Connect with us

Concrete

Turning Carbon into Opportunity

Published

on

Shares

Carbon Capture, Utilisation, and Storage (CCUS) is crucial for reducing emissions in the cement industry. Kanika Mathur explores how despite the challenges such as high costs and infrastructure limitations, CCUS offers a promising pathway to achieve net-zero emissions and supports the industry’s sustainability goals.

The cement industry is one of the largest contributors to global CO2 emissions, accounting for approximately seven to eight per cent of total anthropogenic carbon dioxide released into the atmosphere. As the world moves towards stringent decarbonisation goals, the cement sector faces mounting pressure to adopt sustainable solutions that minimise its carbon footprint. Among the various strategies being explored, Carbon Capture, Utilisation, and Storage (CCUS) has emerged as one of the most promising approaches to mitigating emissions while maintaining production efficiency. This article delves into the challenges, opportunities, and strategic considerations surrounding CCUS
in the cement industry and its role in achieving net-zero emissions.

Understanding CCUS and Its Relevance to Cement Manufacturing
Carbon Capture, Utilisation, and Storage (CCUS) is an advanced technological process designed to capture carbon dioxide emissions from industrial sources before they are released into the atmosphere. The captured CO2 can then be either utilised in various applications or permanently stored underground to prevent its contribution to climate change.
Rajesh Kumar Nayma, Associate General Manager – Environment and Sustainability, Wonder Cement says, “CCUS is indispensable for achieving Net Zero emissions in the cement industry. Even with 100 per cent electrification of kilns and renewable energy utilisation, CO2 emissions from limestone calcination—a key raw material—remain unavoidable. The cement industry is a major contributor to
GHG emissions, making CCUS critical for sustainability. Integrating CCUS into plant operations ensures significant reductions in carbon emissions, supporting the industry’s Net Zero goals. This transformative technology will also play a vital role in combating climate change and aligning with global sustainability standards.”
The relevance of CCUS in cement manufacturing stems from the inherent emissions produced during the calcination of limestone, a process that accounts for nearly 60 per cent of total CO2 emissions in cement plants. Unlike other industries where CO2 emissions result primarily from fuel combustion, cement production generates a significant portion of its emissions as an unavoidable byproduct. This makes CCUS a particularly attractive solution for the sector, as it offers a pathway to drastically cut emissions without requiring a complete overhaul of existing production processes.
According to a Niti Ayog report from 2022, the adverse climatic effects of a rise in GHG emissions and global temperatures rises are well established and proven, and India too has not been spared from adverse climatic events. As a signatory of the Paris Agreement 2015, India has committed to reducing emissions by 50 per cent by the year 2050 and reaching net zero by 2070. Given the sectoral composition and sources of CO2 emissions in India, CCUS will have an important and integral role to play in ensuring India meets its stated climate goals, through the deep decarbonisation of energy and CO2 emission intensive industries such as thermal power generation, steel, cement, oil & gas refining, and petrochemicals. CCUS can enable the production of clean products while utilising our rich endowments of coal, reducing imports and thus leading to an Indian economy. CCUS also has an important role to play in enabling sunrise sectors such as coal gasification and the nascent hydrogen economy in India.
The report also states that India’s current cement production capacity is about 550 mtpa, implying capacity utilisation of about 50 per cent only. While India accounts for 8 per cent of global cement capacity, India’s per capita cement consumption is only 235 kg, and significantly low compared to the world average of 500 kg per capita, and China’s per capita consumption of around 1700 kg per capita. It is expected that domestic demand, capacity utilisation and per capita cement consumption will increase in the next decade, driven by robust demand from rapid industrialisation and urbanisation, as well as the Central Government’s continued focus on highway expansions, investment in smart cities, Pradhan Mantri Awas Yojana (PMAY), as well as several state-level schemes.

Key Challenges in Integrating CCUS in Cement Plants Spatial Constraints and Infrastructure Limitations
One of the biggest challenges in integrating CCUS into existing cement manufacturing facilities is space availability. Most cement plants were designed decades ago without any consideration for carbon capture systems, making retrofitting a complex and costly endeavour. Many facilities are already operating at full capacity with limited available space, and incorporating additional carbon capture equipment requires significant modifications.
“The biggest challenge we come across repeatedly is that most cement manufacturing facilities were built decades ago without any consideration for carbon capture systems. Consequently, one of the primary hurdles is the spatial constraints at these sites. Cement plants often have limited space, and retrofitting them to integrate carbon capture systems can be very challenging. Beyond spatial issues, there are additional considerations such as access and infrastructure modifications, which further complicate the integration process. Spatial constraints, however, remain at the forefront of the challenges we encounter” says Nathan Ashcroft, Carbon Director, Stantec.
High Capital and Operational Costs CCUS technologies are still in the early stages of large-scale deployment, and the costs associated with implementation remain a significant barrier. Capturing, transporting, and storing CO2 requires substantial capital investment and increases operational expenses. Many cement manufacturers, especially in developing economies, struggle to justify these costs without clear financial incentives or government support.
Regulatory and Policy Hurdles The regulatory landscape for CCUS varies from region to region, and in many cases, clear guidelines and incentives for deployment are lacking. Establishing a robust framework for CO2 storage and transport infrastructure is crucial for widespread CCUS adoption, but many countries are still in the process of developing these policies.

Waste Heat Recovery and Energy Optimisation in CCUS Implementation
CCUS technologies require significant energy inputs, primarily for CO2 capture and compression. One way to offset these energy demands is through the integration of waste heat recovery (WHR) systems. Cement plants operate at high temperatures, and excess heat can be captured and converted into usable energy, thereby reducing the additional power required for CCUS. By effectively utilizing waste heat, cement manufacturers can lower the overall cost of carbon capture and improve the economic feasibility of CCUS projects.
Another critical factor in optimising CCUS efficiency is pre-treatment of flue gases. Before CO2 can be captured, flue gas streams must be purified and cleaned to remove particulates and impurities. This additional processing can lead to better capture efficiency and lower operational costs, ensuring that cement plants can maximise the benefits of CCUS.

Opportunities for Utilising Captured CO2 in the Cement Sector
While storage remains the most common method of handling captured CO2, the utilising aspect presents an exciting opportunity for the cement industry. Some of the most promising applications include:

Carbonation in Concrete Production
CO2 can be injected into fresh concrete during mixing, where it reacts with calcium compounds to form solid carbonates. This process not only locks away CO2 permanently but also enhances the compressive strength of concrete, reducing the need for additional cement.

Enhanced Oil Recovery (EOR) and Industrial Applications
Captured CO2 can be used in enhanced oil recovery (EOR), where it is injected into underground oil reservoirs to improve extraction efficiency. Additionally, certain industrial processes, such as urea production and synthetic fuel manufacturing, can use CO2 as a raw material, creating economic opportunities for cement producers.

Developing Industrial Hubs for CO2 Utilisation
By co-locating cement plants with other industrial facilities that require CO2, manufacturers can create synergies that make CCUS more economically viable. Industrial hubs that facilitate CO2 trading and re-use across multiple sectors can help cement producers monetise their captured carbon, improving the financial feasibility of CCUS projects.

Strategic Considerations for Large-Scale CCUS Adoption Early-Stage Planning and Feasibility Assessments
Cement manufacturers looking to integrate CCUS should begin with comprehensive feasibility studies to assess site-specific constraints, potential CO2 storage locations, and infrastructure requirements. A phased implementation strategy, starting with pilot projects before full-scale deployment, can help mitigate risks and optimise
system performance.
Neelam Pandey Pathak, Founder and CEO, Social Bay Consulting and Rozgar Dhaba says, “Carbon Capture, Utilisation and Storage (CCUS) has emerged as a transformative technology that holds the potential to revolutionise cement manufacturing by addressing its carbon footprint while supporting global sustainability goals. CCUS has the potential to be a game-changer for the cement industry, which accounts for about seven to eight per cent of global CO2 emissions. It addresses one of the sector’s most significant challenges—emissions from clinker production. By capturing CO2 at the source and either storing it or repurposing it into value-added products, CCUS not only reduces
the carbon footprint but also creates new economic opportunities.”

Government Incentives and Policy Support
For CCUS to achieve widespread adoption, governments must play a crucial role in providing financial incentives, tax credits, and regulatory frameworks that support carbon capture initiatives. Policies such as carbon pricing, emission reduction credits, and direct subsidies for CCUS infrastructure can make these projects more economically viable for cement manufacturers.
Neeti Mahajan, Consultant, E&Y India says, “With new regulatory requirements coming in, like SEBI’s Business Responsibility and Sustainability Reporting for the top 1000 listed companies, value chain disclosures for the top 250 listed companies, and global frameworks to reduce emissions from the cement industry – this can send stakeholders into a state of uncertainty and unnecessary panic leading to a semi-market disruption. To avoid this, communication on technologies like carbon capture utilisation and storage (CCUS), and other innovative tech technologies which will pave the way for the cement industry, is essential. Annual reports, sustainability reports, the BRSR disclosure, and other broad forms of communication in the public domain, apart from continuous stakeholder engagement internally to a company, can go a long way in redefining a rather traditional industry.”

The Role of Global Collaborations in Scaling CCUS
International collaborations will be essential in driving CCUS adoption at scale. Countries that have made significant progress in CCUS, such as Canada, Norway, and the U.S., offer valuable insights and technological expertise that can benefit emerging markets. Establishing partnerships between governments, industry players, and research institutions can help accelerate technological advancements and facilitate knowledge transfer.
Raj Bagri, CEO, Kapture, says “The cement industry can leverage CCUS to capture process and fuel emissions and by using byproducts to replace existing carbon intensive products like aggregate filler or Portland Cement.”
Organisations like the Carbon Capture Knowledge Centre in Saskatchewan provide training programs and workshops that can assist cement manufacturers in understanding CCUS implementation. Additionally, global symposiums and industry conferences provide platforms for stakeholders to exchange ideas and explore collaborative opportunities.
According to a Statista report from September 2024, Carbon capture and storage (CCS) is seen by many experts as a vital tool in combating climate change. CCS technologies are considered especially important for hard-to-abate industries that cannot be easily replaced by electrification, such as oil and gas, iron and steel, and cement and refining. However, CCS is still very much in its infancy, capturing just 0.1 per cent of global CO2 emissions per year. The industry now faces enormous challenges to reach the one billion metric tons needing to be captured and stored by 2030 and live up to the hype.
The capture capacity of operational CCS facilities worldwide increased from 28 MtCO2 per year in 2014 to around 50 MtCO2 in 2024. Meanwhile, the capacity of CCS facilities under development or in construction has risen to more than 300 MtCO2 per year. As of 2024, the United States had the largest number of CCS projects in the pipeline, by far, with 231 across various stages of development, 17 of which were operational. The recent expansion of CCS has been driven by developments in global policies and regulations – notably the U.S.’ Inflation Reduction Act (IRA) – that have made the technology more attractive to investors. This has seen global investment in CCS more than quadruple since 2020, to roughly $ 11 billion in 2023.

The Future of CCUS in the Cement Industry
As technology advances and costs continue to decline, CCUS is expected to play a crucial role in the cement industry’s decarbonisation efforts. Innovations such as cryogenic carbon capture and direct air capture (DAC) are emerging as promising alternatives to traditional amine-based systems. These advancements could further enhance the feasibility and efficiency of CCUS in cement manufacturing.
In conclusion, while challenges remain, the integration of CCUS in the cement industry is no longer a question of “if” but “when.” With the right mix of technological innovation, strategic planning, and policy support, CCUS can help the cement sector achieve net zero emissions while maintaining its role as a vital component of global infrastructure development.

Concrete

Driving Sustainability Through Innovation

Published

on

By

Shares

The 15th Cement Expo 2025 will spotlight India’s cement industry’s growth, innovation, and sustainability, showcasing cutting-edge solutions for a greener future.

The cement industry in India, the second-largest in the world, is on the cusp of remarkable growth as it continues its transition toward sustainability, innovation, and expansion. The 15th Cement Expo 2025, scheduled for November 12-13, 2025, at the Yashobhoomi Convention Centre in Delhi, will be the premier event where the industry’s foremost stakeholders converge to explore state-of-the-art technologies and solutions.
Co-located with the 11th Indian Cement Review Conference and the 9th Indian Cement Review Awards, the expo promises to be a pivotal event for professionals in the cement, construction, and infrastructure sectors. This year’s theme, “Driving Sustainability Through Technology,” highlights the sector’s commitment to decarbonisation, efficiency, and technological advancement. With India poised to add 80 to 100 million tonnes of cement capacity by 2024-25, the event will address the urgent need for sustainable, low-carbon solutions to meet the growing demand.
Before we look ahead to the 15th Cement Expo, let’s reflect on the remarkable success of the Cement Expo Forum 2025, held on March 5-6, 2025, in Hyderabad. The event attracted over 500 industry professionals and featured groundbreaking discussions on sustainability, logistics, and decarbonisation. Key sponsors and partners, such as ABB, Gebr Pfeiffer, JK Cement, and Flender Drives, showcased their latest innovations, contributing to the forum’s success.
Pratap Padode, Founder and President of First Construction Council, spoke at the event, noting, “The PPP pipeline is complemented by a provision of Rs 1.5 trillion in interest-free loans to states, earmarked for capital expenditure. With this, we have a solid plan in place. What needs to be done is to ensure that the PPP actually takes off as envisaged. To make this happen, trust must be established, and policies must be investor-friendly. Telangana, in this regard, has demonstrated ease of doing business exceptionally well.”
He added, “These financial injections into the infrastructure sector are expected to create a ripple effect, driving demand for cement as a key material in construction and development projects. The growing demand for cement is evident as infrastructure projects continue to rise across the country.”
The forum also provided invaluable networking opportunities, with attendees gaining insights from over 35 distinguished speakers and connecting with more than 50 exhibitors. The event laid a strong foundation for the upcoming Expo, showcasing the significant strides the cement industry is making toward a greener, more efficient future.
The 15th Cement Expo 2025 will focus on advancing the industry’s next big step toward sustainable growth. With India’s cement sector making significant progress in decarbonisation, a key focus will be on technologies and innovations that support carbon capture, low-carbon cement production, and energy-efficient solutions.
The expo will feature over 50 exhibitors representing all aspects of the cement industry. Whether you are a manufacturer, raw material supplier, technology provider, or logistics partner, the Cement Expo 2025 offers an ideal platform to showcase your products and solutions. Attendees will have the opportunity to explore the latest advancements in cement production technology, automation, logistics, and environmental solutions, all geared toward building a greener and more sustainable future.
Exhibitor profiles will include cement manufacturers, raw material suppliers, technology and automation solutions providers, environmental and sustainability solutions providers, cement packaging and logistics, construction equipment manufacturers, admixtures and chemical suppliers, and concrete reinforcement and structural systems.

11th Indian Cement Review Conference

Held alongside the Expo, the 11th Indian Cement Review Conference will offer delegates invaluable insights into the latest trends and innovations shaping the cement industry. Focusing on sustainability, the conference will address critical issues such as energy efficiency, plant design, and emerging technologies like carbon capture and automation.
Industry leaders will share their expertise in technical forums, while specialised activities, such as plant tours and energy audits, will provide practical guidance on improving operations and efficiency. This is a prime opportunity to network with industry stakeholders, gain hands-on experience with new technologies, and acquire actionable knowledge to enhance your business.

9th Indian Cement Review Awards

The 9th Indian Cement Review Awards will recognise the fastest-growing cement companies and industry leaders for their outstanding contributions to the sector. This prestigious event will serve as a platform to honour the pioneers of innovation, sustainability, and performance within the cement industry, highlighting the sector’s commitment to growth and environmental responsibility.
As we look forward to the 15th Cement Expo 2025, we invite you to join us for two exciting days of networking, learning, and innovation. This event offers a unique opportunity to be part of the next wave of growth and sustainability in the global cement sector.

Continue Reading

Concrete

Transforming Interior Spaces: Trendy Wall Putty Designs to Enhance Your Home

Published

on

By

Shares
When it comes to interior design, walls are more than just structural elements—they serve as the canvas for self-expression, setting the mood and personality of a space. While paint and wallpaper have long been the go-to choices for wall finishes, wall putty is emerging as a game-changer in home décor. With its smooth finish, durability, and versatility, wall putty opens a world of creative possibilities. In this article, we explore trendy wall putty designs that can elevate your interiors, turning ordinary walls into extraordinary design statements.
Wall Putty is a Must-Have in Modern Homes
Wall putty is no longer just a preparatory material for painting; it plays a significant role in modern home aesthetics. It enhances the finish of walls, making them smoother, stronger, and resistant to cracks and moisture. Additionally, high-quality putty like Birla White Wall Putty ensures better paint adhesion, resulting in long-lasting vibrancy.
Beyond its functional benefits, wall putty allows homeowners to experiment with textures and patterns, giving walls a designer touch without the hassle of high-maintenance materials like stone or wood. Whether you’re aiming for a minimalist, rustic, or ultra-modern aesthetic, wall putty designs can help achieve the look effortlessly.
Trendy Wall Putty Designs for Stunning Interiors
1. Textured Wall Putty for a Tactile Appeal
Textured walls are a popular interior trend, adding depth and dimension to living spaces. By using wall putty, homeowners can create a variety of textures, including:
  • Rustic Texture: Mimicking natural stone or aged plaster for an earthy, vintage feel.
  • Wave Patterns: Adding a sense of movement and fluidity to walls, perfect for living rooms and entryways.
  • Sand Finish: A subtle grainy effect that provides a sophisticated touch.
Textured putty walls work exceptionally well in accent areas, such as behind a television unit or as a backdrop for artwork.
2. Sleek and Smooth Walls for a Luxurious Look
For those who prefer a refined and elegant aesthetic, a smooth putty finish is ideal. A flawlessly smooth wall creates a premium appearance, amplifying the impact of high-quality paints. Opting for a high-performance putty like Birla White WallCare Putty ensures a glass-like finish that complements modern and contemporary interiors.
This design is perfect for:
  • Monochrome interiors where walls serve as a sleek backdrop.
  • High-gloss or matte-painted walls that need a seamless base.
  • Spaces with minimal décor where the walls themselves make a statement.
3. Geometric & Abstract Patterns for a Contemporary Edge
Wall putty can be artistically applied to create striking geometric or abstract patterns, adding a unique character to interiors.
Popular designs include:
  • Chevron or Herringbone: A dynamic, sophisticated look that pairs well with both modern and mid-century décor.
  • 3D Raised Panels: Using putty to craft subtle raised patterns, adding a sculptural effect to the wall.
  • Asymmetrical Shapes: For a bold and avant-garde touch.
  • These patterns work best in bedrooms, study areas, or accent walls in open spaces.
4. Venetian Plaster for a Luxe European Aesthetic
Venetian plaster, an age-old technique, is making a grand comeback in modern interiors. With wall putty, you can achieve this exquisite marble-like effect, which exudes luxury and timeless charm.
This design works well for:
  • Statement walls in living rooms and foyers.
  • Elegant dining areas where a touch of opulence is desired.
  • Boutique-style bedrooms with a rich, textured finish.
A high-quality white cement-based putty can replicate this effect beautifully, making the walls look naturally luminous.
5. Dual-Tone or Ombre Walls for a Soft Gradient Effect
The ombre effect, a gradient transition between two colors, is a trendy and artistic way to enhance interiors. When applied over a smooth wall putty base, the gradient blends seamlessly, offering a dreamy, watercolor-like appeal.
This style is perfect for:
  • Children’s rooms or play areas, creating a fun and dynamic atmosphere.
  • Bedrooms with a soothing pastel gradient for a calming effect.
  • Dining spaces where a bold color fade adds character.
6. Metallic & Glossy Finishes for a Chic Look
For homeowners who love glamour and sophistication, combining wall putty with metallic paints or glossy finishes can create a high-end appeal. The smooth base of putty enhances the reflective qualities of metallic shades like gold, silver, or bronze, resulting in an opulent and dramatic effect.
Best suited for:
  • Luxurious master bedrooms and dressing areas.
  • Accent walls in dining rooms or home bars.
  • Commercial spaces like boutiques and salons.
How to Achieve the Best Wall Putty Designs
  • Choose the Right Putty: Opt for a premium wall putty like Birla White WallCare Putty to ensure durability, a smooth finish, and long-lasting appeal.
  • Prepare the Surface: Ensure the walls are clean, dry, and free from loose particles before application.
  • Apply in Layers: Depending on the design, putty can be applied in single or multiple layers for the desired effect.
  • Use the Right Tools: Trowels, spatulas, sponges, or patterned rollers help create specific textures and patterns.
  • Seal with Paint or Polish: Once the putty is dry, finishing it with paint, polish, or protective coatings enhances its aesthetic and durability.
Conclusion
Wall putty has evolved beyond its traditional role, now serving as a medium for creative interior design. Whether you prefer textured finishes, sleek smooth walls, or artistic patterns, wall putty designs can elevate your home’s aesthetics while offering durability and elegance. By selecting the  best putty for wall and application technique, you can transform your interior walls into stunning masterpieces, setting the perfect backdrop for your lifestyle.
For high-quality wall finishes that stand the test of time, Birla White WallCare Putty ensures both beauty and performance, making your dream interiors a reality.

Continue Reading

Concrete

Dalmia Bharat to add 6 MnTPA Cement Capacity in Maharashtra and Karnataka

Published

on

By

Shares
  • Investment in alignment with the strategic goal of becoming a PAN India company and achieving 75 MnT capacity by FY28
  • Increases capacity primarily to meet growing demand in Western India along with existing regions

Dalmia Bharat Limited, one of India’s leading cement companies, through its subsidiaries, has announced a strategic investment of approximately Rs 3,520 Crore in the states of Maharashtra and Karnataka. As part of this initiative, the company will establish a 3.6 MnTPA clinker unit and a 3 MnTPA grinding unit at its existing Belgaum plant, Karnataka coupled with a new greenfield split grinding unit with a capacity of 3 MnTPA in Pune, Maharashtra. The capex will be funded through a combination of debt and internal accruals. With this expansion, Dalmia Bharat’s total installed cement capacity will increase to 55.5 MnTPA, after considering the ongoing expansion of 2.9 MnT at Assam and Bihar. These new units are expected to be commissioned by Q4 FY27.

The Belgaum Grinding Unit will cater to the underserved Southern Maharashtra markets while enhancing share in the existing region by improving penetration. On the other hand, Pune Grinding Unit will entirely cater to the untapped Western Maharashtra markets. The initiative is a part of the company’s vision to be a PAN India player and achieve 75 MnTPA capacity by FY28 and 110-130 MnT by 2031.

Speaking on the development, Mr. Puneet Dalmia, Managing Director & CEO, Dalmia Bharat Limited, said, “This investment is a significant step in our Phase II expansion strategy, bringing us closer to strengthen our position as a pan-India player and to reach intermittent goal of 75 MnT capacity by FY28. The increase in our production capacity is primarily to meet the growing infrastructure demand in Western India.” He further added, “We remain committed in realising our goals of capacity expansion, while staying focused on operational excellence and creating long-term value for our stakeholders. The capacity additions will also continue to be in line with Dalmia Bharat’s sustainability-driven approach and its commitment to supporting India’s infrastructure and development goals.”

About Dalmia Bharat: Founded in 1939, Dalmia Bharat Limited (DBL) (BSE/NSE Symbol: DALBHARAT) is one of India’s pioneering cement companies headquartered in New Delhi. With a growing capacity, currently pegged at 46.6 MnT, Dalmia Bharat Limited (including its subsidiaries) is the fourth-largest cement manufacturing company in India by installed capacity. Spread across 10 states and 15 manufacturing units.  Dalmia Cement (Bharat) Limited, a subsidiary of Dalmia Bharat Limited, prides itself at having one of the lowest carbon footprint in the cement world globally. It is the first cement company to commit to RE100, EP100 and EV100 (first triple joiner) – showing real business leadership in the clean energy transition by taking a joined-up approach.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds