Connect with us

Concrete

Stud technology has proven to be a boon for the industry

Published

on

Shares

Ashok Kumar Dembla, President and Managing Director, KHD Humboldt Wedag India, discusses the advancements in grinding solutions that focus on low energy consumption, dust free circuits and low maintenance.

Tell us about the role of your grinding solutions in the cement industry?
We all know that grinding constitutes about 65-70 per cent of electrical energy consumption of cement manufacturing. Any saving in grinding energy can be good for operating cost reduction. Also, energy cost is increasing with time, therefore cement manufacturing companies are looking for new technologies for low electrical energy consumption. In the past few years, KHD has worked extensively in the field of grinding to reduce electrical energy consumption in the cement industry, which also helps in reduction in carbon footprints. We at KHD provide all kinds of grinding solutions be it raw material grinding, cement grinding or slag grinding.

How do you customise your grinding solutions to fit the requirements of distinct cement plants?
Based on the cement manufacturers requirement, we offer customised solutions for various grinding circuits. Every cement plant has specific requirements. Like some focus on low-cost solutions, some focus on energy efficiency whereas some focus on operational excellence. The input material hardness, moisture, abrasively, feed size and product requirement decide what solution is to be offered for achieving a cost effective and energy efficient solution. We have various sizes of roller presses, various types of roller surfaces, types of rollers and arrangement of roller presses in the circuit like roller press in semi-finish mode, roller press in finish mode, size of ball mill in semi-finish mode, location of static separator in process circuit, etc. So, based on all the factors, we decide what is to be offered.

How do your grinding solutions help cement plants achieve energy efficiency?
Latest developments related to raw material grinding in finish grinding in roller press have paid dividends even for soft and medium to hard material. Hard raw materials are giving higher bonus factor in finish grinding roller press systems and cement manufacturers are getting 2-4 Kwh/t saving in electrical energy in raw material grinding itself by using this technology as compared to vertical mill technology. Typical circuit offered by KHD for raw materials grinding in ComFlex Grinding circuit has advantages to process raw materials with high moistures with incorporation of V-Separator below the roller press and use of hot gases to dry the raw materials.
With the focus of the industry towards WHR systems, roller press grinding has further received acceptance as it uses no water for bed stabilisation and uses minimum hot gases as compared to other contemporary technologies.
In case of cement grinding, two technologies are being accepted, either vertical roller mill or roller press in semi-finish or finish grinding. Roller press in finish grinding has the advantage of further saving of 3-4 Kwh/t as compared to semi-finish grinding and vertical mill technology. With more acceptance of blended cements like PPC, PSC and composite cements, roller press in finish grinding is accepted as advanced technology in cement grinding. Typical finish and semi-finish grinding circuits offered by KHD are very popular in the cement industry. which includes use of roller press alone or in combination of roller press and ball mill respectively.
In the case of slag grinding, acceptance of roller press in finish grinding is well recognised. It offers a distinct advantage of saving of about 6-7 Kwh/t as compared to the vertical roller mill at 4200 Blaine. The advantage comes due to the hardness of slag and pressure grinding in roller press instead of attrition and low pressure in vertical roller press. Moisture issue is also tackled with the problem of coating by incorporating a V-separator below the roller press.

Tell us about the role of separators in the grinding process? How do they help achieve cost efficiency?
The basic role of a separator is to separate the feed material entering into it after grinding into two products i.e., coarse and fine. While fine is normally the final product in case of dynamic separator and is intermediate product in case of V-Separator. Dynamic separators have also gone through various technological developments, and we are offering 4th generation high efficiency separators now-a-days. These separators offer sharp cut point and minimum bypass (particle below 3 microns). This leads to less recirculation of fines thus improving the availability of the system and in turn efficiency of the system. V-separator is an excellent pre-separator cum dryer (in case of wet material) which is used for pre-separating the roller press throughput before the second separation in a dynamic separator. Two stage separation in the roller press circuit makes it energy efficient and ensures proper product quality.

Materials used for the manufacturing of cement are evolving every day. How does your machinery adapt to this change at the cement plants?
With the trends more on low clinker to cement ratio, today the Indian cement industry is moving very fast toward this aspect. PSC, PPC, composite cements are going up the curve. The cement industry is well versed with the utilisation and manufacturing of blended cement. KHD is one of the key suppliers for providing energy efficient technologies viz roller press grinding for the production of blended cement.
It is estimated that decreasing the clinker ratio in production of cement contributes to nearly 37 per cent of targeted CO2 reduction. By promoting PPC and PSC cement in India, more than 85 per cent cement is produced as blended cement or composite cement (which has come into existence during the last 3-5 years). PPC allows 35 per cent fly-ash usage at present, whereas PSC allows 55 per cent to 65 per cent granulated slag in clinker. Increase of Pozzolana (fly-ash) usage in PPC, up to 45 per cent can reduce the carbon footprint further which has a permissible limit of up to 55 per cent in some European countries. Our roller presses are well versed to take care of all these materials smoothly.

What role does technology play in designing and executing your grinding circuit at the cement plants?
It’s mainly the technology that has promoted the roller press circuits for grinding over VRM technology. Our technology takes into consideration the lowest energy consumption, dust free circuits, nil water consumption, lower maintenance and more in terms of availability and reliability. So, all the systems are based on technology to address all these points. For example, roller press surface plays an important role regarding maintenance requirements. Stud surface of roller press can provide continuous availability of roller press for 4-5 years without any welding requirement. Welded surfaces also have less than half the requirement of welding as compared to VRM, which has the attrition principle of grinding in addition to pressure grinding.

What are the major challenges in curating and executing grinding solutions?
Over the years we have done intensive work in the field of grinding solutions. We don’t foresee any major challenge now as we have already achieved lower power consumption, dust free circuits, more reliability, environmentally friendly grinding. However, we are on the track of continuous improvements to even achieve better because we believe that nothing is impossible, and we are always bound to reach new heights. With use of blended cements and LC3 Cement in coming future in India we are expecting higher blain requirement in final product which may see some technological advances in secondary grinding i.e., ball mills may be replaced by special mills however roller press shall continue in semi-finish and finish grinding applications.

Tell us about the innovations by your organisation in the near future that the cement industry can look forward to.
At present, the focus is to use roller press in finish grinding to get maximum energy advantage as compared to ball mill grinding especially for blended cement. Apart from electrical energy, the focus is also on roller press surfaces, which has minimum wear and offers trouble and maintenance free operation. Stud technology has proven to be a boon for the industry. Tungsten Carbide Studs are fixed on the roller surface by pressing in pre-drilled rollers, which offers autogenous grinding and minimum wear. Life expected out of these roller surfaces varies from 25,000-40,000 hours of operations without any surface maintenance.
Apart from this, developments are focussed on optimising the process circuit for energy efficient and pollution free operation. Developments in actuated dosing gate for feeding material to roller press and online monitoring of roller press surface are also worth noticing. There shall also be developments related to use of digital technology to monitor the performance of these grinding systems, which can contribute towards optimised production and increased availability due to timely signals regarding maintenance requirements.

-Kanika Mathur

Concrete

Molecor Renews OCS Europe Certification Across Spanish Plants

Certification reinforces commitment to preventing microplastic pollution

Published

on

By

Shares



Molecor has renewed its OCS Europe certification for another year across all its production facilities in Spain under the Operation Clean Sweep (OCS) voluntary initiative, reaffirming its commitment to sustainability and environmental protection. The renewal underlines the company’s continued focus on preventing the unintentional release of plastic particles during manufacturing, with particular attention to safeguarding marine ecosystems from microplastic pollution.

All Molecor plants in Spain have been compliant with OCS Europe standards for several years, implementing best practices designed to avoid pellet loss and the release of plastic particles during the production of PVC pipes and fittings. The OCS-based management system enables the company to maintain strict operational controls while aligning with evolving regulatory expectations on microplastic prevention.

The renewed certification also positions Molecor ahead of newly published European regulations. The company’s practices are aligned with Regulation (EU) 2025/2365, recently adopted by the European Parliament, which sets out requirements to prevent pellet loss and reduce microplastic pollution across industrial operations.

Extending its sustainability commitment beyond its own operations, Molecor is actively engaging its wider value chain by informing suppliers and customers of its participation in the OCS programme and encouraging responsible microplastic management practices. Through these efforts, the company contributes directly to the United Nations Sustainable Development Goals, particularly SDG 14 ‘Life below water’, reinforcing its role as a responsible industrial manufacturer committed to environmental stewardship and long-term sustainability.

Continue Reading

Concrete

Coforge Launches AI-Led Data Cosmos Analytics Platform

New cloud-native platform targets enterprise data modernisation and GenAI adoption

Published

on

By

Shares



Coforge Limited has recently announced the launch of Coforge Data Cosmos, an AI-enabled, cloud-native data engineering and advanced analytics platform aimed at helping enterprises convert fragmented data environments into intelligent, high-performance data ecosystems. The platform strengthens Coforge’s technology stack by introducing a foundational innovation layer that supports cloud-native, domain-specific solutions built on reusable blueprints, proprietary IP, accelerators, agentic components and industry-aligned capabilities.

Data Cosmos is designed to address persistent enterprise challenges such as data fragmentation, legacy modernisation, high operational costs, limited self-service analytics, lack of unified governance and the complexity of GenAI adoption. The platform is structured around five technology portfolios—Supernova, Nebula, Hypernova, Pulsar and Quasar—covering the full data transformation lifecycle, from legacy-to-cloud migration and governance to cloud-native data platforms, autonomous DataOps and scaled GenAI orchestration.

To accelerate speed-to-value, Coforge has introduced the Data Cosmos Toolkit, comprising over 55 IPs and accelerators and 38 AI agents powered by the Data Cosmos Engine. The platform also enables Galaxy solutions, which combine industry-specific data models with the core technology stack to deliver tailored solutions across sectors including BFS, insurance, travel, transportation and hospitality, healthcare, public sector and retail.

“With Data Cosmos, we are setting a new benchmark for how enterprises convert data complexity into competitive advantage,” said Deepak Manjarekar, Global Head – Data HBU, Coforge. “Our objective is to provide clients with a fast, adaptive and AI-ready data foundation from day one.”

Supported by a strong ecosystem of cloud and technology partners, Data Cosmos operates across multi-cloud and hybrid environments and is already being deployed in large-scale transformation programmes for global clients.

Continue Reading

Concrete

India, Sweden Launch Seven Low-Carbon Steel, Cement Projects

Joint studies to cut industrial emissions under LeadIT

Published

on

By

Shares



India and Sweden have announced seven joint projects aimed at reducing carbon emissions in the steel and cement sectors, with funding support from India’s Department of Science and Technology and the Swedish Energy Agency.

The initiatives, launched under the LeadIT Industry Transition Partnership, bring together major Indian companies including Tata Steel, JK Cement, Ambuja Cements, Jindal Steel and Power, and Prism Johnson, alongside Swedish technology firms such as Cemvision, Kanthal and Swerim. Leading Indian academic institutions, including IIT Bombay, IIT-ISM Dhanbad, IIT Bhubaneswar and IIT Hyderabad, are also participating.

The projects will undertake pre-pilot feasibility studies on a range of low-carbon technologies. These include the use of hydrogen in steel rotary kilns, recycling steel slag for green cement production, and applying artificial intelligence to optimise concrete mix designs. Other studies will explore converting blast furnace carbon dioxide into carbon monoxide for reuse and assessing electric heating solutions for steelmaking.

India’s steel sector currently accounts for about 10–12 per cent of the country’s carbon emissions, while cement contributes nearly 6 per cent. Globally, heavy industry is responsible for roughly one-quarter of greenhouse gas emissions and consumes around one-third of total energy.

The collaboration aims to develop scalable, low-carbon industrial technologies that can support India’s net-zero emissions target by 2070. As part of the programme, Tata Steel and Cemvision will examine methods to convert steel slag into construction materials, creating a circular value chain for industrial byproducts.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds