Concrete
Optimising Heat Utilisation
Published
4 years agoon
By
admin
With Waste Heat Recovery as a viable alternative for the power needs of cement plants, Triveni Turbines presents case studies to support their findings on the role of thermal renewable fuels in aiding the cement sector inch closer to its goal of a sustainable future.
The cement industry is an energy-intensive industry. On an average, the energy cost is around 40 per cent of the cost of production for cement manufacturing. The heat generated in cement processes is generally lost up to 30 to 40 per cent.
Cement plants in India have Captive Power Plants (CPP), which are fired using fossil fuel (coal). These are in operation for several decades. Nowadays, the CPPs installed in cement plants use heat through Waste Heat Recovery (WHR) to generate power. Typically 20 to 30 per cent of the power requirement for cement plants can be fulfilled using waste heat for power generation.
Globally, WHR based plants installed in the cement industry are based on three processes, namely
- Steam Rankine Cycle System (SRC)
- Organic Rankine Cycle System (ORC)
- Kalina Based System
The function of the WHR is to recover the heat from the hot stream using Heat Recovery Steam Generators (HRSG) or Waste Heat Recovery Boiler (WHRB) to generate superheated steam. It can be used in the process (for co-generation) or to drive a steam turbine (combined cycle).
The WHR based power plants installed in cement processing plants use the heat generated through rotary kiln preheater (PH) and after quenching cooler (AQC) exhaust hot gases for power generation.
In India, the customer prefers SRC for WHR power generation in Cement Plants. Technically, in SRC, the exhaust gases from the rotary kiln pass through PH and go to the PH boiler. Similarly, mid-tapping from AQC gives hot gases to the AQC boiler. One cement kiln line requires 2 PH boilers and 1 AQC boiler. Based on the heat source, these boilers generate low-pressure steam of 12 ata to 18 ata at a temperature of 350 to 450 degree Celsius. and Low Pressure (LP)steam 2 ata to 3 ata pressure and temperature of 175 to 195 degree Celsius.
WHR-based power plants also exist in the sectors like sponge iron, steel and chemicals, which came into existence from the year 2000 onwards in the Indian market. Initially in India, the major cement manufacturers installed cement WHR plants made in China while over the last decade or so, Indian boiler and Turbine OEMs offered products indigenously designed and manufactured catering to the market dynamics, demand requirements and providing sustained long-term aftermarket services.

Cement WHR
Triveni Turbines is associated with cement WHR for many years now and has executed numerous prestigious projects with leading cement manufacturers in India and abroad. The requirement for cement WHR depends on the cement kiln capacity, heat utilisation, and plant efficiency.
Triveni is currently in the process of installing many cement WHR projects and is also working on multiple projects that are either in the enquiry or in the order finalisation stage.
Triveni has developed efficient injection condensing turbines that use medium pressure steam as turbine inlet and low pressure as injection steam. With the addition of 7th generation turbine blades developed by Triveni, power generation output is more for input steam parameters or gas parameters.
Salient features of Triveni’s steam turbines in the cement industry are as follows:
- Integral Lube Oil tank: Triveni offers an Integral Lube Oil tank for Power House Layout and civil cost optimisations of TG House. The benefits include a reduction in the civil cost of the project.
- Mechanical Run Test (MRT): Live steam mechanical run test at Triveni’s manufacturing facility for the steam turbines. The Turbine is tested with live steam from boilers at Bengaluru works with job-mounted turbo supervisory systems, Woodward governor, and gearbox.
- In-house Manufacturing: Turbine components like blades, rotors, and casing are manufactured and assembled at Triveni’s facility.
- Vacuum Tunnel: High-speed balancing of turbine rotor on ‘Schenk’ Vacuum Tunnel
- Gear Box (Triveni Power Transmission) assembly is done along with the Turbine on the same base plate and converts into a single product. A separate foundation of the gearbox is not required.
- Inlet Valve: Triveni supplies a customised inlet governing valve is designed in-house to overcome the varied load fluctuations in the cement industry
- Injection Control Valve: Triveni supplies a specially designed globe control valve to maintain the minimum differential pressure to avoid the energy loss which results in the indirect losses in the final output.
Best practices on steam turbine design solution
Large cement companies are primarily considering WHR power plants for their Greenfield projects. Dependency on the Chinese turbines has now declined in the Indian market as the Indian OEM’s adapted to injection condensing turbines technology with a dominant leadership. Triveni has a firm reference of injection condensing turbines supplied to cement WHR plants across India.
Specific design consideration is vital in the injection and admission zone. The rotor designed by Triveni has the higher stability to offset the excitation due to fluctuating injection steam loads. To meet customer requirements for various mid-pressure and low-pressure steam combinations, an injection condensing turbine was developed by Triveni and is successfully working in the Indian Cement Industry. Design and engineering teams carried out Computational Fluid Dynamic (CFD) analysis and creep-fatigue analysis to address this issue. This design philosophy is a value-addition for Triveni for its robust and efficient cement
WHR solution.
Environmental concerns and the solutions offered
According to industry sources, cement manufacturing accounts for an estimated 4 to 8 per cent of the world’s carbon dioxide (CO2) emission, making it a significant contributor to global warming. Increasing the energy efficiency of cement plants by replacing fossil fuels with thermal renewable fuels (such as waste heat) and capturing and storing the CO2 to contain greenhouse gas (GHG) emissions are some of the solutions common to the cement industry and other industrial sectors.
WHR power potential
There is a vast potential for power generation from waste heat across the world. The installation of cement WHR based power plants in China is over 80 per cent, much ahead of India. Similarly, Europe, the USA, and Latin America plan to implement WHR in their cement plants. It is observed that waste heat recovery-based power plants are emerging as an excellent value addition to the existing captive power plants. Other than reducing energy costs significantly, it can also be a reliable source of power.
Case studies of Triveni
a. Waste Heat Recovery based Power plant in Madhya Pradesh, India
Driven by Triveni 1*22.5 MWe Injection Condensing steam turbines with an inlet steam parameter of 12 Bar and 425 degree Celsius with 0.2 Bar Exhaust

Customer challenge
The steam flow in this project was from multiple sources (i.e., multiple boilers). Steam generation depends on the waste heat generated from hot gas temperature from the preheating process and AQC process. There is a variation in the steam inlet at Medium Pressure (MP) and Low Pressure (LP) side and load variation in load or power output.
Solution
The steam turbine we proposed is an Injection condensing turbine that receives MP steam as an inlet and LP steam as an injection in the middle steam path. The steam collected was from 4 No’s of Preheater (PH) boilers and 2 No’s of After Quenching Cooler (AQC) Boilers from the two cement kilns of 7,000 TPD and 8,000 TPD capacity.
The steam turbine generator (STG) is suitable for an air-cooled condenser with a new generation blade design and reaction stages. Despite various challenges, the commissioning of the Turbine was executed with quick delivery of eight months, which set a benchmark for Triveni in the cement industry.
Benefits
The company does not have a captive power plant installed, and this WHR plant has offered many benefits. The waste gas generated at around
400 degree Celsius is cooled to 130 degree Celsius, thus safeguarding the environment and simultaneously utilising the waste heat to generate almost free power.
b. Waste Heat Recovery based Power plant installed overseas
Driven by Triveni 1*30 MWe Bleed condensing steam turbines with an inlet steam pressure of
65 Bar and 505 degree Celsius with 0.1 Bar
Exhaust pressure
Customer challenge
The customer proposed installing a power plant and expanding the company’s manufacturing capacity and was on the lookout for a steam turbine solution provider. The customer wanted to generate the necessary power by banking on their captive power capacities and to ensure a steady supply for critical processes.
Solution
Triveni offered the best solution to meet the plant efficiency by utilising the waste heat recovered from the existing blast furnace for power generation.
Benefits The company entrusted Triveni’s expertise in manufacturing robust and highly reliable products. It awarded us with the supply contract of a steam turbine that benefits from improving the plant’s energy efficiency, reducing the energy cost, and transmitting surplus electricity to the grid.
To complement the above new product portfolio, Triveni’s refurbishment arm Triveni REFURB steps up to provide an aftermarket solution for the complete range of rotating equipment across the globe. From steam turbines, compressors to the gas turbine range, we have adapted ourselves to ensure that customers find a one stop solution.
Over a period of time, the existing turbines degrade thereby reducing the efficiency of the turbines by consuming more steam. The Triveni REFURB team provides solutions to enhance the efficiency of turbines of ‘Any make, Any age’ by only replacing the critical components of the turbine i.e., rotor, guide blade carriers and bearings, which ensures the efficiency is restored and thereby reducing the carbon footprint.
Triveni REFURB converts the existing turbine into injection mode turbine. The turbines are then re-engineered to allow additional steam to be injected into the turbine and improve the efficiency of the plant.
a. Conversion of Bleed Condensing Turbine to Injection Condensing
A Chinese Turbine 1*25MWe Bleed Condensing Turbine with 84 Bar 515 degree Celsius inlet conditions and 0.176 Bar Exhaust pressure
Customer challenge
A major cement Industry customer wanted to convert their existing Chinese make turbine from a 3 bleed condensing to injection condensing turbine. The pressure at the inlet was reduced to 13 Bar 425 degree Celsius as against 84 bar 515 degree Celsius. The injection parameters are 2.25 Bar 185 degree Celsius.
Solution
Due to the steep drop in inlet pressure the volumetric expansion was almost three times the original condition. We had proposed to modify the Inlet valve of the turbine and the first stage nozzles to accommodate this expansion. Two bleed ports were closed and the injection would be taken from the third bleed port. Complete re-engineering of the turbine was undertaken to adopt the upgraded steam flow path.
Benefits By keeping the existing casing and civil foundation, customers benefited by lower expenditure and improved efficiency. This would enable the customer to get a faster Return on Investment (within 2 years) and enhanced life of the turbine.
Author: Arun Mote, Executive Director, Triveni Turbine Limited
Concrete
Refractory demands in our kiln have changed
Published
3 days agoon
February 20, 2026By
admin
Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, points out why performance, predictability and life-cycle value now matter more than routine replacement in cement kilns.
As Indian cement plants push for higher throughput, increased alternative fuel usage and tighter shutdown cycles, refractory performance in kilns and pyro-processing systems is under growing pressure. In this interview, Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, shares how refractory demands have evolved on the ground and how smarter digital monitoring is improving kiln stability, uptime and clinker quality.
How have refractory demands changed in your kiln and pyro-processing line over the last five years?
Over the last five years, refractory demands in our kiln and pyro line have changed. Earlier, the focus was mostly on standard grades and routine shutdown-based replacement. But now, because of higher production loads, more alternative fuels and raw materials (AFR) usage and greater temperature variation, the expectation from refractory has increased.
In our own case, the current kiln refractory has already completed around 1.5 years, which itself shows how much more we now rely on materials that can handle thermal shock, alkali attack and coating fluctuations. We have moved towards more stable, high-performance linings so that we don’t have to enter the kiln frequently for repairs.
Overall, the shift has been from just ‘installation and run’ to selecting refractories that give longer life, better coating behaviour and more predictable performance under tougher operating conditions.
What are the biggest refractory challenges in the preheater, calciner and cooler zones?
• Preheater: Coating instability, chloride/sulphur cycles and brick erosion.
• Calciner: AFR firing, thermal shock and alkali infiltration.
• Cooler: Severe abrasion, red-river formation and mechanical stress on linings.
Overall, the biggest challenge is maintaining lining stability under highly variable operating conditions.
How do you evaluate and select refractory partners for long-term performance?
In real plant conditions, we don’t select a refractory partner just by looking at price. First, we see their past performance in similar kilns and whether their material has actually survived our operating conditions. We also check how strong their technical support is during shutdowns, because installation quality matters as much as the material itself.
Another key point is how quickly they respond during breakdowns or hot spots. A good partner should be available on short notice. We also look at their failure analysis capability, whether they can explain why a lining failed and suggest improvements.
On top of this, we review the life they delivered in the last few campaigns, their supply reliability and their willingness to offer plant-specific custom solutions instead of generic grades. Only a partner who supports us throughout the life cycle, which includes selection, installation, monitoring and post-failure analysis, fits our long-term requirement.
Can you share a recent example where better refractory selection improved uptime or clinker quality?
Recently, we upgraded to a high-abrasion basic brick at the kiln outlet. Earlier we had frequent chipping and coating loss. With the new lining, thermal stability improved and the coating became much more stable. As a result, our shutdown interval increased and clinker quality remained more consistent. It had a direct impact on our uptime.
How is increased AFR use affecting refractory behaviour?
Increased AFR use is definitely putting more stress on the refractory. The biggest issue we see daily is the rise in chlorine, alkalis and volatiles, which directly attack the lining, especially in the calciner and kiln inlet. AFR firing is also not as stable as conventional fuel, so we face frequent temperature fluctuations, which cause more thermal shock and small cracks in the lining.
Another real problem is coating instability. Some days the coating builds too fast, other days it suddenly drops, and both conditions impact refractory life. We also notice more dust circulation and buildup inside the calciner whenever the AFR mix changes, which again increases erosion.
Because of these practical issues, we have started relying more on alkali-resistant, low-porosity and better thermal shock–resistant materials to handle the additional stress coming from AFR.
What role does digital monitoring or thermal profiling play in your refractory strategy?
Digital tools like kiln shell scanners, IR imaging and thermal profiling help us detect weakening areas much earlier. This reduces unplanned shutdowns, helps identify hotspots accurately and allows us to replace only the critical sections. Overall, our maintenance has shifted from reactive to predictive, improving lining life significantly.
How do you balance cost, durability and installation speed during refractory shutdowns?
We focus on three points:
• Material quality that suits our thermal profile and chemistry.
• Installation speed, in fast turnarounds, we prefer monolithic.
• Life-cycle cost—the cheapest material is not the most economical. We look at durability, future downtime and total cost of ownership.
This balance ensures reliable performance without unnecessary expenditure.
What refractory or pyro-processing innovations could transform Indian cement operations?
Some promising developments include:
• High-performance, low-porosity and nano-bonded refractories
• Precast modular linings to drastically reduce shutdown time
• AI-driven kiln thermal analytics
• Advanced coating management solutions
• More AFR-compatible refractory mixes
These innovations can significantly improve kiln stability, efficiency and maintenance planning across the industry.
Concrete
Digital supply chain visibility is critical
Published
3 days agoon
February 20, 2026By
admin
MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, discusses how data, discipline and scale are turning Industry 4.0 into everyday business reality.
Over the past five years, digitalisation in Indian cement manufacturing has moved decisively beyond experimentation. Today, it is a strategic lever for cost control, operational resilience and sustainability. In this interview, MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, explains how integrated digital foundations, advanced analytics and real-time visibility are helping deliver measurable business outcomes.
How has digitalisation moved from pilot projects to core strategy in Indian cement manufacturing over the past five years?
Digitalisation in Indian cement has evolved from isolated pilot initiatives into a core business strategy because outcomes are now measurable, repeatable and scalable. The key shift has been the move away from standalone solutions toward an integrated digital foundation built on standardised processes, governed data and enterprise platforms that can be deployed consistently across plants and functions.
At Shree Cement, this transition has been very pragmatic. The early phase focused on visibility through dashboards, reporting, and digitisation of critical workflows. Over time, this has progressed into enterprise-level analytics and decision support across manufacturing and the supply chain,
with clear outcomes in cost optimisation, margin protection and revenue improvement through enhanced customer experience.
Equally important, digital is no longer the responsibility of a single function. It is embedded into day-to-day operations across planning, production, maintenance, despatch and customer servicing, supported by enterprise systems, Industrial Internet of Things (IIoT) data platforms, and a structured approach to change management.
Which digital interventions are delivering the highest ROI across mining, production and logistics today?
In a capital- and cost-intensive sector like cement, the highest returns come from digital interventions that directly reduce unit costs or unlock latent capacity without significant capex.
Supply chain and planning (advanced analytics): Tools for demand forecasting, S&OP, network optimisation and scheduling deliver strong returns by lowering logistics costs, improving service levels, and aligning production with demand in a fragmented and regionally diverse market.
Mining (fleet and productivity analytics): Data-led mine planning, fleet analytics, despatch discipline, and idle-time reduction improve fuel efficiency and equipment utilisation, generating meaningful savings in a cost-heavy operation.
Manufacturing (APC and process analytics): Advanced Process Control, mill optimisation, and variability reduction improve thermal and electrical efficiency, stabilise quality and reduce rework and unplanned stoppages.
Customer experience and revenue enablement (digital platforms): Dealer and retailer apps, order visibility and digitally enabled technical services improve ease of doing business and responsiveness. We are also empowering channel partners with transparent, real-time information on schemes, including eligibility, utilisation status and actionable recommendations, which improves channel satisfaction and market execution while supporting revenue growth.
Overall, while Artificial Intelligence (AI) and IIoT are powerful enablers, it is advanced analytics anchored in strong processes that typically delivers the fastest and most reliable ROI.
How is real-time data helping plants shift from reactive maintenance to predictive and prescriptive operations?
Real-time and near real-time data is driving a more proactive and disciplined maintenance culture, beginning with visibility and progressively moving toward prediction and prescription.
At Shree Cement, we have implemented a robust SAP Plant Maintenance framework to standardise maintenance workflows. This is complemented by IIoT-driven condition monitoring, ensuring consistent capture of equipment health indicators such as vibration, temperature, load, operating patterns and alarms.
Real-time visibility enables early detection of abnormal conditions, allowing teams to intervene before failures occur. As data quality improves and failure histories become structured, predictive models can anticipate likely failure modes and recommend timely interventions, improving MTBF and reducing downtime. Over time, these insights will evolve into prescriptive actions, including spares readiness, maintenance scheduling, and operating parameter adjustments, enabling reliability optimisation with minimal disruption.
A critical success factor is adoption. Predictive insights deliver value only when they are embedded into daily workflows, roles and accountability structures. Without this, they remain insights without action.
In a cost-sensitive market like India, how do cement companies balance digital investment with price competitiveness?
In India’s intensely competitive cement market, digital investments must be tightly linked to tangible business outcomes, particularly cost reduction, service improvement, and faster decision-making.
This balance is achieved by prioritising high-impact use cases such as planning efficiency, logistics optimisation, asset reliability, and process stability, all of which typically deliver quick payback. Equally important is building scalable and governed digital foundations that reduce the marginal cost of rolling out new use cases across plants.
Digitally enabled order management, live despatch visibility, and channel partner platforms also improve customer centricity while controlling cost-to-serve, allowing service levels to improve without proportionate increases in headcount or overheads.
In essence, the most effective digital investments do not add cost. They protect margins by reducing variability, improving planning accuracy, and strengthening execution discipline.
How is digitalisation enabling measurable reductions in energy consumption, emissions, and overall carbon footprint?
Digitalisation plays a pivotal role in improving energy efficiency, reducing emissions and lowering overall carbon intensity.
Real-time monitoring and analytics enable near real-time tracking of energy consumption and critical operating parameters, allowing inefficiencies to be identified quickly and corrective actions to be implemented. Centralised data consolidation across plants enables benchmarking, accelerates best-practice adoption, and drives consistent improvements in energy performance.
Improved asset reliability through predictive maintenance reduces unplanned downtime and process instability, directly lowering energy losses. Digital platforms also support more effective planning and control of renewable energy sources and waste heat recovery systems, reducing dependence on fossil fuels.
Most importantly, digitalisation enables sustainability progress to be tracked with greater accuracy and consistency, supporting long-term ESG commitments.
What role does digital supply chain visibility play in managing demand volatility and regional market dynamics in India?
Digital supply chain visibility is critical in India, where demand is highly regional, seasonality is pronounced, and logistics constraints can shift rapidly.
At Shree Cement, planning operates across multiple horizons. Annual planning focuses on capacity, network footprint and medium-term demand. Monthly S&OP aligns demand, production and logistics, while daily scheduling drives execution-level decisions on despatch, sourcing and prioritisation.
As digital maturity increases, this structure is being augmented by central command-and-control capabilities that manage exceptions such as plant constraints, demand spikes, route disruptions and order prioritisation. Planning is also shifting from aggregated averages to granular, cost-to-serve and exception-based decision-making, improving responsiveness, lowering logistics costs and strengthening service reliability.
How prepared is the current workforce for Industry 4.0, and what reskilling strategies are proving most effective?
Workforce preparedness for Industry 4.0 is improving, though the primary challenge lies in scaling capabilities consistently across diverse roles.
The most effective approach is to define capability requirements by role and tailor enablement accordingly. Senior leadership focuses on digital literacy for governance, investment prioritisation, and value tracking. Middle management is enabled to use analytics for execution discipline and adoption. Frontline sales and service teams benefit from
mobile-first tools and KPI-driven workflows, while shop-floor and plant teams focus on data-driven operations, APC usage, maintenance discipline, safety and quality routines.
Personalised, role-based learning paths, supported by on-ground champions and a clear articulation of practical benefits, drive adoption far more effectively than generic training programmes.
Which emerging digital technologies will fundamentally reshape cement manufacturing in the next decade?
AI and GenAI are expected to have the most significant impact, particularly when combined with connected operations and disciplined processes.
Key technologies likely to reshape the sector include GenAI and agentic AI for faster root-cause analysis, knowledge access, and standardisation of best practices; industrial foundation models that learn patterns across large sensor datasets; digital twins that allow simulation of process changes before implementation; and increasingly autonomous control systems that integrate sensors, AI, and APC to maintain stability with minimal manual intervention.
Over time, this will enable more centralised monitoring and management of plant operations, supported by strong processes, training and capability-building.
Concrete
Redefining Efficiency with Digitalisation
Published
3 days agoon
February 20, 2026By
admin
Professor Procyon Mukherjee discusses how as the cement industry accelerates its shift towards digitalisation, data-driven technologies are becoming the mainstay of sustainability and control across the value chain.
The cement industry, long perceived as traditional and resistant to change, is undergoing a profound transformation driven by digital technologies. As global infrastructure demand grows alongside increasing pressure to decarbonise and improve productivity, cement manufacturers are adopting data-centric tools to enhance performance across the value chain. Nowhere is this shift more impactful than in grinding, which is the energy-intensive final stage of cement production, and in the materials that make grinding more efficient: grinding media and grinding aids.
The imperative for digitalisation
Cement production accounts for roughly 7 per cent to 8 per cent of global CO2 emissions, largely due to the energy intensity of clinker production and grinding processes. Digital solutions, such as AI-driven process controls and digital twins, are helping plants improve stability, cut fuel use and reduce emissions while maintaining consistent product quality. In one deployment alongside ABB’s process controls at a Heidelberg plant in Czechia, AI tools cut fuel use by 4 per cent and emissions by 2 per cent, while also improving operational stability.
Digitalisation in cement manufacturing encompasses a suite of technologies, broadly termed as Industrial Internet of Things (IIoT), AI and machine learning, predictive analytics, cloud-based platforms, advanced process control and digital twins, each playing a role in optimising various stages of production from quarrying to despatch.
Grinding: The crucible of efficiency and cost
Of all the stages in cement production, grinding is among the most energy-intensive, historically consuming large amounts of electricity and representing a significant portion of plant operating costs. As a result, optimising grinding operations has become central to digital transformation strategies.
Modern digital systems are transforming grinding mills from mechanical workhorses into intelligent, interconnected assets. Sensors throughout the mill measure parameters such as mill load, vibration, mill speed, particle size distribution, and power consumption. This real-time data, fed into machine learning and advanced process control (APC) systems, can dynamically adjust operating conditions to maintain optimal throughput and energy usage.
For example, advanced grinding systems now predict inefficient conditions, such as impending mill overload, by continuously analysing acoustic and vibration signatures. The system can then proactively adjust clinker feed rates and grinding media distribution to sustain optimal conditions, reducing energy consumption and improving consistency.
Digital twins: Seeing grinding in the virtual world
One of the most transformative digital tools applied in cement grinding is the digital twin, which a real-time virtual replica of physical equipment and processes. By integrating sensor data and
process models, digital twins enable engineers to simulate process variations and run ‘what-if’
scenarios without disrupting actual production. These simulations support decisions on variables such as grinding media charge, mill speed and classifier settings, allowing optimisation of energy use and product fineness.
Digital twins have been used to optimise kilns and grinding circuits in plants worldwide, reducing unplanned downtime and allowing predictive maintenance to extend the life of expensive grinding assets.
Grinding media and grinding aids in a digital era
While digital technologies improve control and prediction, materials science innovations in grinding media and grinding aids have become equally crucial for achieving performance gains.
Grinding media, which comprise the balls or cylinders inside mills, directly influence the efficiency of clinker comminution. Traditionally composed of high-chrome cast iron or forged steel, grinding media account for nearly a quarter of global grinding media consumption by application, with efficiency improvements translating directly to lower energy intensity.
Recent advancements include ceramic and hybrid media that combine hardness and toughness to reduce wear and energy losses. For example, manufacturers such as Sanxin New Materials in China and Tosoh Corporation in Japan have developed sub-nano and zirconia media with exceptional wear resistance. Other innovations include smart media embedded with sensors to monitor wear, temperature, and impact forces in real time, enabling predictive maintenance and optimal media replacement scheduling. These digitally-enabled media solutions can increase grinding efficiency by as much as 15 per cent.
Complementing grinding media are grinding aids, which are chemical additives that improve mill throughput and reduce energy consumption by altering the surface properties of particles, trapping air, and preventing re-agglomeration. Technology leaders like SIKA AG and GCP Applied Technologies have invested in tailored grinding aids compatible with AI-driven dosing platforms that automatically adjust additive concentrations based on real-time mill conditions. Trials in South America reported throughput improvements nearing 19 per cent when integrating such digital assistive dosing with process control systems.
The integration of grinding media data and digital dosing of grinding aids moves the mill closer to a self-optimising system, where AI not only predicts media wear or energy losses but prescribes optimal interventions through automated dosing and operational adjustments.
Global case studies in digital adoption
Several cement companies around the world exemplify digital transformation in practice.
Heidelberg Materials has deployed digital twin technologies across global plants, achieving up to 15 per cent increases in production efficiency and 20 per cent reductions in energy consumption by leveraging real-time analytics and predictive algorithms.
Holcim’s Siggenthal plant in Switzerland piloted AI controllers that autonomously adjusted kiln operations, boosting throughput while reducing specific energy consumption and emissions.
Cemex, through its AI and predictive maintenance initiatives, improved kiln availability and reduced maintenance costs by predicting failures before they occurred. Global efforts also include AI process optimisation initiatives to reduce energy consumption and environmental impact.
Challenges and the road ahead
Despite these advances, digitalisation in cement grinding faces challenges. Legacy equipment may lack sensor readiness, requiring retrofits and edge-cloud connectivity upgrades. Data governance and integration across plants and systems remains a barrier for many mid-tier producers. Yet, digital transformation statistics show momentum: more than half of cement companies have implemented IoT sensors for equipment monitoring, and digital twin adoption is growing rapidly as part of broader Industry 4.0 strategies.
Furthermore, as digital systems mature, they increasingly support sustainability goals: reduced energy use, optimised media consumption and lower greenhouse gas emissions. By embedding intelligence into grinding circuits and material inputs like grinding aids, cement manufacturers can strike a balance between efficiency and environmental stewardship.
Conclusion
Digitalisation is not merely an add-on to cement manufacturing. It is reshaping the competitive and sustainability landscape of an industry often perceived as inertia-bound. With grinding representing a nexus of energy intensity and cost, digital technologies from sensor networks and predictive analytics to digital twins offer new levers of control. When paired with innovations in grinding media and grinding aids, particularly those with embedded digital capabilities, plants can achieve unprecedented gains in efficiency, predictability and performance.
For global cement producers aiming to reduce costs and carbon footprints simultaneously, the future belongs to those who harness digital intelligence not just to monitor operations, but to optimise and evolve them continuously.
About the author:
Professor Procyon Mukherjee, ex-CPO Lafarge-Holcim India, ex-President Hindalco, ex-VP Supply Chain Novelis Europe, has been an industry leader in logistics, procurement, operations and supply chain management. His career spans 38 years starting from Philips, Alcan Inc (Indian Aluminum Company), Hindalco, Novelis and Holcim. He authored the book, ‘The Search for Value in Supply Chains’. He serves now as Visiting Professor in SP Jain Global, SIOM and as the Adjunct Professor at SBUP. He advises leading Global Firms including Consulting firms on SCM and Industrial Leadership and is a subject matter expert in aluminum and cement. An Alumnus of IIM Calcutta and Jadavpur University, he has completed the LH Senior Leadership Programme at IVEY Academy at Western University, Canada.
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Trending News
-
Concrete4 weeks agoAris Secures Rs 630 Million Concrete Supply Order
-
Concrete4 weeks agoNITI Aayog Unveils Decarbonisation Roadmaps
-
Concrete3 weeks agoJK Cement Commissions 3 MTPA Buxar Plant, Crosses 31 MTPA
-
Economy & Market3 weeks agoBudget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook


