Connect with us

Concrete

The Future of Gypsum

Published

on

Shares

ICR charts out the evolution of gypsum and the role it plays in manufacturing in a bid to understand the economics of sustainability in cement production.

The word gypsum is derived from the Greek word ‘gypsos’ meaning ‘plaster.’ The quarries of the Montmartre district of Paris have long furnished burnt gypsum (calcined gypsum) used for various purposes, this dehydrated gypsum became known as plaster of Paris. The ability to harden or set when added with water makes it a very useful mineral for construction. In the mid-18th century, Gypsum was found to have great capabilities as a fertiliser. It is this connection as a fertiliser that today the world over phospho gypsum is now available aplenty as a by-product from fertiliser plants, and which can be gainfully used as an additive in the cement making process, replacing mineral gypsum.
The production of phosphate fertilisers requires breaking down calcium-containing phosphate rock with acid, producing calcium sulphate waste known as phospho-gypsum (PG). Similar is the case with the desulphurisation process of flue gas (to take out the SOx from the emissions) from power plants when natural limestone is used for this process resulting in FGD gypsum as the bi-product. This product is pure enough to replace natural gypsum in a wide variety of fields including drywalls, water treatment and cement set retarder.

Sustainability ahead
As a sustainability initiative, replacing natural gypsum scores better, but first let us understand the role of gypsum in the cement to concrete process.
The main purpose of adding gypsum in the cement is to slow down the hydration process of cement once it is mixed with water. The process involved in hydration of cement is that, when the water is added into cement, it starts reacting with the C3A (tricalcium aluminate, which is the main component of Portland cement) and hardens. The time taken in this process is very less, which doesn’t allow time for transporting, mixing and placing. When gypsum is added into the cement and water is added to it, reaction with C3A particles takes place to form ettringite. This ettringite is initially formed as very fine-grained crystals, which form a coating on the surface of the C3A particles. These crystals are too small to bridge the gaps between the particles of cement. The cement mix therefore remains plastic and workable. The time allowed for mixing, transporting and placing plays an important role in strength, composition and workability of concrete. As gypsum retards the process of hydration, it is termed as retarding agent of cement.
The role of gypsum in concrete making can be summarised as follows:

  1. Gypsum prevents flash setting of cement during manufacturing.
  2. It retards the setting time of cement.
  3. Allows a longer working time for mixing, transporting and placing.
  4. When water is mixed to cement aluminates and sulphates react and evolve some heat but gypsum acts as coolant and brings down the heat of hydration.
  5. Gypsum cements possess considerably greater strength and hardness as compared to non-gypsum cement.
  6. Water required in gypsum based cement for the hydration process is less.
    The use of gypsum as an additive in cement ranges from 2.5 to 5 per cent.
    In its natural form, gypsum can be found as thick layers in shale and as attractive crystals. No gypsum deposits are 100 per cent pure. It is usually found with deposits of a combination of the following: limestone, sand, shale, anhydrite and sometimes rock salt. To be a commercial deposit, gypsum content should be at least 75 per cent. But as mines get old the percentage of gypsum could be as low as 45 per cent in many of the natural deposits.

Logistically speaking
Gypsum mines or deposits can be found all over the world, but Spain, Thailand, United States, Turkey, Russia, UAE, Oman and Chile are the leading producers. India has deposits mainly in Rajasthan and that makes the logistics cost play an important role in the use of gypsum in cement and concrete in India. There are two components to be seen, the percentage of gypsum in the mineral (purity) that one is transporting and therefore total cost of moving it when compared with other forms of gypsum, which could be non-mineral, from synthetic or anhydrous to simply the spent acid or other forms of industrial or chemical waste.
The desulphurisation process itself now being made mandatory for all coal fired power plants creates an enormous opportunity for non-mineral gypsum to be used in cement. But the economics could be very tricky. Let us see the cost dynamics in some details as this could be the most sustainable way for producing gypsum for cement and concrete.
It is calculated that a 500 MW power plant would need 40,000T of limestone annually to take care of the SOx emissions through the desulphurisation process. This would amount to about 12 million tonne of limestone consumption (less than 3 per cent of the total limestone use per year) for the entire power generation of India. But the economics would lie in transportation. Even if limestone is available free of cost, the transportation cost including handling and royalty beyond 250 km could rise to Rs 1000/T as the landed cost at the power plant. The FGD gypsum after production would need to be transported to the cement grinding unit, which if more than 250 km would again cost the same. Thus the FGD gypsum would then compete with phospho gypsum, which is available aplenty in fertiliser or phosphate plants.
As these options compete with each other, use of natural gypsum would subside as the
enormous logistics cost of either importing it or transporting it across India would not be sustainable in the future.

Procyon Mukherjee

Concrete

Organisations valuing gender diversity achieve higher profitability

Aparna Reddy, Executive Director, Aparna Enterprises talks about company plans.

Published

on

By

Shares



The building materials industry is projected to grow by 8-12 per cent over the next five years. How is Aparna Enterprises positioning itself to leverage this momentum and solidify its market presence?
The Indian construction and building materials industry is projected to witness significant expansion, with estimates suggesting an 8-12 per cent compound annual growth rate (CAGR) over the next five years. This growth is fuelled by rapid urbanisation, increased infrastructure investments and sustainability-focused policies. With India’s real-estate market expected to reach $ 1 trillion by 2030, the demand for high-quality building materials is at an all-time high.
The Government of India’s flagship programmes, such as PM Gati Shakti, the Smart Cities Mission and the Housing for All (PMAY-Urban) initiative, are key drivers of this surge. The infrastructure sector alone is expected to receive a budgetary push of over Rs 11 trillion in FY25, with enhanced capital expenditure allocation.
At Aparna Enterprises, we are proactively aligning with this momentum through capacity expansion, product diversification, and cutting-edge technological integration. 

Our key strategic priorities include:
  • Expanding operations in high-growth regions across Tier-2 and Tier-3 cities, ensuring access to quality building materials nationwide
  • Investing in automation, AI-driven quality control systems and digital integration, enhancing efficiency and precision in manufacturing
  • Scaling up production capabilities in our RMC, tiles, uPVC and other divisions to meet the anticipated surge in demand.

To read the full article Click Here

Continue Reading

Concrete

Global Start-Up Challenge Launched to Drive Net Zero Concrete Solutions

Innovandi Open Challenge aims to connect start-ups with GCCA members to develop innovations

Published

on

By

Shares



Start-ups worldwide are invited to contribute to the global cement and concrete industry’s efforts to reduce CO2 emissions and combat climate change. The Global Cement and Concrete Association (GCCA) and its members are calling for applicants for the Innovandi Open Challenge 2025.

Now in its fourth year, the Innovandi Open Challenge aims to connect start-ups with GCCA members to develop innovations that help decarbonise the cement and concrete industry.

The challenge is seeking start-ups working on next-generation materials for net-zero concrete, such as low-carbon admixtures, supplementary cementitious materials (SCMs), activators, or binders. Innovations in these areas could help reduce the carbon-intensive element of cement, clinker, and integrate cutting-edge materials to lower CO2 emissions.

Thomas Guillot, GCCA’s Chief Executive, stated, “Advanced production methods are already decarbonising cement and concrete worldwide. Through the Innovandi Open Challenge, we aim to accelerate our industry’s progress towards net-zero concrete.”

Concrete is the second most widely used material on Earth, and its decarbonisation is critical to achieving net-zero emissions across the global construction sector.

Continue Reading

Concrete

StarBigBloc Acquires Land for AAC Blocks Greenfield Facility in Indore

The company introduced NXTGRIP Tile Adhesives alongside its trusted NXTFIX and NXTPLAST brands.

Published

on

By

Shares



StarBigBloc Building Material, a wholly-owned subsidiary of BigBloc Construction, one of the largest manufacturers of Aerated Autoclaved Concrete (AAC) Blocks, Bricks and ALC Panels in India has acquired land for setting up a green field facility for AAC Blocks in Indore, Madhya Pradesh. Company has purchased approx. 57,500 sq. mts. land at Khasra No. 382, 387, 389/2, Gram Nimrani, Tehsil Kasrawad, District – Khargone, Madhya Pradesh for the purpose of AAC Blocks business expansion in central India. The total consideration for the land deal is Rs 60 million and Stamp duty.

StarBigBloc Building Material Ltd currently operates one plant at Kheda near Ahmedabad with an installed capacity of 250,000 cubic meters per annum, serving most part of Gujarat, upto Udaipur in Rajasthan, and till Indore in Madhya Pradesh. The capacity utilisation at Starbigbloc Building Material Ltd for the third quarter was 75 per cent. The planned expansion will enable the company to establish a stronger presence in Madhya Pradesh and surrounding regions. Reaffirming its commitment to the Green Initiative, it has also installed a 800 KW solar rooftop power project — a significant step toward sustainability and lowering its carbon footprint.

Narayan Saboo, Chairman, Bigbloc Construction said “The AAC block industry is set to play a pivotal role in India’s construction sector, and our company is ready for a significant leap forward. The proposed expansion in Indore, Madhya Pradesh aligns with our growth strategy, focusing on geographic expansion, R&D investments, product diversification, and strategic branding and marketing initiatives to enhance visibility, increase market share, and strengthen stakeholder trust.”

Bigbloc Construction has recently expanded into construction chemicals with Block Jointing Mortar, Ready Mix Plaster, and Tile Adhesives, tapping into high-demand segments. The company introduced NXTGRIP Tile Adhesives alongside its trusted NXTFIX and NXTPLAST brands, ensuring superior bonding, strength, and performance.

In May 2024, the board of directors approved fund-raising through SME IPO or Preferential issue to support expansion plans of Starbigboc Building Material subject to requisite approvals and market conditions, Starbigboc Building Material aims to expand its production capacity from current 250,000 cubic meters per annum to over 1.2 million cubic meters per annum in the next 4-5 years. Company is targeting revenues of Rs 4.28 billion by FY27-28, with an expected EBITDA of Rs 1.25 billion and net profit of Rs 800 million. In FY23-24, the company reported revenues of Rs 940.18 million, achieving a revenue CAGR of over 21 per cent in the last four years.

Incorporated in 2015, BigBloc Construction is one of the largest and only listed AAC block manufacturer in India, with a 1.3 million cbm annual capacity across plants in Gujarat (Kheda, Umargaon, Kapadvanj) and Maharashtra (Wada). The company, which markets its products under the ‘NXTBLOC’ brand, is one of the few in the AAC industry to generate carbon credits. With over 2,000 completed projects and 1,500+ in the pipeline, The company’s clients include Lodha, Adani Realty, IndiaBulls Real Estate, DB Realty, Prestige, Piramal, Oberoi Realty, Tata Projects, Shirke Group, Shapoorji Pallonji Group, Raheja, PSP Projects, L&T, Sunteck, Dosti Group, Purvankara Ltd, DY Patil, Taj Hotels, Godrej Properties, Torrent Pharma, GAIL among others.

Continue Reading

Trending News

This will close in 5 seconds

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds