate combination of inorganic and organic additives we could create an OPC with substantially reduced water demand or improved slump retentivity. Use of such an OPC would show exceptional concrete performance in high grade concretes as it would exhibit lower admixture requirements in High Grade Concretes.
PPC with OPC like properties: With the above concept we could have a PPC, having higher percentage flyash, with a combo cement additive which would have with concrete performance similar to OPC in say M40/M50 concrete. Such a PPC would produce a high-strength PPC concrete (= 60 MPa @ 28d) + improved workability, durability and sustainability.
Another interesting aspect could also be of using ultrafine fine flyash /ultrafine slags as additions in OPC/PPC/PSC for achieving lower clinker factor as well as to achieve improved later age strengths with or without a combo cement additive.
The initial adhesion property at sites of especially PPC/PSC/PCC based mortars can be improved through use of appropriate organic polymers addition during the manufacture of these cements. Such cements would have a better adhesion property for plastering/brick bonding etc., as it has much lower rebound loss of their mortars in such applications.
It is needless to mention here that with use of additives, we could also have cement with viscosity modifying cement additives, for self-compaction and self-leveling concrete performance.
Use of Phosphogypsum retards the setting time of cements, we can use additive different additive combos to overcome retardation and improve the 1 day strengths of the cements and concretes.
About the author:
Shreesh Khadilkar, Consultant & Advisor, Former Director Quality & Product Development, ACC, a seasoned consultant and advisor, brings over 37 years of experience in cement manufacturing, having held leadership roles in R&D and product development at ACC Ltd. With deep expertise in innovative cement concepts, he is dedicated to sharing his knowledge and improving the performance of cement plants globally.
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Trending News
-
Concrete4 weeks agoAris Secures Rs 630 Million Concrete Supply Order
-
Concrete3 weeks agoNITI Aayog Unveils Decarbonisation Roadmaps
-
Concrete3 weeks agoJK Cement Commissions 3 MTPA Buxar Plant, Crosses 31 MTPA
-
Economy & Market3 weeks agoBudget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook


