Connect with us

Concrete

Making Cement with Surrogates

Published

on

Shares

The cement sector, specifically the one in India, shoulders the responsibility of paving the way for the use of alternative fuels and raw materials (AFR) as it continues to take sturdy strides towards decarbonisation. ICR explores the various facets and technological innovations involved in the use of AFR.

India is the world’s second-largest cement manufacturer. It makes up more than 8 per cent of the installed capacity worldwide. The cement industry is anticipated to gain the most from India’s potential for expansion in the infrastructure and building sectors. Furthermore, cement consumption in India has been steadily increasing as a result of the increased need for rural housing. One of the key factors driving demand for cement is the industrial sector’s rapid expansion. As a result, there is a great chance that the long-term need for the cement sector will rise. The creation of 98 smart cities is only one of the current efforts that are anticipated to have a big impact on the industry.
According to the IMARC Group, the India cement market size reached 3,644.5 MT in 2022. The market is expected to reach 4,832.6 MT by 2028, exhibiting a growth rate (CAGR) of 4.94 per cent during 2023-2028.
The India cement market is primarily driven by the significant rise in construction activities due to the rapid population expansion and a surge in the need for residential spaces. The development of mega infrastructure projects in the country, such as airports and roads, is also bolstering the growth of the market. Furthermore, with the growing environmental concerns, there has been a rise in the demand for green buildings. This has led to an increase in the sales of sustainable and green cement as it minimises the CO2 emissions generated during the production process. Moreover, rapid urbanisation and industrialisation, along with the rising purchasing power of consumers, are some of the other factors catalysing the market growth across the country.
The rising demand for cement impacts the use of raw materials and fuels in its production process and can have consequences for natural resources.
As the production of cement requires significant amounts of raw materials, primarily limestone and clay and its demand is increasing with the times, there is greater pressure on the extraction of these materials from quarries. This can lead to habitat destruction, deforestation, and disruption of ecosystems. Overexploitation of natural
resources can also deplete these non-renewable materials, potentially leading to long-term environmental impacts.
Similarly, the cement manufacturing process is energy-intensive, requiring high temperatures for the kiln operation. Traditionally, fossil fuels such as coal, oil, and natural gas have been used as the primary sources of energy in cement kilns. The rising demand for cement increases the consumption of these fossil fuels, leading to higher greenhouse gas emissions and contributing to climate change.
The extraction of raw materials and the burning of fossil fuels in cement production have associated environmental impacts which include air pollution, release of greenhouse gases (such as carbon dioxide and nitrogen oxides), and potential water contamination due to mining activities. The cumulative effect of these impacts can contribute to climate change, air pollution and ecosystem degradation.

THE PROCESS OF CEMENT MAKING
All over the world, cement is one of the most important building materials. The process starts with extracting raw materials, crushing and transporting them to the manufacturing facility. The most important raw materials for making cement are limestone, clay and marl. These are extracted from quarries by blasting or by ripping using heavy machinery. Wheel loaders and dumper trucks transport the raw materials to the crushing installations. There the rock is broken down to roughly the size used in road metaling. It is then blended and homogenised, dried, and grinded.
The prepared raw material is then burned at approx. 1,450°C in a kiln. In this process, a chemical conversion takes place where carbon dioxide is emitted, and the product is the clinker. Once the burnt clinker is cooled down, it is stored in clinker silos. From there the clinker is conveyed to ball mills or roller presses, in which it is ground down to very fine cement, with the addition of gypsum and anhydrite, as well as other additives, depending on the use to which the cement is to be put. The finished cement is stored in separate silos, depending on type and strength class.
The fuel used to heat the kiln is mainly coal which is a naturally occurring resource that is getting extinct by the day and also emits carbon. Similarly, limestone in the chemical process produces a large amount of carbon dioxide. This leads to the need of alternative raw materials and fuels in the cement manufacturing process.

SUSTAINABILITY IN CEMENT MAKING
To mitigate the impacts like depleting fossil fuels or raw materials for cement and increasing carbon content in the environment, the cement industry has been actively adopting measures to improve resource efficiency, reduce emissions, and promote sustainable practices. This includes the use of alternative fuels (such as biomass and waste-derived fuels) to replace fossil fuels, as well as the utilisation of alternative raw materials (like fly ash and slag)
to reduce the reliance on primary resources. Additionally, the industry is investing in energy-efficient technologies and exploring carbon capture and utilisation/storage (CCUS) methods to minimise environmental consequences.
There are several ways in which the cement manufacturing process can be made more sustainable.
The use of alternative fuels is one of the key strategies to enhance the sustainability of cement manufacturing. By replacing traditional fossil fuels with renewable or waste-derived fuels, such as biomass, agricultural waste, municipal solid waste, and sewage sludge, the carbon footprint of cement production can be significantly reduced. Co-processing waste materials as fuels not only diverts waste from landfills but also provides a sustainable energy source.
Integrating alternative raw materials in cement production can help reduce the demand for traditional resources and promote sustainable practices. Industrial byproducts like fly ash, slag, and silica fume can be used as supplementary cementitious materials. These materials not only enhance the performance and durability of cement but also contribute to waste reduction and resource conservation.
Improving energy efficiency in the cement manufacturing process is vital for sustainability. Energy-efficient technologies, such as high-efficiency kilns, preheaters, and waste heat recovery systems, can significantly reduce energy consumption and greenhouse gas emissions. Optimal process control, insulation, and equipment maintenance are also essential for minimising energy waste.
Carbon capture technologies capture carbon dioxide (CO2) emissions from cement plants, which can then be utilised or stored to prevent its release into the atmosphere. Captured CO2 can be used in various applications or stored underground in geological formations. CCUS has the potential to substantially reduce carbon emissions from cement production.
Cement manufacturing is water-intensive, and sustainable water management practices are crucial. Implementing water conservation measures, such as recycling and reusing water, optimising cooling systems and adopting efficient irrigation techniques, can minimise water consumption and reduce the impact on local water sources.
Efficient waste management practices can significantly contribute to the sustainability of cement manufacturing. Implementing waste segregation, recycling, and utilising industrial byproducts as raw materials or fuels promotes a circular economy approach and reduces the environmental impact of waste disposal.
Cement manufacturers can implement measures to conserve biodiversity and minimise the negative impact on ecosystems. This includes responsible
land use practices, reclamation and rehabilitation of quarries, and protection of surrounding habitats to preserve biodiversity and promote sustainable development.

Fly ash reduces the demand for traditional raw materials such as limestone and clay, thereby
conserving natural resources.


Engaging with stakeholders, including local communities, environmental organisations, and regulatory bodies, is crucial for sustainable cement manufacturing. Transparency, regular reporting
on environmental performance, and addressing concerns of stakeholders help build trust and ensure responsible operations.

ALTERNATIVE FUELS
The cement manufacturing industry is actively adopting alternative fuels to reduce reliance on fossil fuels and promote sustainability. Biomass fuels, including agricultural waste, wood chips and energy crops, are commonly used in cement kilns. These renewable fuels offer a carbon-neutral or carbon-negative impact when sourced sustainably. They contribute to waste reduction and provide a renewable energy source for cement production.
Biomass fuels have the advantage of being renewable resources derived from organic matter. By utilising biomass fuels in cement kilns, the industry can reduce its carbon footprint and decrease reliance on non-renewable resources. When sourced sustainably and burned efficiently, biomass fuels have the potential to offset carbon emissions through the absorption of carbon dioxide during biomass growth.
The use of biomass fuels also addresses waste management concerns. Agricultural residues and energy crops that would otherwise go to waste can be repurposed as fuel, diverting them from landfills and contributing to waste reduction efforts. This aligns with the principles of a circular economy, promoting resource efficiency and minimising environmental impact.
Another significant category of alternative fuels in cement manufacturing is waste-derived fuels. These fuels are derived from non-recyclable industrial and municipal waste materials. Co-processing waste-derived fuels in cement kilns provides a responsible waste management solution. It diverts waste from landfills and utilises the energy content effectively, resulting in waste reduction and energy recovery. Substituting traditional fossil fuels with waste-derived fuels allows for energy savings and reduced greenhouse gas emissions.
Shredded tyres are gaining attention as an alternative fuel source in cement kilns. Waste tyre disposal poses environmental challenges, but when shredded tyres are used as fuel, they offer benefits such as waste tyre management and enhanced energy efficiency. Shredded tyres have a high calorific value, making them suitable for energy recovery in cement production. By using tyres as a fuel source, the cement industry addresses waste tyre concerns and reduces reliance on fossil fuels.
“Safety and quality form the basis of AFR usage across the cement plants. Same is the case in our plant, too. First and foremost, we use only the alternative fuels that are authorised by CPCB/SPCB, the basis for the authorisation is the coprocessing trials taken across different cement kilns in India. The purpose of the trials was to ensure that the waste co-processed safely in terms of safety, quality, environmental norms etc. Even for this waste we do have our process trials and we have got a full-fledged AFR lab at our plant, which confirms the detailed analysis of waste used. The analysis is done prior to taking the waste first time and also regular monitoring of the quality of the AFR is done on every consignment basis. Dedicated laboratory and skilled manpower are engaged for testing the quality of AFR fed, and received and the one that is stored,” says Umashankar Choudhary, Plant Unit Head, Muddapur, JK Cement.
“The safety at AFR is the most important factor to be considered while handling AFR. There is a big risk of fire with the small amount of AFR that we handle. Hence, we have got a full-fledged automatic fire detection and suppression system for the AFR storage area, AFR feeding areas and the AFR shredding systems. There is round the clock monitoring of the storage yard through CCTV cameras. Special kinds of PPEs such as canister masks, goggles, nitrile hand gloves and full body suits are given to the workers engaged in AFR handling,” he adds.
While adopting alternative fuels offers sustainability benefits, proper sourcing, handling, and combustion practices are essential to minimise adverse impacts. Adhering to environmental standards and implementing emission control measures ensures air quality and local environmental protection. By effectively leveraging alternative fuels, the cement industry can reduce its environmental footprint, contribute to waste management and enhance overall sustainability.

ALTERNATIVE RAW MATERIALS
In the pursuit of sustainable cement manufacturing, the industry is actively exploring the use of various alternative raw materials to reduce reliance on traditional resources and minimise environmental impact. These alternative raw materials offer unique properties and benefits, making them valuable additions to the cement production process.
Fly ash, a byproduct of coal-fired power plants, is rich in silica, alumina, and other reactive materials.

Shredded tyres have a high calorific value, making them suitable for energy recovery in cement production

It is commonly used as a supplementary cementitious material in the production of blended cement. The utilisation of fly ash has several positive impacts. Firstly, it reduces waste by diverting fly ash from landfills and utilising it effectively. This contributes to improved waste management practices and reduces the environmental burden associated with waste disposal. Secondly, fly ash reduces the demand for traditional raw materials such as limestone and clay, thereby conserving natural resources. Additionally, the use of fly ash in cement production requires lower temperatures, resulting in reduced energy consumption and greenhouse gas emissions. This not only contributes to the sustainability of the
cement industry but also helps mitigate climate change impacts.
Blast furnace slag is a byproduct of the iron and steel industry, obtained during the production of pig iron. It is a glassy granular material that can be ground and used as a supplementary cementitious material. The utilisation of blast furnace slag offers significant advantages. Firstly, it contributes to waste reduction by repurposing a byproduct that would otherwise be disposed of in landfills. This promotes a circular economy approach and minimises the environmental impact associated with waste accumulation. Secondly, the incorporation of blast furnace slag in cement production reduces the need for traditional raw materials, such as limestone and clay, leading to resource conservation. Moreover, blast furnace slag enhances the performance of cement by improving durability, workability, and resistance to chemical attacks. This results in stronger and longer-lasting concrete structures.
Silica fume is a highly reactive byproduct of silicon and ferrosilicon alloy production. When added to cement, it improves strength, durability, and resistance to chemical attacks. The utilisation of silica fumes brings several benefits to cement manufacturing. Firstly, it contributes to waste reduction by repurposing a byproduct that would otherwise be discarded. This aligns with sustainable waste management practices and reduces the environmental impact of waste accumulation. Secondly, silica fume enhances the mechanical properties of cement, including compressive strength and durability, resulting in high-performance concrete. Moreover, by incorporating silica fume into cement production, the demand for traditional raw materials is reduced, promoting resource conservation.
Rice husk ash is an agricultural byproduct obtained from the burning of rice husks. It contains high levels of silica and can be used as a supplementary cementitious material. The utilisation of rice husk ash offers several environmental benefits. Firstly, it provides an eco-friendly solution for the disposal of agricultural waste, reducing the volume of waste sent to landfills and mitigating associated environmental issues. Secondly, the incorporation of rice husk ash in cement production reduces the need for
primary raw materials, such as limestone and clay, conserving natural resources. Additionally, rice husk ash improves the strength, durability, and resistance to chemical attacks of cement, leading to longer-lasting concrete structures.
By incorporating these alternative raw materials into cement manufacturing, the industry not only reduces its environmental impact but also promotes waste reduction, resource conservation, and the production of high-performance sustainable concrete. The use of these materials aligns with the principles of a circular economy and contributes to the overall sustainability of the cement industry.

PATH TO DECARBONISATION
Achieving decarbonisation goals in the cement industry requires a comprehensive and multi-faceted approach that combines energy efficiency improvements, alternative fuels and raw materials, carbon capture technologies, renewable energy integration, process optimisation, collaboration, and supportive policies. By implementing these strategies collectively, the cement industry can significantly reduce its carbon emissions and contribute to global efforts to combat climate change.

Cement market is expected to reach 4,832.6 MT by 2028, exhibiting a growth rate (CAGR) of 4.94 per cent.

Energy efficiency improvements: Enhancing energy efficiency in cement production is crucial for reducing carbon emissions. The industry can invest in energy-efficient technologies, such as advanced kiln designs, waste heat recovery systems, and efficient grinding processes. Optimising operational practices and implementing energy management systems can also contribute to significant energy savings.
Carbon capture, utilisation, and storage (CCUS): Implementing carbon capture technologies in cement plants allows for the capture and storage of carbon dioxide emissions. CCUS involves capturing CO2 during cement production and either utilising it in other industries or storing it underground. This technology has the potential to significantly reduce the carbon footprint of cement manufacturing.
Guilherme Mendonca, Head Energy Business, Siemens Limited, says, “Waste Heat Recovery System is a key area for cement producers to improve plant efficiency and reduce their carbon footprint by utilising the waste heat from the cement manufacturing process. Siemens Energy’ waste heat recovery system is highly efficient with Heat ReCycle Power Plants offsetting the emissions when compared to other technology that is typically used to generate equivalent power, like diesel generators and reciprocating engines or small coal fired power plants. This results in overall reduced emissions and reduction in dependability on fossil fuels.”
Renewable energy integration: Increasing the use of renewable energy sources in cement production can greatly contribute to decarbonisation. Investing in on-site renewable energy systems such as solar, wind, or biomass power can help reduce the reliance on fossil fuel-based grid electricity and lower emissions
KC Jhanwar, Managing Director, UltraTech Cement Limited, says, “As a founding member of the GCCA, we are committed to the sectoral aspiration of delivering Net Zero concrete by 2050. Towards this end, we are continuously striving to innovate at every stage of the whole life of concrete. Coolbrook’s RDH technology represents an exciting technological pathway that we believe has the potential to exponentially accelerate our progress towards full decarbonisation. Every megawatt of clean energy we add to our mix makes a big difference.”
Alternative fuels and raw materials:
Shifting towards alternative fuels and raw materials is vital for decarbonisation. By substituting fossil fuels with renewable and low-carbon alternatives like biomass, waste-derived fuels, and shredded tyres, the industry can reduce its reliance on fossil fuels and decrease carbon emissions. Similarly, incorporating alternative raw materials like fly ash, blast furnace slag and silica fume can lower the carbon intensity of cement production.
Circular economy principles: Embracing circular economy principles can reduce waste generation and promote resource efficiency. Recycling and reusing concrete waste, implementing alternative cementitious materials, and promoting sustainable sourcing of raw materials contribute to decarbonisation and sustainability goals.
Collaboration and knowledge sharing: Collaborating with industry partners, research institutions, and policymakers can accelerate decarbonisation efforts. Sharing best
practices, research findings, and technological advancements can foster innovation and drive the development of sustainable solutions for the entire cement industry.

CONCLUSION
The use of alternative fuels and raw materials in the cement industry plays a significant role in promoting sustainability and reducing environmental impact. By embracing renewable and low-carbon alternatives to traditional fossil fuels and incorporating alternative raw materials, such as fly ash, blast furnace slag, silica fume, and rice husk ash, the industry can achieve multiple benefits. These alternatives not only contribute to waste reduction and resource conservation but also help in lowering carbon emissions and improving the performance of cement. The adoption of alternative fuels and raw materials demonstrates the industry’s commitment to sustainable practices and its contribution to a greener future. By prioritising the use of these alternatives, the cement industry can play a crucial role in mitigating climate change and meeting the global demand for cement in an environmentally responsible manner.

Concrete

Cement Industry Backs Co-Processing to Tackle Global Waste

Industry bodies recently urged policy support for cement co-processing as waste solution

Published

on

By

Shares



Leading industry bodies, including the Global Cement and Concrete Association (GCCA), European Composites Industry Association, International Solid Waste Association – Africa, Mission Possible Partnership and the Global Waste-to-Energy Research and Technology Council, have issued a joint statement highlighting the cement industry’s potential role in addressing the growing global challenge of non-recyclable and non-reusable waste. The organisations have called for stronger policy support to unlock the full potential of cement industry co-processing as a safe, effective and sustainable waste management solution.
Co-processing enables both energy recovery and material recycling by using suitable waste to replace fossil fuels in cement kilns, while simultaneously recycling residual ash into the cement itself. This integrated approach delivers a zero-waste solution, reduces landfill dependence and complements conventional recycling by addressing waste streams that cannot be recycled or are contaminated.
Already recognised across regions including Europe, India, Latin America and North America, co-processing operates under strict regulatory and technical frameworks to ensure high standards of safety, emissions control and transparency.
Commenting on the initiative, Thomas Guillot, Chief Executive of the GCCA, said co-processing offers a circular, community-friendly waste solution but requires effective regulatory frameworks and supportive public policy to scale further. He noted that while some cement kilns already substitute over 90 per cent of their fuel with waste, many regions still lack established practices.
The joint statement urges governments and institutions to formally recognise co-processing within waste policy frameworks, support waste collection and pre-treatment, streamline permitting, count recycled material towards national recycling targets, and provide fiscal incentives that reflect environmental benefits. It also calls for stronger public–private partnerships and international knowledge sharing.
With global waste generation estimated at over 11 billion tonnes annually and uncontrolled municipal waste projected to rise sharply by 2050, the signatories believe co-processing represents a practical and scalable response. With appropriate policy backing, it can help divert waste from landfills, reduce fossil fuel use in cement manufacturing and transform waste into a valuable societal resource.    

Continue Reading

Concrete

Industry Bodies Call for Wider Use of Cement Co-Processing

Joint statement seeks policy support for sustainable waste management

Published

on

By

Shares



Leading industry organisations have called for stronger policy support to accelerate the adoption of cement industry co-processing as a sustainable solution for managing non-recyclable and non-reusable waste. In a joint statement, bodies including the Global Cement and Concrete Association, European Composites Industry Association, International Solid Waste Association – Africa, Mission Possible Partnership and the Global Waste-to-Energy Research and Technology Council highlighted the role co-processing can play in addressing the growing global waste challenge.
Co-processing enables the use of waste as an alternative to fossil fuels in cement kilns, while residual ash is incorporated into cementitious materials, resulting in a zero-waste process. The approach supports both energy recovery and material recycling, complements conventional recycling systems and reduces reliance on landfill infrastructure. It is primarily applied to waste streams that are contaminated or unsuitable for recycling.
The organisations noted that co-processing is already recognised in regions such as Europe, India, Latin America and North America, operating under regulated frameworks to ensure safety, emissions control and transparency. However, adoption remains uneven globally, with some plants achieving over 90 per cent fuel substitution while others lack enabling policies.
The statement urged governments and institutions to formally recognise co-processing in waste management frameworks, streamline environmental permitting, incentivise waste collection and pre-treatment, account for recycled material content in national targets, and support public-private partnerships. The call comes amid rising global waste volumes, which are estimated at over 11 billion tonnes annually, with unmanaged waste contributing to greenhouse gas emissions, pollution and health risks.

Continue Reading

Concrete

Why Cement Needs CCUS

Published

on

By

Shares



Cement’s deep decarbonisation cannot be achieved through efficiency and fuel switching alone, making CCUS essential to address unavoidable process emissions from calcination. ICR explores if with the right mix of policy support, shared infrastructure, and phased scale-up from pilots to clusters, CCUS can enable India’s cement industry to align growth with its net-zero ambitions.

Cement underpins modern development—from housing and transport to renewable energy infrastructure—but it is also one of the world’s most carbon-intensive materials, with global production of around 4 billion tonnes per year accounting for 7 to 8 per cent of global CO2 emissions, according to the GCCA. What makes cement uniquely hard to abate is that 60 to 65 per cent of its emissions arise from limestone calcination, a chemical process that releases CO2 irrespective of the energy source used; the IPCC Sixth Assessment Report (AR6) therefore classifies cement as a hard-to-abate sector, noting that even fully renewable-powered kilns would continue to emit significant process emissions. While the industry has achieved substantial reductions over the past two decades through energy efficiency, alternative fuels and clinker substitution using fly ash, slag, and calcined clays, studies including the IEA Net Zero Roadmap and GCCA decarbonisation pathways show these levers can deliver only 50 to 60 per cent emissions reduction before reaching technical and material limits, leaving Carbon Capture, Utilisation and Storage (CCUS) as the only scalable and durable option to address remaining calcination emissions—an intervention the IPCC estimates will deliver nearly two-thirds of cumulative cement-sector emission reductions globally by mid-century, making CCUS a central pillar of any credible net-zero cement pathway.

Process emissions vs energy emissions
Cement’s carbon footprint is distinct from many other industries because it stems from two sources: energy emissions and process emissions. Energy emissions arise from burning fuels to heat kilns to around 1,450°C and account for roughly 35 to 40 per cent of total cement CO2 emissions, according to the International Energy Agency (IEA). These can be progressively reduced through efficiency improvements, alternative fuels such as biomass and RDF, and electrification supported by renewable power. Over the past two decades, such measures have delivered measurable gains, with global average thermal energy intensity in cement production falling by nearly 20 per cent since 2000, as reported by the IEA and GCCA.
The larger and more intractable challenge lies in process emissions, which make up approximately 60 per cent to 65 per cent of cement’s total CO2 output. These emissions are released during calcination, when limestone (CaCO3) is converted into lime (CaO), inherently emitting CO2 regardless of fuel choice or energy efficiency—a reality underscored by the IPCC Sixth Assessment Report (AR6). Even aggressive clinker substitution using fly ash, slag, or calcined clays is constrained by material availability and performance requirements, typically delivering 20 to 40 per cent emissions reduction at best, as outlined in the GCCA–TERI India Cement Roadmap and IEA Net Zero Scenario. This structural split explains why cement is classified as a hard-to-abate sector and why incremental improvements alone are insufficient; as energy emissions decline, process emissions will dominate, making Carbon Capture, Utilisation and Storage (CCUS) a critical intervention to intercept residual CO2 and keep the sector’s net-zero ambitions within reach.

Where CCUS stands today
Globally, CCUS in cement is moving from concept to early industrial reality, led by Europe and North America, with the IEA noting that cement accounts for nearly 40 per cent of planned CCUS projects in heavy industry, reflecting limited alternatives for deep decarbonisation; a flagship example is Heidelberg Materials’ Brevik CCS project in Norway, commissioned in 2025, designed to capture about 400,000 tonnes of CO2 annually—nearly half the plant’s emissions—with permanent offshore storage via the Northern Lights infrastructure (Reuters, Heidelberg Materials), alongside progress at projects in the UK, Belgium, and the US such as Padeswood, Lixhe (LEILAC), and Ste. Genevieve, all enabled by strong policy support, public funding, and shared transport-and-storage infrastructure.
These experiences show that CCUS scales fastest when policy support, infrastructure availability, and risk-sharing mechanisms align, with Europe bridging the viability gap through EU ETS allowances, Innovation Fund grants, and CO2 hubs despite capture costs remaining high at US$ 80-150 per tonne of CO2 (IEA, GCCA); India, by contrast, is at an early readiness stage but gaining momentum through five cement-sector CCU testbeds launched by the Department of Science and Technology (DST) under academia–industry public–private partnerships involving IITs and producers such as JSW Cement, Dalmia Cement, and JK Cement, targeting 1-2 tonnes of CO2 per day to validate performance under Indian conditions (ETInfra, DST), with the GCCA–TERI India Roadmap identifying the current phase as a foundation-building decade essential for achieving net-zero by 2070.
Amit Banka, Founder and CEO, WeNaturalists, says “Carbon literacy means more than understanding that CO2 harms the climate. It means cement professionals grasping why their specific plant’s emissions profile matters, how different CCUS technologies trade off between energy consumption and capture rates, where utilisation opportunities align with their operational reality, and what governance frameworks ensure verified, permanent carbon sequestration. Cement manufacturing contributes approximately 8 per cent of global carbon emissions. Addressing this requires professionals who understand CCUS deeply enough to make capital decisions, troubleshoot implementation challenges, and convince boards to invest substantial capital.”

Technology pathways for cement
Cement CCUS encompasses a range of technologies, from conventional post-combustion solvent-based systems to process-integrated solutions that directly target calcination, each with different energy requirements, retrofit complexity, and cost profiles. The most mature option remains amine-based post-combustion capture, already deployed at industrial scale and favoured for early cement projects because it can be retrofitted to existing flue-gas streams; however, capture costs typically range from US$ 60-120 per tonne of CO2, depending on CO2 concentration, plant layout, and energy integration.
Lovish Ahuja, Chief Sustainability Officer, Dalmia Cement (Bharat), says, “CCUS in Indian cement can be viewed through two complementary lenses. If technological innovation, enabling policies, and societal acceptance fail to translate ambition into action, CCUS risks becoming a significant and unavoidable compliance cost for hard-to-abate sectors such as cement, steel, and aluminium. However, if global commitments under the Paris Agreement and national targets—most notably India’s Net Zero 2070 pledge—are implemented at scale through sustained policy and industry action, CCUS shifts from a future liability to a strategic opportunity. In that scenario, it becomes a platform for technological leadership, long-term competitiveness, and systemic decarbonisation rather than merely a regulatory burden.”
“Accelerating CCUS adoption cannot hinge on a single policy lever; it demands a coordinated ecosystem approach. This includes mission-mode governance, alignment across ministries, and a mix of enabling instruments such as viability gap funding, concessional and ESG-linked finance, tax incentives, and support for R&D, infrastructure, and access to geological storage. Importantly, while cement is largely a regional commodity with limited exportability due to its low value-to-weight ratio, CCUS innovation itself can become a globally competitive export. By developing, piloting, and scaling cost-effective CCUS solutions domestically, India can not only decarbonise its own cement industry but also position itself as a supplier of affordable CCUS technologies and services to cement markets worldwide,” he adds.
Process-centric approaches seek to reduce the energy penalty associated with solvent regeneration by altering where and how CO2 is separated. Technologies such as LEILAC/Calix, which uses indirect calcination to produce a high-purity CO2 stream, are scaling toward a ~100,000 tCO2 per year demonstrator (LEILAC-2) following successful pilots, while calcium looping leverages limestone chemistry to achieve theoretical capture efficiencies above 90 per cent, albeit still at pilot and demonstration stages requiring careful integration. Other emerging routes—including oxy-fuel combustion, membrane separation, solid sorbents, and cryogenic or hybrid systems—offer varying trade-offs between purity, energy use, and retrofit complexity; taken together, recent studies suggest that no single technology fits all plants, making a multi-technology, site-specific approach the most realistic pathway for scaling CCUS across the cement sector.
Yash Agarwal, Co-Founder, Carbonetics Carbon Capture, says, “We are fully focused on CCUS, and for us, a running plant is a profitable plant. What we have done is created digital twins that allow operators to simulate and resolve specific problems in record time. In a conventional setup, when an issue arises, plants often have to shut down operations and bring in expert consultants. What we offer instead is on-the-fly consulting. As soon as a problem is detected, the system automatically provides a set of potential solutions that can be tested on a running plant. This approach ensures that plant shutdowns are avoided and production is not impacted.”

The economics of CCUS
Carbon Capture, Utilisation and Storage (CCUS) remains one of the toughest economic hurdles in cement decarbonisation, with the IEA estimating capture costs of US$ 80-150 per tonne of CO2, and full-system costs raising cement production by US$ 30-60 per tonne, potentially increasing prices by 20 to 40 per cent without policy support—an untenable burden for a low-margin, price-sensitive industry like India’s.
Global experience shows CCUS advances beyond pilots only when the viability gap is bridged through strong policy mechanisms such as EU ETS allowances, Innovation Fund grants, and carbon Contracts for Difference (CfDs), yet even in Europe few projects have reached final investment decision (GCCA); India’s lack of a dedicated CCUS financing framework leaves projects reliant on R&D grants and balance sheets, reinforcing the IEA Net Zero Roadmap conclusion that carbon markets, green public procurement, and viability gap funding are essential to spread costs across producers, policymakers, and end users and prevent CCUS from remaining confined to demonstrations well into the 2030s.

Utilisation or storage
Carbon utilisation pathways are often the first entry point for CCUS in cement because they offer near-term revenue potential and lower infrastructure complexity. The International Energy Agency (IEA) estimates that current utilisation routes—such as concrete curing, mineralisation into aggregates, precipitated calcium carbonate (PCC), and limited chemical conversion—can realistically absorb only 5 per cent to 10 per cent of captured CO2 at a typical cement plant. In India, utilisation is particularly attractive for early pilots as it avoids the immediate need for pipelines, injection wells, and long-term liability frameworks. Accordingly, Department of Science and Technology (DST)–supported cement CCU testbeds are already demonstrating mineralisation and CO2-cured concrete applications at 1–2 tonnes of CO2 per day, validating performance, durability, and operability under Indian conditions.
However, utilisation faces hard limits of scale and permanence. India’s cement sector emits over 200 million tonnes of CO2 annually (GCCA), far exceeding the absorptive capacity of domestic utilisation markets, while many pathways—especially fuels and chemicals—are energy-intensive and dependent on costly renewable power and green hydrogen. The IPCC Sixth Assessment Report (AR6) cautions that most CCU routes do not guarantee permanent storage unless CO2 is mineralised or locked into long-lived materials, making geological storage indispensable for deep decarbonisation. India has credible storage potential in deep saline aquifers, depleted oil and gas fields, and basalt formations such as the Deccan Traps (NITI Aayog, IEA), and hub-based models—where multiple plants share transport and storage infrastructure—can reduce costs and improve bankability, as seen in Norway’s Northern Lights project. The pragmatic pathway for India is therefore a dual-track approach: utilise CO2 where it is economical and store it where permanence and scale are unavoidable, enabling early learning while building the backbone for net-zero cement.

Policy, infrastructure and clusters
Scaling CCUS in the cement sector hinges on policy certainty, shared infrastructure, and coordinated cluster development, rather than isolated plant-level action. The IEA notes that over 70 per cent of advanced industrial CCUS projects globally rely on strong government intervention—through carbon pricing, capital grants, tax credits, and long-term offtake guarantees—with Europe’s EU ETS, Innovation Fund, and carbon Contracts for Difference (CfDs) proving decisive in advancing projects like Brevik CCS. In contrast, India lacks a dedicated CCUS policy framework, rendering capture costs of USD 80–150 per tonne of CO2 economically prohibitive without state support (IEA, GCCA), a gap the GCCA–TERI India Cement Roadmap highlights can be bridged through carbon markets, viability gap funding, and green public procurement.
Milan R Trivedi, Vice President, Shree Digvijay Cement, says, “CCUS represents both an unavoidable near-term compliance cost and a long-term strategic opportunity for Indian cement producers. While current capture costs of US$ 100-150 per tonne of CO2 strain margins and necessitate upfront retrofit investments driven by emerging mandates and NDCs, effective policy support—particularly a robust, long-term carbon pricing mechanism with tradable credits under frameworks like India’s Carbon Credit Trading Scheme (CCTS)—can de-risk capital deployment and convert CCUS into a competitive advantage. With such enablers in place, CCUS can unlock 10 per cent to 20 per cent green price premiums, strengthen ESG positioning, and allow Indian cement to compete in global low-carbon markets under regimes such as the EU CBAM, North America’s buy-clean policies, and Middle Eastern green procurement, transforming compliance into export-led leadership.”
Equally critical is cluster-based CO2 transport and storage infrastructure, which can reduce unit costs by 30 to 50 per cent compared to standalone projects (IEA, Clean Energy Ministerial); recognising this, the DST has launched five CCU testbeds under academia–industry public–private partnerships, while NITI Aayog works toward a national CCUS mission focused on hubs and regional planning. Global precedents—from Norway’s Northern Lights to the UK’s HyNet and East Coast clusters—demonstrate that CCUS scales fastest when governments plan infrastructure at a regional level, making cluster-led development, backed by early public investment, the decisive enabler for India to move CCUS from isolated pilots to a scalable industrial solution.
Paul Baruya, Director of Strategy and Sustainability, FutureCoal, says, “Cement is a foundational material with a fundamental climate challenge: process emissions that cannot be eliminated through clean energy alone. The IPCC is clear that in the absence of a near-term replacement of Portland cement chemistry, CCS is essential to address the majority of clinker-related emissions. With global cement production at around 4 gigatonnes (Gt) and still growing, cement decarbonisation is not a niche undertaking, it is a large-scale industrial transition.”

From pilots to practice
Moving CCUS in cement from pilots to practice requires a sequenced roadmap aligning technology maturity, infrastructure development, and policy support: the IEA estimates that achieving net zero will require CCUS to scale from less than 1 Mt of CO2 captured today to over 1.2 Gt annually by 2050, while the GCCA Net Zero Roadmap projects CCUS contributing 30 per cent to 40 per cent of total cement-sector emissions reductions by mid-century, alongside efficiency, alternative fuels, and clinker substitution.
MM Rathi, Joint President – Power Plants, Shree Cement, says, “The Indian cement sector is currently at a pilot to early demonstration stage of CCUS readiness. A few companies have initiated small-scale pilots focused on capturing CO2 from kiln flue gases and exploring utilisation routes such as mineralisation and concrete curing. CCUS has not yet reached commercial integration due to high capture costs (US$ 80-150 per tonne of CO2), lack of transport and storage infrastructure, limited access to storage sites, and absence of long-term policy incentives. While Europe and North America have begun early commercial deployment, large-scale CCUS adoption in India is more realistically expected post-2035, subject to enabling infrastructure and policy frameworks.”
Early pilots—such as India’s DST-backed CCU testbeds and Europe’s first commercial-scale plants—serve as learning platforms to validate integration, costs, and operational reliability, but large-scale deployment will depend on cluster-based scale-up, as emphasised by the IPCC AR6, which highlights the need for early CO2 transport and storage planning to avoid long-term emissions lock-in. For India, the GCCA–TERI India Roadmap identifies CCUS as indispensable for achieving net-zero by 2070, following a pragmatic pathway: pilot today to build confidence, cluster in the 2030s to reduce costs, and institutionalise CCUS by mid-century so that low-carbon cement becomes the default, not a niche, in the country’s infrastructure growth.

Conclusion
Cement will remain indispensable to India’s development, but its long-term viability hinges on addressing its hardest emissions challenge—process CO2 from calcination—which efficiency gains, alternative fuels, and clinker substitution alone cannot eliminate; global evidence from the IPCC, IEA, and GCCA confirms that Carbon Capture, Utilisation and Storage (CCUS) is the only scalable pathway capable of delivering the depth of reduction required for net zero. With early commercial projects emerging in Europe and structured pilots underway in India, CCUS has moved beyond theory into a decisive decade where learning, localisation, and integration will shape outcomes; however, success will depend less on technology availability and more on collective execution, including coordinated policy frameworks, shared transport and storage infrastructure, robust carbon markets, and carbon-literate capabilities.
For India, a deliberate transition from pilots to practice—anchored in cluster-based deployment, supported by public–private partnerships, and aligned with national development and climate goals—can transform CCUS from a high-cost intervention into a mainstream industrial solution, enabling the cement sector to keep building the nation while sharply reducing its climate footprint.

– Kanika Mathur

Continue Reading

Trending News