Connect with us

Concrete

Design for Solid Alternative Fuels

Published

on

Shares

Kapil Kukreja, Group Manager; Dr D K Panda, Joint Director; and Bharat Bhushan, Project Engineer, National Council for Cement and Building Materials (NCB), Ballabgarh, India, present their findings in an article that delves into the methodology used to tackle the identified issue and discusses the R&D project taken up by NCB that resulted in the creation of an innovative design capable of effectively managing diverse alternative fuels and their combinations.

At COP26, India made a significant commitment by pledging to embrace a low-carbon growth path and to shift half of its energy consumption away from fossil fuels and towards non-fossil alternatives by the close of this decade. Moreover, India has set the ambitious goal of achieving carbon neutrality by the year 2070. To achieve the target of carbon neutrality, alternative fuels (AFs), including biomass, refuse-derived fuel (RDF), used tires, plastic waste and hazardous waste, which have the potential to replace conventional fossil fuels such as coal, pet coke, etc. These AF are seen as promising solutions in line with India’s mission to reach carbon neutrality.
Nonetheless, with the adoption of these AF, challenges were encountered in handling of AF and their mix, encompassing environmental, product quality, logistical issues, health and safety concerns, as well as the intricacies of the processes and operations involved. However, one of the main challenges faced while handling AF used in cement plants is the jamming of the transfer chute.
Chute transfers are vital for material handling but can often become weak links in the chain. These components are used in conveying systems to transfer bulk materials between feeders, screens, and from one conveyor to another or for discharge into burners/pre-calciner. Chute design requires careful attention, as handling AFs with variations in material characteristics or operational requirements can lead to productivity losses and operational disruptions due to jamming or unpredictable chute behaviour.

Problem with chutes
A survey was conducted in the Indian cement industry in the year of 2019-20 to assess the issues related with handling of AFs and their mix. Out of 100 questionnaires distributed, 61 responses were received, providing valuable insights. The survey highlighted that 78.7 per cent of respondents faced transfer chute issues when handling AFs, primarily jamming. The main reasons included using conventional chute designs unsuitable for heterogeneous AFs,
lack of knowledge about material flow and properties, and the unexpected introduction of new materials not considered during chute design. These issues led to significant maintenance efforts and operational disruptions.
One significant cause of chute jamming is the reliance on traditional chute design methods, which have been widely employed in the Indian cement industry for handling uniform materials like limestone, coal, bauxite, and iron ore. These methods fall short when dealing with heterogeneous AFs due to the varying properties of these materials throughout the year, depending on their source, mix content, and other factors. Additionally, a lack of understanding of material flow and physical properties, such as shape, size, angle of repose and angle of inclination, contributes to chute issues.
Another key factor identified in the survey is the unexpected introduction of new materials that were not considered during chute design. Anticipating all potential AF types during design is challenging because cement plants select materials based on factors like cost, suitability for their raw mix, fossil fuel prices, and availability. Therefore, it was challenge to design a transfer chute which can handle various AF and their mix without any jamming issues.

Solution
Based on the survey result, NCB took the problem related to jamming of transfer chute while utilising AFs and their mix in Indian Cement Industry as an R&D project. The project commenced with the site visit of cement plants, discussion with plant personnel and determination of material properties, providing essential foundational data. Utilising this data, key input parameters were carefully selected to run the Discrete Element Modelling (DEM) simulations.
To ensure the DEM model’s accuracy, it underwent calibration through the development of CAD calibration models. These models aligned the DEM model with real-world conditions. Following calibration, the existing transfer chute design was simulated using DEM. Accordingly, 14 simulations of AFs were conducted using the DEM, and the subsequent outcomes were thoroughly examined to pinpoint significant concerns associated with the traditional chute design. This analysis served as the basis for developing an improved transfer
chute model. The enhanced design was subsequently subjected to DEM simulation to assess its
performance. The various designs were evaluated and necessary modifications were made to address any identified issues to improve the performance of the transfer chute.

Fig 1: Simulation Results for Industrial Waste
Additionally, adjustments to the DEM parameters were carried out to fine-tune the model’s accuracy. The ultimate goal of this comprehensive process was to arrive at the final design of a transfer chute suitable for handling AF and their mix without jamming. The final parameters obtained after fine tuning and making adjustment to the chute design in simulation are as follows:
• Chute Valley Angle: 70°
• Chute Width (Minimum): 4.3 to 4.5 times the lump size
• Chute Hood Height at the material entrance: Minimum 0.6 times the Belt Width
• Cross-sectional area of transfer chute: Minimum 10 to 11 times of cross-sectional area of the material stream inside the chute.
• Selected Liners: UHMWPE
Based on the above parameters obtained after simulation, an experimental setup comprising four transfer chutes and belt conveyors was established on NCB’s Ballabgarh premises to conduct experimental study on the different samples of AF collected from different cement plants and sites. Thereafter, 19 AF and their mix were collected from different cement plants across India. The materials were experimented on different mass flow rates of 3, 5, 8, 10 and 15 tph and with moisture content levels spanning from 0.18 to 45 per cent. Remarkably, even after a total of 261 hours of operation on the experimental setup, no instances of jamming were observed in the transfer chute.
Even when faced with a jamming scenario, the innovative flexible arrangement introduced in the transfer chute design (patent filed by NCB) proven to be highly effective at swiftly addressing blockages caused by solid AF. It helps in clearing these blockages in just six minutes, representing a significant improvement compared to the conventional method, which typically necessitates a lengthy 85 to 105 minutes to remove and resume operations. This innovative approach optimises the chute cleaning process, ensuring uninterrupted operations.
Figures 2, 3 and 4 shows the general arrangement of the of the experimental setup and glimpses of experiments:

Conclusion
In the cement industry, conventional transfer chute designs have posed challenges when handling a range of diverse alternative fuels. To address this issue, a new transfer chute design capable of handling various AFs and their mixtures has been developed by the NCB. This innovative design can handle various AFs and their mixes and also significantly reduces chute jamming and cleaning time to 6-8 minutes. The NCB led the development of this versatile transfer chute design, which promises to enhance material handling in cement plants. The project’s outcomes led by NCB are valuable for system design improvements and process optimisation, streamlining cement plant operations.

ABOUT THE AUTHOR:
Dr Kapil Kukreja, Group Manager (CME), NCB
has over 19 years of work experience in the field of System Design, Project Engineering and Management. He has previously worked with organisations like ACC, Holtec Consulting, JK White Cement etc.

Bharat Bhushan, Project Engineer (CME), NCB has a one-year experience as Project Engineer in the field of System Design, Project Engineering & Management.

Dr Dhirendra Kumar Panda, Joint Director, NCB has over 36 years of experience in the areas of Geology, Raw Materials and Mining and administrative experience as a Team Leader, Programme Leader and Head of the Centre.

Concrete

India Sets Up First Carbon Capture Testbeds for Cement Industry

Five CCU testbeds launched to decarbonise cement production

Published

on

By

Shares



The Department of Science and Technology (DST) recently unveiled a pioneering national initiative: five Carbon Capture and Utilisation (CCU) testbeds in the cement sector, forming a first-of-its-kind research and innovation cluster to combat industrial carbon emissions.
This is a significant step towards India’s Climate Action for fostering National Determined Contributions (NDCs) targets and to achieve net zero decarbonisation pathways for Industry Transition., towards the Government’s goal to achieve a carbon-neutral economy by 2070.
Carbon Capture Utilisation (CCU) holds significant importance in hard-to-abate sectors like Cement, Steel, Power, Oil &Natural Gas, Chemicals & Fertilizers in reducing emissions by capturing carbon dioxide from industrial processes and converting it to value add products such as synthetic fuels, Urea, Soda, Ash, chemicals, food grade CO2 or concrete aggregates. CCU provides a feasible pathway for these tough to decarbonise industries to lower their carbon footprint and move towards achieving Net Zero Goals while continuing their operations efficiently. DST has taken major strides in fostering R&D in the CCUS domain.
Concrete is vital for India’s economy and the Cement industry being one of the main hard-to-abate sectors, is committed to align with the national decarbonisation commitments. New technologies to decarbonise emission intensity of the cement sector would play a key role in achieving of national net zero targets.
Recognizing the critical need for decarbonising the Cement sector, the Energy and Sustainable Technology (CEST) Division of Department launched a unique call for mobilising Academia-Industry Consortia proposals for deployment of Carbon Capture Utilisation (CCU) in Cement Sector. This Special call envisaged to develop and deploy innovative CCU Test bed in Cement Sector with thrust on Developing CO2 capture + CO2 Utilisation integrated unit in an Industrial set up through an innovative Public Private Partnership (PPP) funding model.
As a unique initiative and one of its first kind in India, DST has approved setting up of five CCU testbeds for translational R&D, to be set up in Academia-Industry collaboration under this significant initiative of DST in PPP mode, engaging with premier research laboratories as knowledge partners and top Cement companies as the industry partner.
On the occasion of National Technology Day celebrations, on May 11, 2025 the 5 CCU Cement Test beds were announced and grants had been handed over to the Test bed teams by the Chief Guest, Union Minister of State (Independent Charge) for Science and Technology; Earth Sciences and Minister of State for PMO, Department of Atomic Energy, Department of Space, Personnel, Public Grievances and Pensions, Dr Jitendra Singh in the presence of Secretary DST Prof. Abhay Karandikar.
The five testbeds are not just academic experiments — they are collaborative industrial pilot projects bringing together India’s top research institutions and leading cement manufacturers under a unique Public-Private Partnership (PPP) model. Each testbed addresses a different facet of CCU, from cutting-edge catalysis to vacuum-based gas separation.
The outcomes of this innovative initiative will not only showcase the pathways of decarbonisation towards Net zero goals through CCU route in cement sector, but should also be a critical confidence building measure for potential stakeholders to uptake the deployed CCU technology for further scale up and commercialisation.
It is envisioned that through continuous research and innovation under these test beds in developing innovative catalysts, materials, electrolyser technology, reactors, and electronics, the cost of Green Cement via the deployed CCU technology in Cement Sector may considerably be made more sustainable.
Secretary DBT Dr Rajesh Gokhale, Dr Ajai Choudhary, Co-Founder HCL, Dr. Rajesh Pathak, Secretary, TDB, Dr Anita Gupta Head CEST, DST and Dr Neelima Alam, Associate Head, DST were also present at the programme organized at Dr Ambedkar International Centre, New Delhi.

Continue Reading

Concrete

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Electric vehicles deployed between JK Puram and Kalol units

Published

on

By

Shares



JK Lakshmi Cement, a key player in the Indian cement industry, has announced the deployment of electric vehicles (EVs) in its logistics operations. This move, made in partnership with SwitchLabs Automobiles, will see EVs transporting goods between the JK Puram Plant in Sirohi, Rajasthan, and the Kalol Grinding Unit in Gujarat.
The announcement follows a successful pilot project that showcased measurable reductions in carbon emissions while maintaining efficiency. Building on this, the company is scaling up EV integration to enhance sustainability across its supply chain.
“Sustainability is integral to our vision at JK Lakshmi Cement. Our collaboration with SwitchLabs Automobiles reflects our continued focus on driving innovation in our logistics operations while taking responsibility for our environmental footprint. This initiative positions us as a leader in transforming the cement sector’s logistics landscape,” said Arun Shukla, President & Director, JK Lakshmi Cement.
This deployment marks a significant step in aligning with India’s push for greener transport infrastructure. By embracing clean mobility, JK Lakshmi Cement is setting an example for the industry, demonstrating that environmental responsibility can go hand in hand with operational efficiency.
The company continues to embed sustainability into its operations as part of a broader goal to reduce its carbon footprint. This initiative adds to its vision of building a more sustainable and eco-friendly future.
JK Lakshmi Cement, part of the 135-year-old JK Organisation, began operations in 1982 and has grown to become a recognised name in Indian cement. With a presence across Northern, Western, and Eastern India, the company has a cement capacity of 16.5 MTPA, with a target to reach 30 MT by 2030. Its product range includes ready-mix concrete, gypsum plaster, wall putty, and autoclaved aerated fly ash blocks.

Continue Reading

Concrete

Holcim UK drives sustainable construction

Published

on

By

Shares



Holcim UK has released a report titled ‘Making Sustainable Construction a Reality,’ outlining its five-fold commitment to a greener future. The company aims to focus on decarbonisation, circular economy principles, smarter building methods, community engagement, and integrating nature. Based on a survey of 2,000 people, only 41 per cent felt urban spaces in the UK are sustainably built. A significant majority (82 per cent) advocated for more green spaces, 69 per cent called for government leadership in sustainability, and 54 per cent saw businesses as key players. Additionally, 80 per cent of respondents stressed the need for greater transparency from companies regarding their environmental practices.

Image source:holcim

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds