Concrete
Technology: A Transformative Force
Published
2 years agoon
By
admin
Asok K Dikshit, Richa Mazumder, Sanjeev K. Chaturvedi and LP Singh, National Council for Cement and Building Materials (NCB), give a detailed account of the technological changes that are leading the Indian cement industry towards a sustainable and environmentally conscious growth path.
The role of technology in achieving sustainability in cement plants is instrumental as it is already facing sustainability issues due to a number of factors like energy and water consumption, material and resource management, reduction in greenhouse gases (GHG) emissions, waste management, etc. The cement sector is under increasing pressure to adopt innovative technological solutions that balance economic growth with environmental responsibility. In this context, various technological advancements have emerged to achieve sustainability goals in cement manufacturing.
The driving technologies to achieve sustainability in the cement sector are advanced process control systems powered by artificial intelligence (AI) and machine learning (ML), real-time monitoring and optimisation of production parameters and the application of Industry 4.0 in cement plants, which is proving to be a transformative force, propelling the industry toward greater sustainability. Industry 4.0, characterised by the integration of digital technologies, automation and data-driven processes, addresses the complex challenges associated with cement production. Carbon capture and storage technologies address the significant carbon footprint of cement production. Digital twins and simulations allow for virtual testing and refinement of processes, minimising trial-and-error approaches and identifying opportunities for efficiency improvements. Emission monitoring and control technologies, including continuous monitoring systems and advanced sensors, ensure compliance with environmental regulations and contribute to improved air quality. Circular economy practices are enhanced through technology, supporting the recycling and reuse of by-products and optimising material flows. Water management is made more sustainable through automated systems and AI-driven analytics, minimising the industry’s impact on water resources. Stakeholder engagement and transparency are facilitated by digital platforms, fostering collaboration and awareness about sustainability initiatives. Remote monitoring and maintenance technologies reduce the environmental footprint associated with on-site activities. Thus in this paper, driving technology that promotes efficiency, reduces environmental impact, and contributes to a more responsible and resilient industry has been discussed in detail.
Optimising technology
Cement manufacturers should strategically incorporate key technologies to enhance operational efficiency and product quality to meet sustainability goals. The application of Industry 4.0 in cement plants represents a transformative shift towards intelligent, interconnected, and data-driven manufacturing [1-2]. This concept involves the integration of advanced digital technologies to optimise various facets of cement production. Smart sensors and the Internet of Things (IoT) are strategically deployed throughout the plant, providing real-time data on equipment performance, energy consumption, and environmental conditions. Automation and control systems, equipped with artificial intelligence and machine learning, enable advanced process control, ensuring precise monitoring and adjustment of production parameters. Digital twins, virtual replicas of physical processes, facilitate simulation and optimisation, allowing for testing and refining of operations in a virtual environment. Big data analytics processes the vast amounts of data generated during production, offering valuable insights for decision-making and continuous improvement. By the implementation of Industry 4.0 Cement production can in a number of ways as shown in Fig. 1.
Equipping cement industry with innovative technologies positions enables them to thrive in the evolving industrial landscape, embracing efficiency, quality, and sustainability. In driving sustainability in the cement industry technology plays a crucial role by enabling more efficient processes, improving overall resource management and reducing environmental impact. Here are several ways in which technology contributes to sustainability in the
cement industry:
Energy efficiency: Technology plays a pivotal role in enhancing energy efficiency in cement plants, a sector known for its substantial energy consumption. Data science is often used in the energy optimisation area. Advanced process control systems, powered by machine learning and artificial intelligence, are positioned to optimise the intricate processes involved in cement production by suggesting the most efficient operating conditions for equipment, thereby reducing energy costs and environmental impact. Digitalisation allows for better monitoring of equipment’s energy consumption. Cement industry can take corrective actions to reduce energy wastage and carbon footprint by identifying the energy consumption patterns of equipment under faulty conditions, thereby achieving significant cost reductions over time [3]. Furthermore, technology makes possible the integration of waste heat recovery systems, capturing and repurposing thermal energy generated during the production process.
Alternative fuels and raw materials: The cement sector is responsible for a significant portion of greenhouse gas emissions and is one of the largest consumers of energy globally. The use of alternative fuels, such as biomass, waste materials and municipal solid waste, can reduce the reliance on fossil fuels, bring down greenhouse gas emissions, and will enhance energy efficiency. This has been made possible by progress in technology, including the development of specialised equipment for handling and processing these fuels. For example, rotary kilns can be modified to handle different types of fuels, and preheaters can be designed to optimise the combustion of alternative fuels as shown in Fig.2.
The use of alternative fuels also has economic benefits by reducing the cost of energy and raw materials, and providing opportunities for waste reduction and recycling. Automation technologies ensure precise dosing and combustion of alternative fuels, promoting cleaner energy sources and reducing the industry’s reliance on fossil fuels.
Carbon Capture, Utilisation and Storage (CCUS): Addressing the significant carbon footprint associated with cement production requires innovative solutions, and technology provides a pathway through carbon capture, utilisation and storage (CCUS). These technologies contribute to the industry’s efforts to decarbonise and mitigate its environmental impact. CCUS technology captures CO2 emissions from cement plants and stores them underground or uses them in other industrial processes.
It has several benefits, which include
(a) the reduction of greenhouse gas emissions,
(b) improved energy efficiency, and
(c) the creation of new revenue streams.
However, carbon capture, utilisation and storage technology is still in the initial stages of development, and significant investment is required to make it commercially viable.
Digital twins and simulation: The concept of digital twins, virtual replicas of physical processes and equipment, is gaining prominence in the quest for sustainability in cement manufacturing. In the cement sector the digital twin can allow the cement manufacturers to effectively mirror their production process through a well-designed digital model, and then they can optimise it by using machine learning and artificial intelligence. The digital twins can imitate the cement production process in a dynamic as well as simplified way. As a result, it can create scenarios that can effortlessly change with variables. The finest part of the digital twin is that it can suggest optimal and efficient equipment configurations that can help to increase output target [4].
Emission Monitoring and Control: Continuous monitoring of emissions is critical for regulatory compliance and sustainable practices. Technology, such as continuous emission monitoring systems (CEMS), provides real-time data on air pollutants generated during cement production. AI algorithms analyse this data to detect patterns, identify sources of emissions and optimise control mechanisms. Advanced sensors and monitoring devices ensure the effective operation of emission abatement technologies, such as electrostatic precipitators and selective catalytic reduction (SCR) systems as shown in Fig.3. These technologies contribute to improved air quality and reduced environmental impact, aligning with the industry’s commitment to sustainability[5].
Circular economy practices: Incorporating circular economy practices is essential for minimising waste and optimising resource use in cement production. Technology facilitates the recycling and reuse of by-products, such as fly ash and slag, in cement manufacturing. Automation systems streamline the collection and processing of these by-products, reducing reliance on primary raw materials. AI and ML algorithms optimise material flows, identifying opportunities for waste minimisation and resource recovery. Blockchain technology enhances transparency in the supply chain, verifying the authenticity and sustainability of raw materials sourced from various suppliers. By embracing circular economy practices, cement plants contribute to resource conservation and environmental sustainability.
Water management: Sustainable water management is a crucial aspect of cement plant operations, particularly in regions facing water scarcity. Technology aids in the implementation of water-efficient processes and recycling systems. Automated control systems adjust water usage based on real-time needs, and sensor-based technologies monitor water quality. AI-driven analytics help identify opportunities for water conservation and improve overall water management strategies. By optimising water usage and implementing advanced technologies, cement plants mitigate their environmental impact on water resources and contribute to sustainable water stewardship [4-5].
Stakeholder engagement and transparency: Technology enhances stakeholder engagement and transparency, fostering collaboration between cement manufacturers, suppliers, regulators, and local communities. Digital platforms and communication tools enable efficient and transparent communication about sustainability initiatives. Social media and online platforms provide avenues for sharing information and engaging with stakeholders, creating awareness about the industry’s commitment to sustainability. Technology ensures that stakeholders are informed about environmental practices,corporate responsibility, and progress towards sustainability goals. This transparency builds trust and accountability, essential elements for achieving long-term sustainability objectives.
Remote monitoring and maintenance: Advancements in connectivity and remote monitoring technologies offer opportunities for optimising maintenance strategies and reducing the environmental impact associated with on-site activities. Remote monitoring allows for off-site monitoring of equipment and processes, providing real-time insights into performance as shown in Fig.4. Predictive maintenance strategies, facilitated by AI and ML algorithms, optimise equipment performance and extend the lifespan of machinery. By leveraging remote monitoring and maintenance technologies, cement plants enhance operational efficiency, reduce downtime and minimise the environmental footprint associated with traditional maintenance practices.
Future trends and challenges: While current technologies contribute significantly to sustainability in cement plants, future trends and challenges are shaping the industry’s trajectory. Advanced robotics, for example, are being explored for hazardous tasks, reducing risks to human health and safety. Integration of AI into supply chain management is expected to optimise logistics, reduce waste and enhance overall efficiency. Additionally, the industry is exploring innovative low-carbon and carbon-negative cements as part of its commitment to achieving net-zero emissions. However, challenges such as the initial capital investment required for technology adoption and ensuring alignment with local regulatory frameworks must be addressed to realise the full potential of these advancements.
Conclusion
In conclusion, technology is a driving force in the journey towards sustainability in cement plants. From energy-efficient processes and alternative materials to carbon capture and circular economy practices, technology is instrumental in reshaping an industry with historically significant environmental impact. Cement manufacturers are embracing innovative solutions, leveraging AI, ML, and other digital advancements to enhance operational efficiency, reduce carbon emissions and minimise resource consumption. As the industry continues to evolve, the integration of technology will play a central role in achieving the delicate balance between economic viability and ecological responsibility. Cement plants that invest in and implement these technologies not only ensure their long-term competitiveness but also contribute to a more sustainable and environmentally conscious future
Acknowledgement: The authors wish to acknowledge the Director General of National Council for Cement and Building Materials (NCB) for giving permission for publication and DPIIT, Ministry of Commerce and Industry, GOI through various R&D projects support financial for sustainable development of cement industry. They also acknowledge all scientific and technical staff of NCB for cooperation through R&D work for sustainability of cement industry related projects.
Conflict of interest: The authors have no conflicts of interest financially and ethically to publish in this review work.
References
- The 21st-century cement plant: Greener and more connected, September 16, 2020 | Article, McKinsey & Company Eleftherios Charalambous, Thomas Czigler, Ramez Haddadin, and Patrick Schulze
- Why Cement Producers Need to Embrace Industry 4.0, Article, December 07, 2018, Sumit Gupta, Suresh Subudhi, and Ileana Nicorici
- Article, Exclusive Interview: Nanoprecise Co-Founder Talks about the Importance of Technology in Cement Production, Prashant Verma, Date: 23-08-2023, Place: Delhi, India
- ECUBIX, Blog, why do Cement Producers Need to Accept
Industry 4.0? - ClipOn, Article, Advanced Tech to Improve Efficiencis in Cement Plant Emissions March 02, 2023
ABOUT THE AUTHOR:
Ashok K Dikshit, General Manager, NCB has over 28 years rich R&D experience.
Richa Mazumder, Manager, NCB has 13 years of experience in the field of geology, mining, raw material, and waste utilisation in cement manufacturing.
Sanjeev K Chaturvedi, Joint Director, NCB, has over 37 years of experience in the areas of research planning and execution.
LP Singh, Director General, NCB, has over 30 years of work experience committed towards advancing scientific knowledge and translating research into practical applications.
Concrete
Refractory demands in our kiln have changed
Published
1 day agoon
February 20, 2026By
admin
Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, points out why performance, predictability and life-cycle value now matter more than routine replacement in cement kilns.
As Indian cement plants push for higher throughput, increased alternative fuel usage and tighter shutdown cycles, refractory performance in kilns and pyro-processing systems is under growing pressure. In this interview, Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, shares how refractory demands have evolved on the ground and how smarter digital monitoring is improving kiln stability, uptime and clinker quality.
How have refractory demands changed in your kiln and pyro-processing line over the last five years?
Over the last five years, refractory demands in our kiln and pyro line have changed. Earlier, the focus was mostly on standard grades and routine shutdown-based replacement. But now, because of higher production loads, more alternative fuels and raw materials (AFR) usage and greater temperature variation, the expectation from refractory has increased.
In our own case, the current kiln refractory has already completed around 1.5 years, which itself shows how much more we now rely on materials that can handle thermal shock, alkali attack and coating fluctuations. We have moved towards more stable, high-performance linings so that we don’t have to enter the kiln frequently for repairs.
Overall, the shift has been from just ‘installation and run’ to selecting refractories that give longer life, better coating behaviour and more predictable performance under tougher operating conditions.
What are the biggest refractory challenges in the preheater, calciner and cooler zones?
• Preheater: Coating instability, chloride/sulphur cycles and brick erosion.
• Calciner: AFR firing, thermal shock and alkali infiltration.
• Cooler: Severe abrasion, red-river formation and mechanical stress on linings.
Overall, the biggest challenge is maintaining lining stability under highly variable operating conditions.
How do you evaluate and select refractory partners for long-term performance?
In real plant conditions, we don’t select a refractory partner just by looking at price. First, we see their past performance in similar kilns and whether their material has actually survived our operating conditions. We also check how strong their technical support is during shutdowns, because installation quality matters as much as the material itself.
Another key point is how quickly they respond during breakdowns or hot spots. A good partner should be available on short notice. We also look at their failure analysis capability, whether they can explain why a lining failed and suggest improvements.
On top of this, we review the life they delivered in the last few campaigns, their supply reliability and their willingness to offer plant-specific custom solutions instead of generic grades. Only a partner who supports us throughout the life cycle, which includes selection, installation, monitoring and post-failure analysis, fits our long-term requirement.
Can you share a recent example where better refractory selection improved uptime or clinker quality?
Recently, we upgraded to a high-abrasion basic brick at the kiln outlet. Earlier we had frequent chipping and coating loss. With the new lining, thermal stability improved and the coating became much more stable. As a result, our shutdown interval increased and clinker quality remained more consistent. It had a direct impact on our uptime.
How is increased AFR use affecting refractory behaviour?
Increased AFR use is definitely putting more stress on the refractory. The biggest issue we see daily is the rise in chlorine, alkalis and volatiles, which directly attack the lining, especially in the calciner and kiln inlet. AFR firing is also not as stable as conventional fuel, so we face frequent temperature fluctuations, which cause more thermal shock and small cracks in the lining.
Another real problem is coating instability. Some days the coating builds too fast, other days it suddenly drops, and both conditions impact refractory life. We also notice more dust circulation and buildup inside the calciner whenever the AFR mix changes, which again increases erosion.
Because of these practical issues, we have started relying more on alkali-resistant, low-porosity and better thermal shock–resistant materials to handle the additional stress coming from AFR.
What role does digital monitoring or thermal profiling play in your refractory strategy?
Digital tools like kiln shell scanners, IR imaging and thermal profiling help us detect weakening areas much earlier. This reduces unplanned shutdowns, helps identify hotspots accurately and allows us to replace only the critical sections. Overall, our maintenance has shifted from reactive to predictive, improving lining life significantly.
How do you balance cost, durability and installation speed during refractory shutdowns?
We focus on three points:
• Material quality that suits our thermal profile and chemistry.
• Installation speed, in fast turnarounds, we prefer monolithic.
• Life-cycle cost—the cheapest material is not the most economical. We look at durability, future downtime and total cost of ownership.
This balance ensures reliable performance without unnecessary expenditure.
What refractory or pyro-processing innovations could transform Indian cement operations?
Some promising developments include:
• High-performance, low-porosity and nano-bonded refractories
• Precast modular linings to drastically reduce shutdown time
• AI-driven kiln thermal analytics
• Advanced coating management solutions
• More AFR-compatible refractory mixes
These innovations can significantly improve kiln stability, efficiency and maintenance planning across the industry.
Concrete
Digital supply chain visibility is critical
Published
1 day agoon
February 20, 2026By
admin
MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, discusses how data, discipline and scale are turning Industry 4.0 into everyday business reality.
Over the past five years, digitalisation in Indian cement manufacturing has moved decisively beyond experimentation. Today, it is a strategic lever for cost control, operational resilience and sustainability. In this interview, MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, explains how integrated digital foundations, advanced analytics and real-time visibility are helping deliver measurable business outcomes.
How has digitalisation moved from pilot projects to core strategy in Indian cement manufacturing over the past five years?
Digitalisation in Indian cement has evolved from isolated pilot initiatives into a core business strategy because outcomes are now measurable, repeatable and scalable. The key shift has been the move away from standalone solutions toward an integrated digital foundation built on standardised processes, governed data and enterprise platforms that can be deployed consistently across plants and functions.
At Shree Cement, this transition has been very pragmatic. The early phase focused on visibility through dashboards, reporting, and digitisation of critical workflows. Over time, this has progressed into enterprise-level analytics and decision support across manufacturing and the supply chain,
with clear outcomes in cost optimisation, margin protection and revenue improvement through enhanced customer experience.
Equally important, digital is no longer the responsibility of a single function. It is embedded into day-to-day operations across planning, production, maintenance, despatch and customer servicing, supported by enterprise systems, Industrial Internet of Things (IIoT) data platforms, and a structured approach to change management.
Which digital interventions are delivering the highest ROI across mining, production and logistics today?
In a capital- and cost-intensive sector like cement, the highest returns come from digital interventions that directly reduce unit costs or unlock latent capacity without significant capex.
Supply chain and planning (advanced analytics): Tools for demand forecasting, S&OP, network optimisation and scheduling deliver strong returns by lowering logistics costs, improving service levels, and aligning production with demand in a fragmented and regionally diverse market.
Mining (fleet and productivity analytics): Data-led mine planning, fleet analytics, despatch discipline, and idle-time reduction improve fuel efficiency and equipment utilisation, generating meaningful savings in a cost-heavy operation.
Manufacturing (APC and process analytics): Advanced Process Control, mill optimisation, and variability reduction improve thermal and electrical efficiency, stabilise quality and reduce rework and unplanned stoppages.
Customer experience and revenue enablement (digital platforms): Dealer and retailer apps, order visibility and digitally enabled technical services improve ease of doing business and responsiveness. We are also empowering channel partners with transparent, real-time information on schemes, including eligibility, utilisation status and actionable recommendations, which improves channel satisfaction and market execution while supporting revenue growth.
Overall, while Artificial Intelligence (AI) and IIoT are powerful enablers, it is advanced analytics anchored in strong processes that typically delivers the fastest and most reliable ROI.
How is real-time data helping plants shift from reactive maintenance to predictive and prescriptive operations?
Real-time and near real-time data is driving a more proactive and disciplined maintenance culture, beginning with visibility and progressively moving toward prediction and prescription.
At Shree Cement, we have implemented a robust SAP Plant Maintenance framework to standardise maintenance workflows. This is complemented by IIoT-driven condition monitoring, ensuring consistent capture of equipment health indicators such as vibration, temperature, load, operating patterns and alarms.
Real-time visibility enables early detection of abnormal conditions, allowing teams to intervene before failures occur. As data quality improves and failure histories become structured, predictive models can anticipate likely failure modes and recommend timely interventions, improving MTBF and reducing downtime. Over time, these insights will evolve into prescriptive actions, including spares readiness, maintenance scheduling, and operating parameter adjustments, enabling reliability optimisation with minimal disruption.
A critical success factor is adoption. Predictive insights deliver value only when they are embedded into daily workflows, roles and accountability structures. Without this, they remain insights without action.
In a cost-sensitive market like India, how do cement companies balance digital investment with price competitiveness?
In India’s intensely competitive cement market, digital investments must be tightly linked to tangible business outcomes, particularly cost reduction, service improvement, and faster decision-making.
This balance is achieved by prioritising high-impact use cases such as planning efficiency, logistics optimisation, asset reliability, and process stability, all of which typically deliver quick payback. Equally important is building scalable and governed digital foundations that reduce the marginal cost of rolling out new use cases across plants.
Digitally enabled order management, live despatch visibility, and channel partner platforms also improve customer centricity while controlling cost-to-serve, allowing service levels to improve without proportionate increases in headcount or overheads.
In essence, the most effective digital investments do not add cost. They protect margins by reducing variability, improving planning accuracy, and strengthening execution discipline.
How is digitalisation enabling measurable reductions in energy consumption, emissions, and overall carbon footprint?
Digitalisation plays a pivotal role in improving energy efficiency, reducing emissions and lowering overall carbon intensity.
Real-time monitoring and analytics enable near real-time tracking of energy consumption and critical operating parameters, allowing inefficiencies to be identified quickly and corrective actions to be implemented. Centralised data consolidation across plants enables benchmarking, accelerates best-practice adoption, and drives consistent improvements in energy performance.
Improved asset reliability through predictive maintenance reduces unplanned downtime and process instability, directly lowering energy losses. Digital platforms also support more effective planning and control of renewable energy sources and waste heat recovery systems, reducing dependence on fossil fuels.
Most importantly, digitalisation enables sustainability progress to be tracked with greater accuracy and consistency, supporting long-term ESG commitments.
What role does digital supply chain visibility play in managing demand volatility and regional market dynamics in India?
Digital supply chain visibility is critical in India, where demand is highly regional, seasonality is pronounced, and logistics constraints can shift rapidly.
At Shree Cement, planning operates across multiple horizons. Annual planning focuses on capacity, network footprint and medium-term demand. Monthly S&OP aligns demand, production and logistics, while daily scheduling drives execution-level decisions on despatch, sourcing and prioritisation.
As digital maturity increases, this structure is being augmented by central command-and-control capabilities that manage exceptions such as plant constraints, demand spikes, route disruptions and order prioritisation. Planning is also shifting from aggregated averages to granular, cost-to-serve and exception-based decision-making, improving responsiveness, lowering logistics costs and strengthening service reliability.
How prepared is the current workforce for Industry 4.0, and what reskilling strategies are proving most effective?
Workforce preparedness for Industry 4.0 is improving, though the primary challenge lies in scaling capabilities consistently across diverse roles.
The most effective approach is to define capability requirements by role and tailor enablement accordingly. Senior leadership focuses on digital literacy for governance, investment prioritisation, and value tracking. Middle management is enabled to use analytics for execution discipline and adoption. Frontline sales and service teams benefit from
mobile-first tools and KPI-driven workflows, while shop-floor and plant teams focus on data-driven operations, APC usage, maintenance discipline, safety and quality routines.
Personalised, role-based learning paths, supported by on-ground champions and a clear articulation of practical benefits, drive adoption far more effectively than generic training programmes.
Which emerging digital technologies will fundamentally reshape cement manufacturing in the next decade?
AI and GenAI are expected to have the most significant impact, particularly when combined with connected operations and disciplined processes.
Key technologies likely to reshape the sector include GenAI and agentic AI for faster root-cause analysis, knowledge access, and standardisation of best practices; industrial foundation models that learn patterns across large sensor datasets; digital twins that allow simulation of process changes before implementation; and increasingly autonomous control systems that integrate sensors, AI, and APC to maintain stability with minimal manual intervention.
Over time, this will enable more centralised monitoring and management of plant operations, supported by strong processes, training and capability-building.
Concrete
Redefining Efficiency with Digitalisation
Published
1 day agoon
February 20, 2026By
admin
Professor Procyon Mukherjee discusses how as the cement industry accelerates its shift towards digitalisation, data-driven technologies are becoming the mainstay of sustainability and control across the value chain.
The cement industry, long perceived as traditional and resistant to change, is undergoing a profound transformation driven by digital technologies. As global infrastructure demand grows alongside increasing pressure to decarbonise and improve productivity, cement manufacturers are adopting data-centric tools to enhance performance across the value chain. Nowhere is this shift more impactful than in grinding, which is the energy-intensive final stage of cement production, and in the materials that make grinding more efficient: grinding media and grinding aids.
The imperative for digitalisation
Cement production accounts for roughly 7 per cent to 8 per cent of global CO2 emissions, largely due to the energy intensity of clinker production and grinding processes. Digital solutions, such as AI-driven process controls and digital twins, are helping plants improve stability, cut fuel use and reduce emissions while maintaining consistent product quality. In one deployment alongside ABB’s process controls at a Heidelberg plant in Czechia, AI tools cut fuel use by 4 per cent and emissions by 2 per cent, while also improving operational stability.
Digitalisation in cement manufacturing encompasses a suite of technologies, broadly termed as Industrial Internet of Things (IIoT), AI and machine learning, predictive analytics, cloud-based platforms, advanced process control and digital twins, each playing a role in optimising various stages of production from quarrying to despatch.
Grinding: The crucible of efficiency and cost
Of all the stages in cement production, grinding is among the most energy-intensive, historically consuming large amounts of electricity and representing a significant portion of plant operating costs. As a result, optimising grinding operations has become central to digital transformation strategies.
Modern digital systems are transforming grinding mills from mechanical workhorses into intelligent, interconnected assets. Sensors throughout the mill measure parameters such as mill load, vibration, mill speed, particle size distribution, and power consumption. This real-time data, fed into machine learning and advanced process control (APC) systems, can dynamically adjust operating conditions to maintain optimal throughput and energy usage.
For example, advanced grinding systems now predict inefficient conditions, such as impending mill overload, by continuously analysing acoustic and vibration signatures. The system can then proactively adjust clinker feed rates and grinding media distribution to sustain optimal conditions, reducing energy consumption and improving consistency.
Digital twins: Seeing grinding in the virtual world
One of the most transformative digital tools applied in cement grinding is the digital twin, which a real-time virtual replica of physical equipment and processes. By integrating sensor data and
process models, digital twins enable engineers to simulate process variations and run ‘what-if’
scenarios without disrupting actual production. These simulations support decisions on variables such as grinding media charge, mill speed and classifier settings, allowing optimisation of energy use and product fineness.
Digital twins have been used to optimise kilns and grinding circuits in plants worldwide, reducing unplanned downtime and allowing predictive maintenance to extend the life of expensive grinding assets.
Grinding media and grinding aids in a digital era
While digital technologies improve control and prediction, materials science innovations in grinding media and grinding aids have become equally crucial for achieving performance gains.
Grinding media, which comprise the balls or cylinders inside mills, directly influence the efficiency of clinker comminution. Traditionally composed of high-chrome cast iron or forged steel, grinding media account for nearly a quarter of global grinding media consumption by application, with efficiency improvements translating directly to lower energy intensity.
Recent advancements include ceramic and hybrid media that combine hardness and toughness to reduce wear and energy losses. For example, manufacturers such as Sanxin New Materials in China and Tosoh Corporation in Japan have developed sub-nano and zirconia media with exceptional wear resistance. Other innovations include smart media embedded with sensors to monitor wear, temperature, and impact forces in real time, enabling predictive maintenance and optimal media replacement scheduling. These digitally-enabled media solutions can increase grinding efficiency by as much as 15 per cent.
Complementing grinding media are grinding aids, which are chemical additives that improve mill throughput and reduce energy consumption by altering the surface properties of particles, trapping air, and preventing re-agglomeration. Technology leaders like SIKA AG and GCP Applied Technologies have invested in tailored grinding aids compatible with AI-driven dosing platforms that automatically adjust additive concentrations based on real-time mill conditions. Trials in South America reported throughput improvements nearing 19 per cent when integrating such digital assistive dosing with process control systems.
The integration of grinding media data and digital dosing of grinding aids moves the mill closer to a self-optimising system, where AI not only predicts media wear or energy losses but prescribes optimal interventions through automated dosing and operational adjustments.
Global case studies in digital adoption
Several cement companies around the world exemplify digital transformation in practice.
Heidelberg Materials has deployed digital twin technologies across global plants, achieving up to 15 per cent increases in production efficiency and 20 per cent reductions in energy consumption by leveraging real-time analytics and predictive algorithms.
Holcim’s Siggenthal plant in Switzerland piloted AI controllers that autonomously adjusted kiln operations, boosting throughput while reducing specific energy consumption and emissions.
Cemex, through its AI and predictive maintenance initiatives, improved kiln availability and reduced maintenance costs by predicting failures before they occurred. Global efforts also include AI process optimisation initiatives to reduce energy consumption and environmental impact.
Challenges and the road ahead
Despite these advances, digitalisation in cement grinding faces challenges. Legacy equipment may lack sensor readiness, requiring retrofits and edge-cloud connectivity upgrades. Data governance and integration across plants and systems remains a barrier for many mid-tier producers. Yet, digital transformation statistics show momentum: more than half of cement companies have implemented IoT sensors for equipment monitoring, and digital twin adoption is growing rapidly as part of broader Industry 4.0 strategies.
Furthermore, as digital systems mature, they increasingly support sustainability goals: reduced energy use, optimised media consumption and lower greenhouse gas emissions. By embedding intelligence into grinding circuits and material inputs like grinding aids, cement manufacturers can strike a balance between efficiency and environmental stewardship.
Conclusion
Digitalisation is not merely an add-on to cement manufacturing. It is reshaping the competitive and sustainability landscape of an industry often perceived as inertia-bound. With grinding representing a nexus of energy intensity and cost, digital technologies from sensor networks and predictive analytics to digital twins offer new levers of control. When paired with innovations in grinding media and grinding aids, particularly those with embedded digital capabilities, plants can achieve unprecedented gains in efficiency, predictability and performance.
For global cement producers aiming to reduce costs and carbon footprints simultaneously, the future belongs to those who harness digital intelligence not just to monitor operations, but to optimise and evolve them continuously.
About the author:
Professor Procyon Mukherjee, ex-CPO Lafarge-Holcim India, ex-President Hindalco, ex-VP Supply Chain Novelis Europe, has been an industry leader in logistics, procurement, operations and supply chain management. His career spans 38 years starting from Philips, Alcan Inc (Indian Aluminum Company), Hindalco, Novelis and Holcim. He authored the book, ‘The Search for Value in Supply Chains’. He serves now as Visiting Professor in SP Jain Global, SIOM and as the Adjunct Professor at SBUP. He advises leading Global Firms including Consulting firms on SCM and Industrial Leadership and is a subject matter expert in aluminum and cement. An Alumnus of IIM Calcutta and Jadavpur University, he has completed the LH Senior Leadership Programme at IVEY Academy at Western University, Canada.
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Trending News
-
Concrete4 weeks agoAris Secures Rs 630 Million Concrete Supply Order
-
Concrete3 weeks agoNITI Aayog Unveils Decarbonisation Roadmaps
-
Concrete3 weeks agoJK Cement Commissions 3 MTPA Buxar Plant, Crosses 31 MTPA
-
Economy & Market3 weeks agoBudget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook


