Concrete
Environmental Benefits of Using Waste Glass as Pozzolana
Published
2 years agoon
By
admin
Dr SB Hedge, Professor, Jain University and Visiting Professor, Pennsylvania State University, United States of America, discusses the environmental benefits of using waste glass as Pozzolana in this concluding part of the article.
Pozzolanic properties of waste glass refer to its ability to react with calcium hydroxide in the presence of water to form cementitious compounds. This reaction, known as the pozzolanic reaction, contributes to the strength and durability of cementitious materials.
Findings based on the investigation on the Pozzolanic properties
Here are some details on the pozzolanic properties of waste glass and examples of its usage:
Amorphous Silica Content: Waste glass typically contains a significant amount of amorphous silica, which is a key factor in its pozzolanic activity. Amorphous silica has a high
surface area, allowing it to react readily
with calcium hydroxide and form additional cementitious compounds.
Reactivity and Fineness: The reactivity of waste glass depends on factors such as its chemical composition, particle size distribution, and surface area. To enhance its pozzolanic reactivity, waste glass is often ground to a fine powder. Increased fineness improves the contact between waste glass particles and calcium hydroxide, facilitating the pozzolanic reaction.
Pozzolanic Reaction Products: When waste glass reacts with calcium hydroxide in the presence of water, it forms additional cementitious compounds, such as calcium silicate hydrate (C-S-H) gel. The C-S-H gel contributes to the strength and binding properties of the
cementitious matrix.

Examples of Usage
Partial cement replacement: Waste glass can be used as a partial replacement for cement in concrete production. Typically, a portion of the cement is substituted with finely ground waste glass powder. This reduces the overall cement content while maintaining or improving the mechanical properties and durability of the concrete.
Glass powder addition in concrete mixes: Waste glass powder can be directly added to concrete mixes as an additional pozzolanic material. It acts as a supplementary cementitious material (SCM) alongside other pozzolanic materials like fly ash or silica fume. This combination enhances the reactivity and overall performance of the concrete.
Glass aggregate in concrete: In addition to using waste glass as a pozzolanic material, it can also be used as a fine or coarse aggregate in concrete production. By incorporating waste glass aggregates, both the pozzolanic and aggregate properties of the glass are utilised. This approach enhances the sustainability of concrete while maintaining structural integrity.
Glass fibre reinforcement: Waste glass fibres can be used as reinforcement in cementitious composites. The glass fibres provide tensile strength and improve the overall performance of the concrete. This application is particularly useful in construction elements requiring enhanced durability and crack resistance.
Glass as pozzolanic additive in mortars: Waste glass can be used as a pozzolanic additive in mortar mixes. Mortars containing waste glass exhibit improved workability, increased strength and reduced permeability. This makes them suitable for applications such as plastering, masonry and tile adhesives.
Waste glass possesses pozzolanic properties due to its high amorphous silica content. By utilising waste glass as a pozzolanic material, its environmental impact can be reduced while enhancing the performance and sustainability of cementitious materials.
The examples provided demonstrate the versatile usage of waste glass in cement and concrete applications, contributing to a more sustainable construction industry.

Environmental Benefits
The utilisation of waste glass as a pozzolanic material in cement production offers significant environmental benefits. Here is a detailed account of these benefits:
Waste reduction and recycling: Waste glass, if not properly managed, poses a significant environmental challenge. By using waste glass as a pozzolanic material, it is diverted from landfills or incineration, reducing the need for new disposal sites and minimising the environmental impact associated with glass waste. Recycling waste glass as a pozzolana promotes a circular economy by converting it into a valuable resource.
Conservation of natural resources: The incorporation of waste glass in cement production reduces the need for virgin raw materials, such as limestone or silica. By substituting a portion of cement with waste glass, natural resources are conserved, including the energy and water required for extraction and processing of raw materials. This conservation helps in preserving natural ecosystems and reducing the overall ecological footprint.
Energy savings and emissions reduction: The production of cement is energy-intensive and contributes to greenhouse gas emissions, primarily carbon dioxide (CO2). By using waste glass as a pozzolanic material, the cement content in concrete is reduced, resulting in lower energy consumption and CO2 emissions during cement manufacturing. This reduction in energy usage and emissions contributes to mitigating climate change and achieving sustainability goals.
Reduced landfill space and leachate generation: When waste glass is disposed of in landfills, it occupies valuable space and can contribute to environmental concerns. Glass waste in landfills may also produce leachate, potentially contaminating soil and groundwater. Utilising waste glass as a pozzolanic material reduces
the amount of glass waste sent to landfills, alleviating the pressure on waste management infrastructure and minimising the associated environmental risks.
Improved air quality: Cement production is associated with the release of pollutants, including dust, particulate matter, and potentially harmful gases. By replacing a portion of cement with waste glass, the production of cementitious materials can be optimised. The use of waste glass as a pozzolana reduces the overall emissions of particulate matter and improves air quality in and around cement plants, promoting a healthier environment for nearby communities.
Enhanced durability and reduced maintenance: Concrete incorporating waste glass as a pozzolanic material exhibits improved durability and reduced permeability. This translates into longer service life for concrete structures, reduced maintenance requirements, and decreased need for repairs or replacements. By extending the life of concrete, the environmental impact associated with new construction projects is minimised.
Waste Glass Addition
The addition of waste glass to concrete can significantly improve its performance in several ways. Here are the key ways in which waste glass enhances the performance of concrete:
- Increased strength and durability: The incorporation of waste glass as a pozzolanic material in concrete leads to the formation of additional cementitious compounds. These compounds, such as calcium silicate hydrate (C-S-H) gel, contribute to the strength and durability of the concrete. The pozzolanic reaction between waste glass and calcium hydroxide results in denser and more compact concrete, improving its compressive and flexural strength.
- Reduced permeability: Concrete containing waste glass exhibits reduced permeability to water and other potentially harmful substances. The pozzolanic reaction of waste glass results in the formation of a refined pore structure within the concrete matrix. This refined pore structure restricts the movement of water and other aggressive agents, enhancing the concrete’s resistance to moisture ingress, chemical attack, and freeze-thaw damage.
- Enhanced chemical resistance: The pozzolanic reaction of waste glass in concrete leads to the formation of calcium silicate hydrate (C-S-H) gel, which provides improved chemical resistance. This resistance makes the concrete less susceptible to chemical degradation caused by substances such as sulphates, chlorides and acids.
Concrete with waste glass as a pozzolanic material exhibits better long-term performance in aggressive environments. - Improved workability and cohesion: The addition of waste glass as a pozzolanic material can enhance the workability and cohesion of concrete. Due to the fine particle size and pozzolanic nature of waste glass, it acts as a filler material, improving the packing and lubrication of the concrete mixture. This improved workability allows for easier placement, consolidation, and finishing of
the concrete. - Mitigation of alkali-silica reaction: Alkali-Silica Reaction (ASR) is a chemical reaction that can occur between certain reactive silica minerals in aggregates and the alkalis present in cement. This reaction can lead to expansive cracking and deterioration of concrete. Waste glass, being an inert material, can act as a mitigating agent for ASR by replacing some of the reactive silica in the concrete mix.
- Sustainability and eco-friendliness: In addition to performance improvements, the utilisation of waste glass in concrete contributes to sustainability and eco-friendliness. By incorporating waste glass as a pozzolanic material, the consumption of cement is reduced, resulting in CO2 emissions associated with cement production. This reduction in CO2 emissions aligns with environmental goals and contributes to a more sustainable construction industry.
Challenges and Considerations
The utilisation of waste glass as a pozzolanic material in cement production does pose some challenges. Proper processing and grinding of waste glass to achieve optimal fineness is crucial to ensure its reactivity. The potential presence of impurities in the waste glass, such as metals or contaminants, requires careful selection and pre-treatment. Additionally, the impact of incorporating waste glass on the fresh and hardened properties of concrete should be evaluated to ensure compatibility with specific project requirements.
Research and Industry Initiatives
Ongoing research and industry initiatives are focused on optimising the use of waste glass as a pozzolanic material. Studies explore various methods of processing and grinding waste glass to enhance its reactivity and maximise its utilisation. Additionally, there is a scope to investigate the influence of waste glass characteristics, such as particle size, composition and treatment, on the properties of concrete. These efforts aim to develop guidelines and standards for incorporating waste glass in cement production.
Conclusion
The use of waste glass as a pozzolanic material in cement production offers a sustainable solution to address environmental concerns associated with both waste glass disposal and cement manufacturing. By harnessing the pozzolanic properties of waste glass, cement producers can reduce their carbon footprint, enhance concrete performance, and contribute to a more circular economy.
The addition of waste glass as a pozzolanic material significantly enhances the performance of concrete. The improvements include increased strength and durability, reduced permeability, enhanced chemical resistance, improved workability and cohesion, mitigation of alkali-silica reaction and sustainability benefits. By embracing waste glass in concrete production, the construction industry can create more resilient and eco-friendly structures while effectively utilising a valuable waste material.
Further research, collaboration and implementation efforts are essential to fully exploit the potential of waste glass as a valuable resource.
References
- Utilisation of Waste Glass Powder in Concrete by P. Manoj Kumar, K. Sreenivasulu, and M. Srinivasulu Reddy, International Journal of Innovative Research in Science, Engineering and Technology, 2013.
- Recycling of Waste Glass as a Partial Replacement for Fine Aggregate in Concrete Mix by W. A. Rahman, M. A. S. Al-gahtani, and M. A. K. El-Kourd, Journal of King Saud University – Engineering Sciences, 2010.
- Mechanical and Durability Properties of Concrete Containing Glass Powder as Partial Replacement of Cement by A. Shayan and R. Xu, Construction and Building Materials, 2004.
- Properties of Glass Concrete Containing Fine and Coarse Glass Aggregates by Z. Feng, S. Xie, and Y. Zhou, Journal of Materials in Civil Engineering, 2011.
You can find part one in the August issue of Indian Cement Review.
ABOUT THE AUTHOR
Dr SB Hegde is a Professor at Jain University and a Visiting Professor at the Pennsylvania State University, United States of America.
Concrete
Adani’s Strategic Emergence in India’s Cement Landscape
Published
4 days agoon
September 16, 2025By
admin
Milind Khangan, Marketing Head, Vertex Market Research, sheds light on Adani’s rapid cement consolidation under its ‘One Business, One Company’ strategy while positioning it to rival UltraTech, and thus, shaping a potential duopoly in India’s booming cement market.
India is the second-largest cement-producing country in the world, following China. This expansion is being driven by tremendous public investment in the housing and infrastructure sectors. The industry is accelerating, with a boost from schemes such as PM Gati Shakti, Bharatmala, and the Vande Bharat corridors. An upsurge in affordable housing under the Pradhan Mantri Awas Yojana (PMAY) further supports this expansion. In May 2025, local cement production increased about 9 per cent from last year to about 40 million metric tonnes for the month. The combined cement capacity in India was recorded at 670 million metric tonnes in the 2025 fiscal year, according to the Cement Manufacturers’ Association (CMA). For the financial year 2026, this is set to grow by another 9 per cent.
In spite of the growing demand, the Indian cement industry is highly competitive. UltraTech Cement (Aditya Birla Group) is still the market leader with domestic installed capacity of more than 186 MTPA as on 2025. It is targeted to achieve 200 MTPA. Adani Cement recently became a major player and is now India’s second-largest cement company. It did this through aggressive consolidation, operational synergies, and scale efficiencies. Indian players in the cement industry are increasingly valuing operational efficiency and sustainability. Some of the strategies with high impact are alternative fuels and materials (AFR) adoption, green cement expansion, and digital technology investments to offset changing regulatory pressure and increasing energy prices.
Building Adani Cement brand
Vertex Market Research explains that the Adani Group is executing a comprehensive reorganisation and consolidation of its cement business under the ‘One Business, One Company’ strategy. The plan is to integrate its diversified holdings into one consolidated corporate entity named Adani Cement. The focus is on operating integration, governance streamlining, and cost reduction in its expanding cement business.
Integration roadmap and key milestones:
- September 2022: The consolidation process started with the $6.4 billion buyout of Holcim’s majority stakes in Ambuja Cements and ACC, with Ambuja becoming the focal point of the consolidation.
- December 2023: Bought Sanghi Industries to strengthen the firm’s presence in western India.
- August 2024: Added Penna Cement to the portfolio, improving penetration of the southern market of India.
- April 2025: Further holding addition in Orient Cement to 46.66 per cent by purchasing the same from CK Birla Group, becoming the promoter with control.
- Ambuja Cements amalgamated with Adani Cement: This was sanctioned by the NCLT on 18th July 2025 with effect from April 1, 2024. This amalgamation brings in limestone reserves and fresh assets into Ambuja.
- Subject to Sanghi and Penna merger with Ambuja: Board approvals in December 2024 with the aim to finish between September to December 2025.
- Ambuja-ACC future integration: The latter is being contemplated as the final step towards consolidation.
- Orient Cement: It would serve as a principal manufacturing facility following the merger.
Scale, capacity expansion and market position
In financial year-2025, Adani Cement, including Ambuja, surpassed 100 MTPA. This makes it one of the world’s top ten cement companies. Along with ACC’s operations, it is now firmly placed as India’s second-largest cement company. In FY25, the Adani group’s sales volume per annum clocked 65 million metric tonnes. Adani Group claims that it now supplies close to 30 per cent of the cement consumed in India’s homes and infrastructure as of June 2025.
The organisation is pursuing aggressive brownfield expansion:
- By FY 2026: Reach 118 MTPA
- By FY 2028: Target 140 MTPA
These goals will be driven by commissioning new clinker and grinding units at key sites, with civil and mechanical works underway.
As of 2024, Adani Cement had its market share pegged at around 14 to 15 per cent, with an ambition to scale this up to 20 per cent by FY?2028, emerging as a potent competitor to UltraTech’s 192?MTPA capacity (186 domestic and overseas).
Strategic advantages and competitive benefits
The consolidation simplifies decision-making by reducing legal entities, centralising oversight, and removing redundant functions. This drives compliance efficiency and transparent reporting. Using procurement power for raw materials and energy lowers costs per ton. Integrated logistics with Adani Ports and freight infrastructure has resulted in an estimated 6 per cent savings in logistics. The group aims for additional savings of INR 500 to 550 per tonne by FY 2028 by integrating green energy, using alternative fuel resources, and improving sourcing methods.
Market coverage and brand consistency
Brand integration under one strategy will provide uniform product quality and easier distribution networks. Integration with Orient Cement’s dealer base, 60 per cent of which already distributes Ambuja/ACC products, enhances outreach and responsiveness.
By having captive limestone reserves at Lakhpat (approximately 275 million tonnes) and proposed new manufacturing facilities in Raigad, Maharashtra, Adani Cement derives cost advantage, raw material security, and long-term operational robustness.
Strategic implications and risks
Consolidation at Adani Cement makes it not just a capacity leader but also an operationally agile competitor with the ability to reap digital and sustainability benefits. Its vertically integrated platform enables cost leadership, market responsiveness, and scalability.
Challenges potentially include:
- Integration challenges across systems, corporate cultures, and plant operations
- Regulatory sanctions for pending mergers and new capacity additions
- Environmental clearances in environmentally sensitive areas and debt management with input price volatility
When materialised, this revolution would create a formidable Adani–UltraTech duopoly, redefining Indian cement on the basis of scale, innovation, and sustainability. India’s leading four cement players such as Adani (ACC and Ambuja), Dalmia Cement, Shree Cement, and UltraTech are expected to dominate the cement market.
Conclusion
Adani’s aggressive consolidation under the ‘One Business, One Company’ strategy signals a decisive shift in the Indian cement industry, positioning the group as a formidable challenger to UltraTech and setting the stage for a potential duopoly that could dominate the sector for years to come. By unifying operations, leveraging economies of scale, and securing vertical integration—from raw material reserves to distribution networks—Adani Cement is building both capacity and resilience, with clear advantages in cost efficiency, market reach, and sustainability. While integration complexities, regulatory hurdles, and environmental approvals remain key challenges, the scale and strategic alignment of this consolidation promise to redefine competition, pricing dynamics, and operational benchmarks in one of the world’s fastest-growing cement markets.
About the author:
Milind Khangan is the Marketing Head at Vertex Market Research and comes with over five years of experience in market research, lead generation and team management.
Concrete
Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series
Published
1 month agoon
August 16, 2025By
admin
PowerBuild’s flagship Series M, C, F, and K geared motors deliver robust, efficient, and versatile power transmission solutions for industries worldwide.
Products – M, C, F, K: At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. PowerBuild answers this need with its flagship geared motor series: M, C, F, and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.
Series M – Helical Inline Geared Motors: Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.
Series C – Right Angled Heli-Worm Geared Motors: Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.
Series F – Parallel Shaft Mounted Geared Motors: Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes, and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.
Series K – Right Angle Helical Bevel Geared Motors: For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining, and material handling. Its flexibility in mounting and broad motor options offer engineers’ freedom in design and reliability in execution.
Together, these four series reflect PowerBuild’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design, and field-tested reliability. Whether the requirement is speed control, torque multiplication, or space efficiency, Radicon’s Series M, C, F, and K stand as trusted powerhouses for global industries.

Klüber Lubrication India’s Klübersynth GEM 4-320 N upgrades synthetic gear oil for energy efficiency.
Klüber Lubrication India has introduced a strategic upgrade for the tyre manufacturing industry by retrofitting its high-performance synthetic gear oil, Klübersynth GEM 4-320 N, into Barrel Cold Feed Extruder gearboxes. This smart substitution, requiring no hardware changes, delivered energy savings of 4-6 per cent, as validated by an internationally recognised energy audit firm under IPMVP – Option B protocols, aligned with
ISO 50015 standards.
Beyond energy efficiency, the retrofit significantly improved operational parameters:
- Lower thermal stress on equipment
- Extended lubricant drain intervals
- Reduction in CO2 emissions and operational costs
These benefits position Klübersynth GEM 4-320 N as a powerful enabler of sustainability goals in line with India’s Business Responsibility and Sustainability Reporting (BRSR) guidelines and global Net Zero commitments.
Verified sustainability, zero compromise
This retrofit case illustrates that meaningful environmental impact doesn’t always require capital-intensive overhauls. Klübersynth GEM 4-320 N demonstrated high performance in demanding operating environments, offering:
- Enhanced component protection
- Extended oil life under high loads
- Stable performance across fluctuating temperatures
By enabling quick wins in efficiency and sustainability without disrupting operations, Klüber reinforces its role as a trusted partner in India’s evolving industrial landscape.
Klüber wins EcoVadis Gold again
Further affirming its global leadership in responsible business practices, Klüber Lubrication has been awarded the EcoVadis Gold certification for the fourth consecutive year in 2025. This recognition places it in the top three per cent
of over 150,000 companies worldwide evaluated for environmental, ethical and sustainable procurement practices.
Klüber’s ongoing investments in R&D and product innovation reflect its commitment to providing data-backed, application-specific lubrication solutions that exceed industry expectations and support long-term sustainability goals.
A trusted industrial ally
Backed by 90+ years of tribology expertise and a global support network, Klüber Lubrication is helping customers transition toward a greener tomorrow. With Klübersynth GEM 4-320 N, tyre manufacturers can take measurable, low-risk steps to boost energy efficiency and regulatory alignment—proving that even the smallest change can spark a significant transformation.

Adani’s Strategic Emergence in India’s Cement Landscape

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Driving Measurable Gains

Reshaping the Competitive Landscape

CCU testbeds in Tamil Nadu

Adani’s Strategic Emergence in India’s Cement Landscape

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Driving Measurable Gains

Reshaping the Competitive Landscape
