Concrete
Evolving with Time
Published
2 years agoon
By
admin
Concrete and precast shapes are playing an increasingly important role in the construction sector today. We look at the challenges and innovations in this segment.
The journey of precast concrete has been long. Joseph Aspdin patented the making of Portland cement in late 1700 and much later Joseph Monier was the first to use reinforced concrete in 1867. He went on to patent concrete pipes, basins, beams and panels. These panels proved to be the precursor to precast concrete production for construction. In 1905, city engineer John Alexander Brodie invented the first modern example of precast concrete in Liverpool, England. Although precast concrete forming of panels wasn’t popular in England, it flourished around the world.
Advances in the precast concrete industry continue to make the material indispensable. In addition to precast/prestressed concrete structural members that keep parking garages and bridges upright, it’s the concrete used underground that make it so valuable.
Precast concrete is a construction product produced by casting concrete in a reusable mould or ‘form,’ which is then cured in a controlled environment, transported to the construction site and maneuvered into place. Examples include precast beams, and wall panels for tilt-up construction. In contrast, cast-in-place concrete is poured into site-specific forms and cured on site. Recently lightweight expanded polystyrene foam is being used as the cores of precast wall panels, saving weight and increasing thermal insulation.
Precast concrete is employed in both interior and exterior applications, from highway, bridge and hi-rise projects to tilt-up building construction. By producing precast concrete in a controlled environment (typically referred to as a precast plant), it is afforded the opportunity to properly cure and be closely monitored by the plant employees. Using a precast concrete system offers many potential advantages over onsite casting. Precast concrete production can be performed on ground level, which maximises safety in its casting. There is greater control over material quality and workmanship in a precast plant compared to a construction site. The forms used in a precast plant can be reused hundreds to thousands of times before they have to be replaced, often making it cheaper than onsite casting in terms of cost per unit of formwork.
Precast concrete forming systems for architectural applications differ in size, function and cost. Precast architectural panels are also used to clad all or part of a building facade or erect free-standing walls for landscaping, soundproofing and security. In appropriate instances precast products – such as beams for bridges, highways and parking structure decks – can be prestressed structural elements. Stormwater drainage, water and sewage pipes as well as tunnels also make use of precast concrete units.
Precast concrete moulds can be made of timber, steel, plastic, rubber, fibreglass or other synthetic materials, with each giving a unique finish. In addition, many surface finishes for the four precast wall panel types – sandwich, plastered sandwich, inner layer and cladding panels – are available, including those creating the looks of horizontal boards and
ashlar stone. Colour may be added to the concrete mix, and the proportions and size aggregate
also affect the appearance and texture of finished concrete surfaces.
Some of the examples of precast concrete products and shapes are given below:
Precast concrete products for foundations
Isolated footings: They are commonly used for shallow foundations to carry and spread concentrated loads, caused for example by columns or pillars. Isolated footings can consist either of reinforced or non-reinforced material. These are used for smaller structures and residential buildings.
Pocket footings: They offer more strength to shallow foundations to carry and spread concentrated loads. They are used for commercial and
industrial buildings.
Combined footings: These concrete footings are usually rectangular and support two or more columns that are so close to each other their footings would overlap. They are used for commercial and industrial buildings.
Precast piles: They are prefabricated piles made of prestressed concrete that are driven into the ground using diesel or hydraulic hammer. The piles are made of prestressed concrete and have fixed dimensions. These piles are used for the most conventional foundation method.
RCC beams: These are structural elements designed to carry transverse external loads that cause bending moment, shear forces, and in some cases torsion across their length. RCC beams generally have concrete resisting on the compression region and steel resisting applied loads on the tension region. It can be classified as per size into- rectangular, T-Beam, I-Beam, Circular Beam and L-Beam. It is used to support the building’s floors, roof, walls
and cladding.
Prestressed beams: FRP-prestressed beams are greater than those of steel-prestressed beams.
It is very easy to install with reduced on-site labour needs and costs. It comes in a wide range of depths to meet exact building needs It provides much-needed reinforcement for multi-story buildings and industrial applications.
Shell beams: Shell beams are commonly used with precast floor systems to streamline building programmes and reduce on-site labour. Pre-stressed shell beam units, with the addition of a reinforcing cage and on-site concrete. Band depths of 290mm to 600mm and widths of 600mm to 2,400mm are possible.
RCC slabs: This type of slabs is used for support conditions in buildings. RCC slabs, with thickness that ranges from 10 to 50 centimetres, are most often used for the construction of floors and ceilings. Thin RCC slabs are also used for exterior paving purposes. In domestic and industrial buildings, a thick concrete slab, supported on foundations or directly on the subsoil, is used to construct the ground floor of a building. In high rises buildings and skyscrapers, thinner, precast concrete slabs are slung between the steel frames to form the floors and ceilings on each level.
Prestressed hollow core slabs: A hollow core slab, also known as a voided slab, hollow core plank, or simply a concrete plank is a precast slab of prestressed concrete typically used in the construction of floors in multi-story apartment buildings. The production of these elements is achieved using our Extruder and Slipformer machines that cast in one phase along a production bed without the need for any formworks.
Prestressed solid slabs: The solid slab is a customised, loosely reinforced, full concrete slab that is used in residential and industrial construction. Mounting parts, such as electrical outlets, wiring, openings, etc. or even heating conduits can be previously installed in the solid slab in the precast plant.
Double tee slabs: A double tee or double-T beam is a load-bearing structure that resembles two T-beams connected side by side. The strong bond of the flange (horizontal section) and the two webs (vertical members, also known as stems) creates a structure that is capable of withstanding high loads while having a long span. It can be applied in roofing, parking and bridges.
Precast concrete products for walls
Load bearing external walls: This wall is constructed to support the above slab or other building elements in a structure. These walls are generally 125 mm to 200 mm thick. The thickness depends on the load pattern.
Non-load-bearing walls: This wall holds up only itself as it carries only its own weight and may be any one of the types discussed under load-bearing walls. This type of wall is used to close in a steel or concrete frame building. It is usually carried by supports, normally steel shelf angles on each floor. These walls are generally 50 mm to 100 mm thick.
Precast joist roof
Precast joist roof is a building system in which precast reinforced cement concrete planks – rectangular slab elements – are placed on precast RCC joists. The roof gets completed with in-situ concrete poured over the haunches in planks and over the partially precast joists, thus ensuring monolithic action of individual precast elements.
Precast façade
Precast sandwich panels enable the strict requirements for thermal insulation to be met. Concrete structures have great insulation qualities, keeping the building warm in cold weather and cool when it is hot, stabilising the moisture and temperature inside. For the precast facade, a calculated age can be defined. One special feature of a precast façade is the panel joints
Glass Fibre-Reinforced Concrete (GFRC)
Glass fibre-reinforced concrete consists of high-strength, alkali-resistant glass fibre embedded in a concrete matrix. This is used especially for thin architectural cladding panels, but also for ornamental concrete such as domes, statues, planters and fountains. Recently, decorative concrete artisans have discovered the benefits of GFRC for decorative panels (such as fireplace surrounds), concrete countertops and artificial rock work.
Some of the advantages of precast concrete and shapes over in-situ concrete are as follows:
Simplified Material Inputs and Cost: Because precast products already contain the concrete, conduits and rebar needed, they eliminate the need to purchase and prepare these materials. Offsite casting also removes onsite casting needs, such as cardboard forms, from the equation. This simplifies the construction process to reduce hassle and
increase efficiency.
Reduced Installation Time: Precast concrete components are ready for immediate use upon delivery while cast-in-place concrete are not. This eliminates unnecessary time needed to set up cardboard forms, bend and position rebar, pour and vibrate concrete and then wait for the concrete to cure. The removal of these steps saves valuable time in terms of project duration and cost from labour needed.
Cost-effective for Large Projects: When compared to cast-in-place concrete, the cost associated with precast concrete decreases as project scale increases. Large-scale projects that require repeatable concrete components, such as installing airport taxiway lighting, are great candidates for precast concrete products, as the setup and install time required to hand pour all concrete would quickly increase project cost. Precast concrete is truly an economy of scale, which makes it ideal for businesses and contractors of large-scale construction projects.
Stronger than Cast-in-place Concrete: Precast concrete is often stronger than cast-in-place concrete. Not only are precast concrete products already reinforced with steel rebar, but the controlled curing process also ensures that the concrete will set correctly under ideal conditions for maximised strength. Precast concrete can also be stress-tested before being delivered to the final job site.
Higher-quality Control: Another advantage of precast concrete is its higher standard of quality control. Because precast concrete forms are created offsite, all products are inspected for defects before shipping out. The controlled process also eliminates unknowns related to temperature, humidity and imprecise tools.

However, there are some challenges as well that must be taken care of as follows:
Higher Upfront Costs: The good news is precast concrete makes up for the high initial costs in the long run. Because concrete is so strong and durable, there is typically very little maintenance over the life of the precast concrete fence.
Transportation: If your project site is located far away from our plant, the transportation can take a while and cost more. Precast concrete isn’t fine China. Some bumps and bruises aren’t going to hurt it. But you will need to be prepared when installing the precast shapes.
Hard to Modify: Precast concrete has a ton of options during design phase but once designed and built it is not possible to modify in part or whole.
The market for precast products and shapes have been growing very fast and because of the nature of customisation possibilities it is likely to be the product of choice for not only government projects but also for residential construction.
-Procyon Mukherjee
Concrete
Adani’s Strategic Emergence in India’s Cement Landscape
Published
4 days agoon
September 16, 2025By
admin
Milind Khangan, Marketing Head, Vertex Market Research, sheds light on Adani’s rapid cement consolidation under its ‘One Business, One Company’ strategy while positioning it to rival UltraTech, and thus, shaping a potential duopoly in India’s booming cement market.
India is the second-largest cement-producing country in the world, following China. This expansion is being driven by tremendous public investment in the housing and infrastructure sectors. The industry is accelerating, with a boost from schemes such as PM Gati Shakti, Bharatmala, and the Vande Bharat corridors. An upsurge in affordable housing under the Pradhan Mantri Awas Yojana (PMAY) further supports this expansion. In May 2025, local cement production increased about 9 per cent from last year to about 40 million metric tonnes for the month. The combined cement capacity in India was recorded at 670 million metric tonnes in the 2025 fiscal year, according to the Cement Manufacturers’ Association (CMA). For the financial year 2026, this is set to grow by another 9 per cent.
In spite of the growing demand, the Indian cement industry is highly competitive. UltraTech Cement (Aditya Birla Group) is still the market leader with domestic installed capacity of more than 186 MTPA as on 2025. It is targeted to achieve 200 MTPA. Adani Cement recently became a major player and is now India’s second-largest cement company. It did this through aggressive consolidation, operational synergies, and scale efficiencies. Indian players in the cement industry are increasingly valuing operational efficiency and sustainability. Some of the strategies with high impact are alternative fuels and materials (AFR) adoption, green cement expansion, and digital technology investments to offset changing regulatory pressure and increasing energy prices.
Building Adani Cement brand
Vertex Market Research explains that the Adani Group is executing a comprehensive reorganisation and consolidation of its cement business under the ‘One Business, One Company’ strategy. The plan is to integrate its diversified holdings into one consolidated corporate entity named Adani Cement. The focus is on operating integration, governance streamlining, and cost reduction in its expanding cement business.
Integration roadmap and key milestones:
- September 2022: The consolidation process started with the $6.4 billion buyout of Holcim’s majority stakes in Ambuja Cements and ACC, with Ambuja becoming the focal point of the consolidation.
- December 2023: Bought Sanghi Industries to strengthen the firm’s presence in western India.
- August 2024: Added Penna Cement to the portfolio, improving penetration of the southern market of India.
- April 2025: Further holding addition in Orient Cement to 46.66 per cent by purchasing the same from CK Birla Group, becoming the promoter with control.
- Ambuja Cements amalgamated with Adani Cement: This was sanctioned by the NCLT on 18th July 2025 with effect from April 1, 2024. This amalgamation brings in limestone reserves and fresh assets into Ambuja.
- Subject to Sanghi and Penna merger with Ambuja: Board approvals in December 2024 with the aim to finish between September to December 2025.
- Ambuja-ACC future integration: The latter is being contemplated as the final step towards consolidation.
- Orient Cement: It would serve as a principal manufacturing facility following the merger.
Scale, capacity expansion and market position
In financial year-2025, Adani Cement, including Ambuja, surpassed 100 MTPA. This makes it one of the world’s top ten cement companies. Along with ACC’s operations, it is now firmly placed as India’s second-largest cement company. In FY25, the Adani group’s sales volume per annum clocked 65 million metric tonnes. Adani Group claims that it now supplies close to 30 per cent of the cement consumed in India’s homes and infrastructure as of June 2025.
The organisation is pursuing aggressive brownfield expansion:
- By FY 2026: Reach 118 MTPA
- By FY 2028: Target 140 MTPA
These goals will be driven by commissioning new clinker and grinding units at key sites, with civil and mechanical works underway.
As of 2024, Adani Cement had its market share pegged at around 14 to 15 per cent, with an ambition to scale this up to 20 per cent by FY?2028, emerging as a potent competitor to UltraTech’s 192?MTPA capacity (186 domestic and overseas).
Strategic advantages and competitive benefits
The consolidation simplifies decision-making by reducing legal entities, centralising oversight, and removing redundant functions. This drives compliance efficiency and transparent reporting. Using procurement power for raw materials and energy lowers costs per ton. Integrated logistics with Adani Ports and freight infrastructure has resulted in an estimated 6 per cent savings in logistics. The group aims for additional savings of INR 500 to 550 per tonne by FY 2028 by integrating green energy, using alternative fuel resources, and improving sourcing methods.
Market coverage and brand consistency
Brand integration under one strategy will provide uniform product quality and easier distribution networks. Integration with Orient Cement’s dealer base, 60 per cent of which already distributes Ambuja/ACC products, enhances outreach and responsiveness.
By having captive limestone reserves at Lakhpat (approximately 275 million tonnes) and proposed new manufacturing facilities in Raigad, Maharashtra, Adani Cement derives cost advantage, raw material security, and long-term operational robustness.
Strategic implications and risks
Consolidation at Adani Cement makes it not just a capacity leader but also an operationally agile competitor with the ability to reap digital and sustainability benefits. Its vertically integrated platform enables cost leadership, market responsiveness, and scalability.
Challenges potentially include:
- Integration challenges across systems, corporate cultures, and plant operations
- Regulatory sanctions for pending mergers and new capacity additions
- Environmental clearances in environmentally sensitive areas and debt management with input price volatility
When materialised, this revolution would create a formidable Adani–UltraTech duopoly, redefining Indian cement on the basis of scale, innovation, and sustainability. India’s leading four cement players such as Adani (ACC and Ambuja), Dalmia Cement, Shree Cement, and UltraTech are expected to dominate the cement market.
Conclusion
Adani’s aggressive consolidation under the ‘One Business, One Company’ strategy signals a decisive shift in the Indian cement industry, positioning the group as a formidable challenger to UltraTech and setting the stage for a potential duopoly that could dominate the sector for years to come. By unifying operations, leveraging economies of scale, and securing vertical integration—from raw material reserves to distribution networks—Adani Cement is building both capacity and resilience, with clear advantages in cost efficiency, market reach, and sustainability. While integration complexities, regulatory hurdles, and environmental approvals remain key challenges, the scale and strategic alignment of this consolidation promise to redefine competition, pricing dynamics, and operational benchmarks in one of the world’s fastest-growing cement markets.
About the author:
Milind Khangan is the Marketing Head at Vertex Market Research and comes with over five years of experience in market research, lead generation and team management.
Concrete
Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series
Published
1 month agoon
August 16, 2025By
admin
PowerBuild’s flagship Series M, C, F, and K geared motors deliver robust, efficient, and versatile power transmission solutions for industries worldwide.
Products – M, C, F, K: At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. PowerBuild answers this need with its flagship geared motor series: M, C, F, and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.
Series M – Helical Inline Geared Motors: Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.
Series C – Right Angled Heli-Worm Geared Motors: Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.
Series F – Parallel Shaft Mounted Geared Motors: Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes, and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.
Series K – Right Angle Helical Bevel Geared Motors: For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining, and material handling. Its flexibility in mounting and broad motor options offer engineers’ freedom in design and reliability in execution.
Together, these four series reflect PowerBuild’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design, and field-tested reliability. Whether the requirement is speed control, torque multiplication, or space efficiency, Radicon’s Series M, C, F, and K stand as trusted powerhouses for global industries.

Klüber Lubrication India’s Klübersynth GEM 4-320 N upgrades synthetic gear oil for energy efficiency.
Klüber Lubrication India has introduced a strategic upgrade for the tyre manufacturing industry by retrofitting its high-performance synthetic gear oil, Klübersynth GEM 4-320 N, into Barrel Cold Feed Extruder gearboxes. This smart substitution, requiring no hardware changes, delivered energy savings of 4-6 per cent, as validated by an internationally recognised energy audit firm under IPMVP – Option B protocols, aligned with
ISO 50015 standards.
Beyond energy efficiency, the retrofit significantly improved operational parameters:
- Lower thermal stress on equipment
- Extended lubricant drain intervals
- Reduction in CO2 emissions and operational costs
These benefits position Klübersynth GEM 4-320 N as a powerful enabler of sustainability goals in line with India’s Business Responsibility and Sustainability Reporting (BRSR) guidelines and global Net Zero commitments.
Verified sustainability, zero compromise
This retrofit case illustrates that meaningful environmental impact doesn’t always require capital-intensive overhauls. Klübersynth GEM 4-320 N demonstrated high performance in demanding operating environments, offering:
- Enhanced component protection
- Extended oil life under high loads
- Stable performance across fluctuating temperatures
By enabling quick wins in efficiency and sustainability without disrupting operations, Klüber reinforces its role as a trusted partner in India’s evolving industrial landscape.
Klüber wins EcoVadis Gold again
Further affirming its global leadership in responsible business practices, Klüber Lubrication has been awarded the EcoVadis Gold certification for the fourth consecutive year in 2025. This recognition places it in the top three per cent
of over 150,000 companies worldwide evaluated for environmental, ethical and sustainable procurement practices.
Klüber’s ongoing investments in R&D and product innovation reflect its commitment to providing data-backed, application-specific lubrication solutions that exceed industry expectations and support long-term sustainability goals.
A trusted industrial ally
Backed by 90+ years of tribology expertise and a global support network, Klüber Lubrication is helping customers transition toward a greener tomorrow. With Klübersynth GEM 4-320 N, tyre manufacturers can take measurable, low-risk steps to boost energy efficiency and regulatory alignment—proving that even the smallest change can spark a significant transformation.

Adani’s Strategic Emergence in India’s Cement Landscape

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Driving Measurable Gains

Reshaping the Competitive Landscape

CCU testbeds in Tamil Nadu

Adani’s Strategic Emergence in India’s Cement Landscape

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Driving Measurable Gains

Reshaping the Competitive Landscape
