Connect with us

Concrete

Actively Fostering Renewables

Published

on

Shares

Keeping a close eye on the use of alternative fuels and raw materials (AFR) in cement manufacturing, we delve into the progress made by key players in increasing the use of AFR by using advanced automation, technology and innovative practices.

Cement plays a vital role in building the economic development of any country. The Indian cement industry is the largest cement producing country in the world, next only to China. With the adoption of massive modernisation and assimilation of state-of-the-art technology, Indian cement plants are today the most energy-efficient and environment-friendly and are comparable to the best in the world in all respects, whether it is size of the kiln, technology, energy consumption or environment-friendliness. The cement industry contributes to environmental cleanliness by consuming hazardous wastes like fly ash (around 30 Mnt) from thermal power plants and the entire 8 Mnt of granulated slag produced by steel manufacturing units and also using alternative fuels and raw materials using advanced and environment friendly technologies.
At present, the installed capacity of cement in India is 500 MTPA with production of 298 million tonnes per annum. Majority of the cement plants installed capacity (about 35 per cent) is located in the states of south India. In PAT scheme, total installed capacity of cement in India is 325 MTPA, which contributes to 65 per cent coverage of total installed capacity in India. With the increase in growth of infrastructure, the cement production in India is expected to be 800 million tonnes by 2030, according to the Bureau of Energy Efficiency, India.
With over 7 per cent of global CO2 emissions, decarbonisation of the cement industry will play a key role in achieving the Paris Climate Agreement targets. The deep decarbonisation of the cement industry can be achieved through measures such as material efficiency, clinker substitution, alternative binding materials, carbon capture and storage, energy efficiency improvements, electrification and the use of alternative fuels.
According to the World Economic Forum report Net-Zero Industry Tracker 2023, Absolute CO2 emissions declined by less than 1 per cent over the last four years amid increases in global production. Emissions intensity remained static over the same time period despite a 9 per cent rise in the clinker-to-cement ratio. The average ratio is currently 72 per cent, while the proposed GCCA target is 56 per cent. The twin forces of urbanisation and population growth are driving cement consumption in China (51 per cent global demand) and India (9 per cent global demand), which necessitates accelerated action to decarbonise the sector to mitigate the impacts of increased production.
According to Dr Anjan K Chatterjee, Managing Director, Conmat Technologies, “Among the industrial activities, the production of Portland cement ranks high in generating CO2, creating up to 8 per cent of worldwide man-made emissions of this gas. This is identified as a major contributor to the probable rise in average global temperature exceeding 20oC. In recent years, a school of thought has emerged whether it is justified to consider the amount of CO2 emitted directly from the cement manufacturing process as the total cement industry emissions to affect the global temperature rise. This is due to the fact that cement is used mainly in the form of concrete, mortar and plaster in built structures, which over time undergo carbonation involving reverse penetration of CO2. The knowledge about carbonation of existing concrete structures is well-established. The CO2 uptake by the cement-based products including concrete has not been considered historically in the CO2 estimation for climate change.
Furthermore, there are many technologies in development, which promise significant potential of enhancing the recycling of CO2 in concrete and cement-based products. Thus, it seems justified to consider that, while the cement production is a carbon source, the cement-based products may act as carbon sinks. The concept of concrete as a carbon sink will be a game-changer for the cement and concrete industry as a whole for improving the climate performance of the sector.

TRADITIONAL RESOURCES
Traditional fuels and raw materials play a pivotal role in the cement production process. Commonly used fuels include coal, petroleum coke and lignite, which are primarily utilised to generate the high temperatures required for clinker production in cement kilns. These fossil fuels have been the go-to choices due to their availability and relatively low cost, but their usage raises concerns about environmental pollution and carbon emissions. Conventional raw materials used in cement production in India typically include limestone, clay and iron ore. Limestone serves as the primary source of calcium, essential for the formation of clinker, while clay provides silica, alumina, and iron oxide. Iron ore acts as a source of iron oxide, which contributes to the cement’s strength and colour.
Hari Mohan Bangur, Managing Director, Shree Cement, says, “The major raw material used for manufacturing of cement is limestone at our plants. There is not a lot of variation done in the use of alternative materials for cement manufacturing.”
“However, if we consider alternative fuels, Shree Cement was the first to use pet coke, which in today’s time is not an alternative fuel. We use a small quantity of Refuse Derived Fuel (RDF) and more quantities of agro waste as an alternative fuel. We burn hundreds of tonnes of agro waste as an alternative fuel in our plants,” he adds.
Relying solely on traditional fuels and raw materials poses environmental challenges, including air pollution, greenhouse gas emissions, and depletion of natural resources. To address these issues, the Indian cement industry is increasingly exploring alternative fuels such as biomass, waste-derived fuels, and alternative raw materials like industrial by-products and agricultural wastes. Adopting alternative fuels and raw materials not only helps reduce the environmental footprint of cement production but also enhances resource efficiency and promotes sustainable development. As the industry continues to evolve, the integration of alternative fuels and raw materials is becoming increasingly important for ensuring the long-term viability and sustainability of the Indian cement sector.

THE SHIFT TOWARDS AFR
The Indian cement industry is undergoing a significant transformation as it shifts towards alternative fuels and raw materials, marking a pivotal transition towards sustainability and environmental responsibility. This shift is primarily driven by a growing recognition of the environmental challenges associated with conventional cement production, including air pollution, greenhouse gas emissions, and depletion of natural resources. Moreover, stringent regulations and evolving market dynamics are compelling cement companies to seek greener and more sustainable production practices.
According to a report An Overview of the Utilization of Common Waste as an Alternative Fuel in the Cement Industry by Hindwai, concrete is one of the most commonly used construction materials, there is a massive production of cement, which causes cement manufacturing to be an energy-intensive industry. A significant amount of the cost of cement production, ranging from 20 per cent to 25 per cent, is attributed to thermal energy. In addition, the action of mining and burning fossil fuels results in the unfavorable emission of hazardous compounds into the environment. Therefore, the switch from conventional fossil fuels to alternative fuels in the cement manufacturing business has attracted attention due to environmental and financial concerns.
There are four commonly used alternative fuels, which are waste tires, municipal solid waste, meat and bone meal and sewage sludge. It is found that each alternative fuel has a unique calorific value and properties, attributed to its source, treatment and technology. Furthermore, the availability of alternative fuel is important as the amount varies depending on the location. In addition, their effects on gaseous emissions from the cement plant and the quality of clinker are found to be inconsistent. Thus, there will not be a single best type of alternative fuel option to be used in the cement industry. A good alternative fuel should be able to provide sufficient thermal energy while reducing the environmental impacts and costs. A careful analysis and multicriteria decision-making approach are always vital when employing alternative fuels to prevent environmental problems, cost increases, as well as clinker quality degradation.
One of the key drivers behind this transition is the adoption of alternative fuels, which offer several advantages over traditional fossil fuels. Biomass, waste-derived fuels, industrial by-products, and even tires are being utilised as viable substitutes, providing cost savings, reducing dependency on finite resources, and diverting waste from landfills. Simultaneously, there is a concerted effort to explore alternative raw materials that can supplement or replace traditional inputs like limestone and clay. Industrial by-products, such as fly ash, slag, and silica fume, are increasingly being utilised in cement production, not only reducing the reliance on virgin resources but also mitigating the environmental impact of waste disposal.
Sanjay Joshi, Chief Projects and Manufacturing Officer, Nuvoco Vistas Corp, says, “The selection of AFR for usage in a cement kiln involves a thorough assessment of their potential impacts on clinker and cement manufacturing operations, product quality and the environment. Several important factors must be considered before finalising the choice of AFR.”
“Among these, key parameters include alkali, sulphur, chloride, trace element content, heat (calorific) value and moisture content. Regular reviews of the acceptance criteria are conducted in accordance with local regulations to ensure ongoing alignment with environmental standards and manufacturing requirements. This comprehensive evaluation process ensures that the selected AFR optimally contributes to the cement kiln process while minimising adverse effects on both the product and the surrounding environment,” he adds.
Murielle Goubard, Global Sector Manager for Building Materials, Malvern Panalytical, mentions to AZoMaterials, “For over 40 years, cement manufacturers have been working to reduce their environmental impact, particularly their CO2 emissions. To achieve this, several actions have been taken like Improving the energy efficiency of kilns and processes, using alternative fuels (industrial residues, biomass, etc.) to partially replace the fossil fuels used to power cement kilns, using alternative raw materials and manufacturing new multi-constituent cements (combining clinker with slag, fly ash, calcined clay, limestone, etc.) and reducing the clinker content plays a crucial role in mitigating the environmental impact of concrete production. Traditional cements like Portland cement and Portland-composite cement typically contain over 95 per cent and 65 per cent clinker, respectively. These high clinker ratios contribute significantly to the environmental footprint of concrete.”
“To address this issue, supplementary cementitious materials like fly ash from coal power plants and blast furnace slag from steel making can be used to partially replace clinker. This substitution not only reduces the energy required for clinker production but also mitigates process emissions associated with clinker manufacturing. However, the availability of these alternative feedstocks depends on the decarbonisation efforts in the power and steel sectors. As these industries transition to cleaner practices, these feedstocks may become scarcer. This has led to the emergence of innovative cement types
like LC3 (limestone calcined clay cement). LC3 comprises 50 per cent clinker, 30 per cent calcined clay, 15 per cent limestone, and 5 per cent gypsum, in contrast to classical Ordinary Portland cement, which consists of 95 per cent clinker and 5 per cent gypsum,” he added.
The Indian cement industry’s embrace of alternative fuels and raw materials reflects a broader commitment to sustainability, circular economy principles, and compliance with global environmental standards. This transition not only enhances the industry’s environmental credentials but also fosters innovation, resource efficiency, and long-term resilience in the face of evolving market dynamics and regulatory pressures.
Pankaj Kejriwal, Whole Time Director and COO, Star Cement, says, “The use of AFR in the cement industry has a bright future. Due to scarcity of fossil fuel, it is the need of the century to increase the use of AFR. All cement industry globally is in line with it and is continuously working towards maximising use of AFR. This will help the society to decrease waste dump in soil and reduce emission of CO2 and NOx in the environment. In some cement industries in ASIA pacific and Europe, they are taking it as a CSR (corporate social responsibility) to clean the environment. In India, too, the Government is encouraging use of MSW in cement plants. Our organisation is also aligned in the same path. After commissioning of our AFR feeding system, we also have a way forward towards the usage of AFR in our cement plant and have a target of 15-20 per cent TSR by 2026 depending on the availability in the northeast.”

USE OF TECHNOLOGY IN AFR
Automation and technology are instrumental in facilitating the adaptation of alternative fuels and raw materials in the Indian cement industry. These advancements optimise the manufacturing process by enabling precise control and monitoring of parameters such as temperature, pressure, and composition in real-time. Automated systems streamline the blending, handling and feeding of diverse alternative fuels to the kiln, ensuring efficient utilisation while minimising manual intervention. Additionally, automation plays a vital role in maintaining product quality and consistency by monitoring raw material composition and emissions in real-time, thereby enhancing reliability and reducing environmental impact. Furthermore, automation platforms
equipped with data analytics capabilities enable the identification of optimisation opportunities and the improvement of process efficiency, contributing to sustainability and competitiveness in cement manufacturing operations.
Sunil Kumbhar, CEO and Director, AltSF Process, says, “Handling alternative fuels, specifically these days, unprocessed municipal solid waste coming to cement plants is of very hazardous nature. Bad odour, unhygienic waste has a hazard to deploy people to work in handling these materials. Hence, cement plants require fully automated arrangements monitored from their control room for all operations. AltSF delivers fully automated arrangements for all handling stages like storage management, extraction of waste, accurate weighing, conveying and safe feeding inside the kiln.”

ENVIRONMENTAL IMPACT OF AFR
The use of alternative fuels and raw materials in the Indian cement industry significantly impacts the environment by reducing carbon emissions, conserving natural resources, mitigating waste generation and promoting the circular economy.
By substituting traditional fossil fuels with cleaner alternatives like biomass and waste-derived fuels, the industry can lower its carbon footprint and contribute to climate change mitigation. Moreover, incorporating alternative raw materials such as industrial by-products and agricultural residues reduces reliance on virgin resources, minimising environmental degradation associated with extraction activities.
Waste-derived fuels not only divert materials from landfills but also provide a sustainable solution for waste disposal while generating energy. This shift towards alternative fuels and raw materials promotes a circular economy by repurposing waste materials as valuable resources in industrial processes, fostering resource efficiency, reducing environmental impact, and contributing to sustainable development.

CONCLUSION
The Indian cement industry’s adoption of alternative fuels and raw materials reflects a commitment to environmental stewardship and sustainability, with positive implications for air quality, resource conservation, waste management, and the promotion of circular economy principles. The industry is reducing its carbon footprint, conserving natural resources, mitigating waste generation and promoting circular economy principles.
Automation and technology play a critical role in facilitating this transition, optimising processes, ensuring product quality and enhancing operational efficiency. The adoption of alternative fuels and raw materials not only aligns with global efforts to combat climate change but also fosters innovation, resilience, and competitiveness in the Indian cement sector. Moving forward, continued investment in research, technology and collaborative initiatives will be essential to drive further progress towards a greener, more sustainable future for the Indian cement industry and the environment as a whole.

  • Kanika Mathur

Concrete

Adani’s Strategic Emergence in India’s Cement Landscape

Published

on

By

Shares



Milind Khangan, Marketing Head, Vertex Market Research, sheds light on Adani’s rapid cement consolidation under its ‘One Business, One Company’ strategy while positioning it to rival UltraTech, and thus, shaping a potential duopoly in India’s booming cement market.

India is the second-largest cement-producing country in the world, following China. This expansion is being driven by tremendous public investment in the housing and infrastructure sectors. The industry is accelerating, with a boost from schemes such as PM Gati Shakti, Bharatmala, and the Vande Bharat corridors. An upsurge in affordable housing under the Pradhan Mantri Awas Yojana (PMAY) further supports this expansion. In May 2025, local cement production increased about 9 per cent from last year to about 40 million metric tonnes for the month. The combined cement capacity in India was recorded at 670 million metric tonnes in the 2025 fiscal year, according to the Cement Manufacturers’ Association (CMA). For the financial year 2026, this is set to grow by another 9 per cent.
In spite of the growing demand, the Indian cement industry is highly competitive. UltraTech Cement (Aditya Birla Group) is still the market leader with domestic installed capacity of more than 186 MTPA as on 2025. It is targeted to achieve 200 MTPA. Adani Cement recently became a major player and is now India’s second-largest cement company. It did this through aggressive consolidation, operational synergies, and scale efficiencies. Indian players in the cement industry are increasingly valuing operational efficiency and sustainability. Some of the strategies with high impact are alternative fuels and materials (AFR) adoption, green cement expansion, and digital technology investments to offset changing regulatory pressure and increasing energy prices.

Building Adani Cement brand
Vertex Market Research explains that the Adani Group is executing a comprehensive reorganisation and consolidation of its cement business under the ‘One Business, One Company’ strategy. The plan is to integrate its diversified holdings into one consolidated corporate entity named Adani Cement. The focus is on operating integration, governance streamlining, and cost reduction in its expanding cement business.
Integration roadmap and key milestones:

  • September 2022: The consolidation process started with the $6.4 billion buyout of Holcim’s majority stakes in Ambuja Cements and ACC, with Ambuja becoming the focal point of the consolidation.
  • December 2023: Bought Sanghi Industries to strengthen the firm’s presence in western India.
  • August 2024: Added Penna Cement to the portfolio, improving penetration of the southern market of India.
  • April 2025: Further holding addition in Orient Cement to 46.66 per cent by purchasing the same from CK Birla Group, becoming the promoter with control.
  • Ambuja Cements amalgamated with Adani Cement: This was sanctioned by the NCLT on 18th July 2025 with effect from April 1, 2024. This amalgamation brings in limestone reserves and fresh assets into Ambuja.
  • Subject to Sanghi and Penna merger with Ambuja: Board approvals in December 2024 with the aim to finish between September to December 2025.
  • Ambuja-ACC future integration: The latter is being contemplated as the final step towards consolidation.
  • Orient Cement: It would serve as a principal manufacturing facility following the merger.

Scale, capacity expansion and market position
In financial year-2025, Adani Cement, including Ambuja, surpassed 100 MTPA. This makes it one of the world’s top ten cement companies. Along with ACC’s operations, it is now firmly placed as India’s second-largest cement company. In FY25, the Adani group’s sales volume per annum clocked 65 million metric tonnes. Adani Group claims that it now supplies close to 30 per cent of the cement consumed in India’s homes and infrastructure as of June 2025.
The organisation is pursuing aggressive brownfield expansion:

  • By FY 2026: Reach 118 MTPA
  • By FY 2028: Target 140 MTPA

These goals will be driven by commissioning new clinker and grinding units at key sites, with civil and mechanical works underway.
As of 2024, Adani Cement had its market share pegged at around 14 to 15 per cent, with an ambition to scale this up to 20 per cent by FY?2028, emerging as a potent competitor to UltraTech’s 192?MTPA capacity (186 domestic and overseas).

Strategic advantages and competitive benefits
The consolidation simplifies decision-making by reducing legal entities, centralising oversight, and removing redundant functions. This drives compliance efficiency and transparent reporting. Using procurement power for raw materials and energy lowers costs per ton. Integrated logistics with Adani Ports and freight infrastructure has resulted in an estimated 6 per cent savings in logistics. The group aims for additional savings of INR 500 to 550 per tonne by FY 2028 by integrating green energy, using alternative fuel resources, and improving sourcing methods.

Market coverage and brand consistency
Brand integration under one strategy will provide uniform product quality and easier distribution networks. Integration with Orient Cement’s dealer base, 60 per cent of which already distributes Ambuja/ACC products, enhances outreach and responsiveness.
By having captive limestone reserves at Lakhpat (approximately 275 million tonnes) and proposed new manufacturing facilities in Raigad, Maharashtra, Adani Cement derives cost advantage, raw material security, and long-term operational robustness.

Strategic implications and risks
Consolidation at Adani Cement makes it not just a capacity leader but also an operationally agile competitor with the ability to reap digital and sustainability benefits. Its vertically integrated platform enables cost leadership, market responsiveness, and scalability.

Challenges potentially include:

  • Integration challenges across systems, corporate cultures, and plant operations
  • Regulatory sanctions for pending mergers and new capacity additions
  • Environmental clearances in environmentally sensitive areas and debt management with input price volatility

When materialised, this revolution would create a formidable Adani–UltraTech duopoly, redefining Indian cement on the basis of scale, innovation, and sustainability. India’s leading four cement players such as Adani (ACC and Ambuja), Dalmia Cement, Shree Cement, and UltraTech are expected to dominate the cement market.

Conclusion
Adani’s aggressive consolidation under the ‘One Business, One Company’ strategy signals a decisive shift in the Indian cement industry, positioning the group as a formidable challenger to UltraTech and setting the stage for a potential duopoly that could dominate the sector for years to come. By unifying operations, leveraging economies of scale, and securing vertical integration—from raw material reserves to distribution networks—Adani Cement is building both capacity and resilience, with clear advantages in cost efficiency, market reach, and sustainability. While integration complexities, regulatory hurdles, and environmental approvals remain key challenges, the scale and strategic alignment of this consolidation promise to redefine competition, pricing dynamics, and operational benchmarks in one of the world’s fastest-growing cement markets.

About the author:
Milind Khangan is the Marketing Head at Vertex Market Research and comes with over five years of experience in market research, lead generation and team management.

Continue Reading

Concrete

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Published

on

By

Shares



PowerBuild’s flagship Series M, C, F, and K geared motors deliver robust, efficient, and versatile power transmission solutions for industries worldwide.

Products – M, C, F, K: At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. PowerBuild answers this need with its flagship geared motor series: M, C, F, and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.
Series M – Helical Inline Geared Motors: Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.
Series C – Right Angled Heli-Worm Geared Motors: Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.
Series F – Parallel Shaft Mounted Geared Motors: Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes, and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.
Series K – Right Angle Helical Bevel Geared Motors: For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining, and material handling. Its flexibility in mounting and broad motor options offer engineers’ freedom in design and reliability in execution.
Together, these four series reflect PowerBuild’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design, and field-tested reliability. Whether the requirement is speed control, torque multiplication, or space efficiency, Radicon’s Series M, C, F, and K stand as trusted powerhouses for global industries.

Continue Reading

Concrete

Driving Measurable Gains

Published

on

By

Shares



Klüber Lubrication India’s Klübersynth GEM 4-320 N upgrades synthetic gear oil for energy efficiency.

Klüber Lubrication India has introduced a strategic upgrade for the tyre manufacturing industry by retrofitting its high-performance synthetic gear oil, Klübersynth GEM 4-320 N, into Barrel Cold Feed Extruder gearboxes. This smart substitution, requiring no hardware changes, delivered energy savings of 4-6 per cent, as validated by an internationally recognised energy audit firm under IPMVP – Option B protocols, aligned with
ISO 50015 standards.

Beyond energy efficiency, the retrofit significantly improved operational parameters:

  • Lower thermal stress on equipment
  • Extended lubricant drain intervals
  • Reduction in CO2 emissions and operational costs

These benefits position Klübersynth GEM 4-320 N as a powerful enabler of sustainability goals in line with India’s Business Responsibility and Sustainability Reporting (BRSR) guidelines and global Net Zero commitments.

Verified sustainability, zero compromise
This retrofit case illustrates that meaningful environmental impact doesn’t always require capital-intensive overhauls. Klübersynth GEM 4-320 N demonstrated high performance in demanding operating environments, offering:

  • Enhanced component protection
  • Extended oil life under high loads
  • Stable performance across fluctuating temperatures

By enabling quick wins in efficiency and sustainability without disrupting operations, Klüber reinforces its role as a trusted partner in India’s evolving industrial landscape.

Klüber wins EcoVadis Gold again
Further affirming its global leadership in responsible business practices, Klüber Lubrication has been awarded the EcoVadis Gold certification for the fourth consecutive year in 2025. This recognition places it in the top three per cent
of over 150,000 companies worldwide evaluated for environmental, ethical and sustainable procurement practices.
Klüber’s ongoing investments in R&D and product innovation reflect its commitment to providing data-backed, application-specific lubrication solutions that exceed industry expectations and support long-term sustainability goals.

A trusted industrial ally
Backed by 90+ years of tribology expertise and a global support network, Klüber Lubrication is helping customers transition toward a greener tomorrow. With Klübersynth GEM 4-320 N, tyre manufacturers can take measurable, low-risk steps to boost energy efficiency and regulatory alignment—proving that even the smallest change can spark a significant transformation.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds

    This will close in 0 seconds