Concrete
Optimising Pyroprocessing with Refractories
Published
3 months agoon
By
Roshna
Refractories are vital to cement manufacturing, ensuring efficiency, durability, and sustainability in pyroprocessing. Innovations in materials, technology and recycling are transforming the industry while advancing its environmental goals.
The cement industry operates in a challenging environment of extreme temperatures, chemical reactions, and mechanical stresses, particularly during pyroprocessing. As the backbone of cement manufacturing, pyroprocessing transforms raw materials into clinker by subjecting them to temperatures of up to 1450°C. Refractories play a vital role in ensuring the efficiency, durability, and sustainability of this process by protecting equipment and enabling the process to endure hostile conditions.
This article explores the critical role of refractories in pyroprocessing, the advancements in technology improving efficiency, and the integration of sustainability in cement manufacturing through innovative refractory solutions.
Fundamentals of pyroprocessing and refractories
Pyroprocessing is a key stage in cement manufacturing, encompassing calcination, sintering, and fusion processes in high-temperature environments. The rotary kiln, the centrepiece of this stage, requires robust refractory linings to withstand extreme conditions, including high heat, abrasion, and chemical corrosion.
Refractories, crafted from materials like fireclay, high alumina, magnesia, and dolomite, form the protective shield of kilns, preheaters, and coolers. These materials are tailored to specific zones within the kiln, such as the:
- Burning zone: Magnesia-spinel and high alumina bricks are commonly used for their ability to resist extreme heat and mechanical stress.
- Preheater zone: Alumina-silicate refractories are selected for their thermal shock resistance and insulating properties.
- Cooling zone: Abrasion-resistant castables provide durability under high mechanical wear.
Mayank Gugalia, Director, Mahakoshal Refractories, says, “Our company focuses exclusively on alumina refractories, setting us apart from competitors. While others may diversify into basic refractories or flow controls, we prioritise becoming the best in the alumina segment. In terms of volume, we are among India’s largest manufacturers, and our quality standards have earned us a leading position domestically and in export markets, including the Middle East and Europe. Our commitment to sustainability further strengthens our reputation as a trusted and environmentally responsible manufacturer.”
For example, an Indian cement plant reported a 10 per cent reduction in fuel consumption after upgrading to magnesia-spinel bricks in the burning zone, demonstrating how material choices directly impact operational efficiency.
Challenges and advances in refractory performance
Refractories face multiple stressors, including:
- Chemical corrosion: Aggressive reactions from alternative fuels and raw materials can degrade linings.
- Thermal shock: Rapid temperature fluctuations can cause cracking and spalling.
- Mechanical wear: Continuous abrasion from clinker and raw materials erodes refractory surfaces.
Increased use of alternative fuels such as industrial waste adds another layer of complexity. These fuels can introduce unburned residues and chemical byproducts, accelerating refractory degradation.
Mayank Kamdar, Marketing Director, Lilanand Magnesite, says, “One of the biggest challenges in the refractory industry is the reliance on natural mineral resources. As these resources are finite, their quality can vary, which poses a challenge in ensuring consistent product quality. To address this, we explore new sources for raw materials and also develop synthetic products that offer consistent quality. By doing so, we ensure that our products meet the high standards required by our customers, even as natural resources become scarcer.”
“We are always striving to improve our products through continuous research and development. Currently, one of the key areas of focus is adapting our products to the increasing use of alternative fuels and municipal waste in cement kilns. Over the years, we have developed specialised products designed to withstand the challenging environments created by the burning of alternative fuels. For example, we offer anti-coating castables that are highly durable and suited for use in areas such as the kiln inlet, where AFR and municipal waste are burned,”
he adds.
To counter these challenges, the industry has developed advanced solutions:
- Active spinel technology: Improves resistance to slag attack and enhances thermal stability, especially in burning zones.
- Nanotechnology in refractories: Nano-bonded castables demonstrate up to 30 per cent higher strength, better insulation and resistance to thermal shocks.
- IS impregnation: This innovative method enhances density and corrosion resistance in alumina-based refractories, prolonging their lifespan.
Shreesh A Khadilkar, Consultant and Advisor, and Former Director Quality and Product Development, ACC, explains, “Reducing conditions can have substantial effects on clinker quality like problems with sulphur integration, Alite decomposition (strength reduction), conversion from C4AF to C3A (acceleration of setting), change in color of cement (from greenish grey to brownish), the detection of reducing conditions could be done using ‘Magotteaux Test’, it is important to assess the reducing conditions whether internal or peripheral, would indicate possible reasons.”
“Internal reducing conditions indicate that due to changes in liquid viscosity the larger clinker nodules are black from outside but yellow to brownish in the internal core. Such clinker nodules roll down from the transition zone with an unburnt core which disintegrates on cooling due to gamma C2S. Such nodules have high free lime, delocalised or peripheral reducing conditions due to larger size of solid AFR component (shredded size) showing CO peaks,”he adds.
For example, a cement plant using high-chrome refractories successfully transitioned to using 70 per cent alternative fuels, withstanding the increased chemical stress and maintaining operational reliability.
Role of technology in pyroprocessing
Modern technologies are revolutionising pyroprocessing by making it more efficient and precise. Key advancements include:
- Digital monitoring and IoT integration: Smart refractories embedded with sensors provide real-time data on temperature, stress and wear patterns. This enables predictive maintenance, reducing unplanned downtimes and extending the life of kiln linings.
- Simulation and modelling tools: Computational Fluid Dynamics (CFD) and thermodynamic modelling help optimise kiln design and refractory placement. These tools predict thermal loads and chemical reactions, ensuring that refractory materials are matched precisely to process requirements.
- Robotic installation: Automated systems for lining kilns ensure uniform installation, reducing human error and improving refractory performance.
- Artificial intelligence (AI): AI-driven systems analyse process data to optimise fuel usage, kiln rotation speeds, and temperature profiles, enhancing both energy efficiency and refractory durability.
“Technology plays a critical role in achieving our goals and supporting the cement industry. As I mentioned earlier, the reduction in specific refractory consumption is driven by two key factors: refining customer processes and enhancing refractory quality. By working closely as partners with our customers, we gain a deeper understanding of their evolving needs, enabling us to continuously innovate. For example, in November 2022, we established a state-of-the-art research centre in India for IFGL, something we didn’t have before,” says Arasu Shanmugam, Director and CEO India, IFGL.
“The primary objective of this centre is to leverage in-house technology to enhance the utilisation of recycled materials in manufacturing our products. By increasing the proportion of recycled materials, we reduce the depletion of natural resources and greenhouse gas emissions. In essence, our focus is on developing sustainable, green refractories while promoting circularity in our business processes. This multi-faceted approach ensures we contribute to environmental sustainability while meeting the industry’s demands,” he elaborates.
Such innovations help cement plants operate at peak efficiency, improving both productivity and sustainability.
Sustainability in cement manufacturing
The cement industry is under growing pressure to reduce its carbon footprint, and pyroprocessing plays a crucial role in achieving sustainability goals. Refractories, often overlooked in this context, are key enablers of sustainable practices.
“IKN plays a pivotal role in enhancing the operational efficiency of cement plants while aligning with global sustainability objectives. Historically, clinker coolers required frequent maintenance, with intervals as short as five to six months. This led to regular shutdowns, which disrupted operations and increased costs. With IKN’s advanced cooling solutions, cement plants can now operate their coolers for extended periods without significant maintenance. Our coolers are not only more reliable but also consume less power, which directly reduces energy costs. Additionally, the high heat recuperation efficiency of our systems ensures that less fuel is required for the cement-making process, contributing to a lower carbon footprint. Sustainability is embedded in our solutions. By reducing energy consumption, optimising processes, and minimising maintenance, we help our customers achieve their operational goals while supporting their commitment to environmental stewardship,” says Madhusudan Rasiraju, Country Head, IKN India.
Refractory recycling and circular economy: Used refractory linings are now being recycled to recover valuable raw materials like alumina and magnesia. This reduces waste and conserves natural resources. For instance, a medium-sized cement plant can recycle up to 30 per cent of its refractory waste annually, cutting down disposal costs and environmental impact.
Energy efficiency through advanced materials: High-performance refractories with low thermal conductivity reduce heat loss from kilns, improving energy efficiency. Magnesia bricks, for example, retain heat better, lowering fuel consumption by as much as 15 per cent.
Compatibility with alternative fuels: Sustainability efforts often involve transitioning to alternative fuels such as biomass and waste-derived fuels. Advanced refractory technologies are designed to withstand the chemical and thermal stresses associated with these fuels, enabling their wider adoption.
Low-carbon manufacturing of refractories: Manufacturers are now adopting eco-friendly processes to produce refractories. Innovations like solar calcination for raw materials and carbon-neutral binders are setting new benchmarks for sustainability.
“Sustainability is a key priority for us, and we have been actively engaged in decarbonisation efforts for many years. We launched our sustainability program five years ago, with a clear focus on reducing the environmental impact of our operations. Over time, we have become leaders in this space, particularly with the advent of hydrogen technology. We were one of the pioneers in the hydrogen sector, not only in developing hydrogen combustion solutions but also in the liquefaction of hydrogen for use in various industrial applications. In fact, we were the first company in India to sell a hydrogen burner, which was used for a 52-megawatt boiler application. Beyond hydrogen, we are also focused on finding alternative solid fuels for cement manufacturing. We are currently working on developing hybrid technologies that combine hydrogen, alternative solid fuels, and fossil fuels. This combination is crucial for reducing the carbon footprint in the cement industry. We are continuously investing in research and development to create innovative solutions that can accelerate the global shift toward decarbonisation,” says Rahul Rajgor, Managing Director, Fives Combustion.
By integrating these practices, the cement industry is making strides toward achieving net-zero emissions while maintaining operational efficiency.
Economic and operational impact
While refractory materials constitute only 2-3 per cent of total cement plant costs, their impact on efficiency and profitability is immense. Proper refractory selection, combined with advanced installation and maintenance techniques, can save plants hundreds of thousands of dollars annually. For example, extending the lifespan of linings in the preheater zone by six months can reduce maintenance costs by $200,000. Similarly, using high-quality castables in cooling zones has been shown to decrease clinker cooling times, boosting production output.
Conclusion
Refractories are the unsung heroes of cement manufacturing, ensuring the efficiency and resilience of pyroprocessing operations. Advances in technology and material science continue to push the boundaries of refractory performance, while sustainability initiatives are transforming how refractories are produced, used, and recycled.
As the cement industry evolves to meet global demands for efficiency and sustainability, refractories will remain at the forefront, enabling the industry to tackle its most critical challenges with innovation and precision. By prioritising high-quality materials, embracing technology and adopting sustainable practices, the cement industry can secure a future that balances profitability with environmental responsibility.
– Kanika Mathur

Concrete
UltraTech Cement Ventures into Wires and Cables with Rs 18 Bn Plan
The New Gujarat Plant Marks Expansion in Construction Value Chain.
Published
1 week agoon
February 28, 2025By
admin
UltraTech Cement has announced its foray into the wires and cables segment, further expanding its footprint in the construction value chain. The Aditya Birla Group company will invest Rs 18 billion in setting up a state-of-the-art manufacturing facility near Bharuch, Gujarat, which is expected to commence operations by December 2026. An initial investment of Rs 1 billion has already been made towards the project.
The UltraTech board of directors approved the strategic expansion, reaffirming the company’s commitment to strengthening its position as a comprehensive building solutions provider. This move follows last year’s entry into the decorative paints sector with the launch of Birla Opus, signalling the company’s diversification beyond its core cement business.
Strategic Market Entry and Growth Potential
UltraTech Cement aims to tap into the growing demand for wires and cables across residential, commercial, infrastructure, and industrial sectors. The wires and cables industry in India has witnessed a robust revenue growth of approximately 13% between FY2019 and FY2024, driven by rising urbanisation, infrastructure development, and increasing adoption of branded products over unorganised players.
UltraTech believes its entry into this high-growth sector will be value accretive for its shareholders, presenting a compelling opportunity to establish a credible, large-scale presence in the organised market.
Core Cement Business Remains a Priority
Despite this diversification, UltraTech Cement remains firmly committed to its core cement business. The company recently achieved a milestone cement production capacity of over 175 million tonnes per annum (mtpa) in India. It continues to strengthen its leadership position through strategic acquisitions and capacity expansions, especially amid intense competition from Ambuja Cements, owned by the Adani Group.
Industry Outlook: A Diversified Future for Construction Materials
The construction materials industry in India is witnessing rapid evolution, with companies increasingly diversifying their portfolios to cater to a growing and dynamic market. With infrastructure development and urbanisation on the rise, demand for complementary building materials such as wires, cables, and paints is expected to surge. UltraTech’s strategic expansion aligns with this trend, positioning it to capitalise on emerging opportunities while reinforcing its leadership in cement manufacturing.
Concrete
Star Cement to Invest Rs 32 Bn in Assam for New Clinker Plant
The MoU was signed at Advantage Assam 2.0 to boost state’s industrial growth.
Published
1 week agoon
February 28, 2025By
admin
In a significant boost to Assam’s industrial expansion, Star Cement Ltd has announced a Rs 32 billoninvestment to establish a state-of-the-art cement clinker and grinding plant in the region. The commitment was formalised with the signing of a Memorandum of Understanding (MoU) between the Assam government and the company on the concluding day of the Advantage Assam 2.0 Investment and Infrastructure Summit 2025.
Chief Minister Himanta Biswa Sarma, addressing the gathering, lauded the commitment of leading investors towards the state’s economic progress. He underscored that such projects reinforce Assam’s position as an emerging industrial hub. “The investment commitments we have received reflect Assam’s potential as a centre for industries and innovation. These projects will significantly contribute to our vision of a developed and self-reliant Assam,” he stated.
This ambitious proposal by Star Cement aligns with Assam’s broader vision of fostering large-scale industrialisation, particularly in key sectors such as manufacturing, infrastructure, and green energy. The project is expected to create significant employment opportunities and contribute to the state’s economic landscape.
Surge in Investments Across Sectors
Beyond Star Cement’s investment, the Assam government secured several other strategic MoUs during the summit. Among them was an agreement with Matheson Hydrogen Lvt Ltd, which will set up a Rs 15 billion hydrogen and steam generation facility, marking a crucial step in Assam’s transition towards clean energy.
Additionally, the state signed a Rs 5 billion MoU with Global Health Ltd to bolster healthcare infrastructure, while ITE Education Services partnered with the government to enhance educational facilities through two non-financial agreements.
Over the two-day event, Assam witnessed the signing of a record-breaking 164 MoUs spanning 15 sectors, reinforcing its status as a promising investment destination. The chief minister hinted at further agreements being finalised, underscoring the growing confidence of investors in Assam’s potential.
Market Outlook: Assam’s Industrial and Economic Trajectory
The surge in investments at the Advantage Assam 2.0 summit highlights the state’s evolving business landscape. With an emphasis on industrial diversification, infrastructure development, and sustainable energy solutions, Assam is poised to emerge as a key player in India’s economic growth story. The increasing participation of major companies across various sectors signals a robust economic trajectory, further solidifying Assam’s reputation as a preferred destination for investors seeking growth and innovation.
Concrete
Kaushalya Logistics Expands with New Varanasi Depot for Adani Cement
Kaushalya Logistics has been actively expanding its depot network to support cement manufacturers with faster turnaround times.
Published
2 weeks agoon
February 27, 2025By
admin
Kaushalya Logistics, a diversified conglomerate specializing in logistics for the cement industry, has expanded its operations with the commencement of services at the Varanasi (Uttar Pradesh) depot of ACC, a part of the Adani Cement Group. This development aligns with the company’s strategic growth objectives, aimed at enhancing supply chain efficiencies and streamlining cement distribution across key regions in India.
The Varanasi depot, established under the CCFA model, marks the company’s sixth location and eighth depot under this framework. Designed to manage over 20,000 metric tons of cement per month, the facility will contribute to improved inventory management and timely deliveries. As the cement industry experiences strong demand growth, efficient distribution networks play a critical role in ensuring seamless supply chain operations.
Kaushalya Logistics has been actively expanding its depot network to support cement manufacturers with faster turnaround times, optimized inventory management, and cost-effective logistics solutions. Through automation, digital tracking systems, and operational excellence, the company continues to enhance its service offerings, aligning with the evolving needs of the industry.
The launch of the Varanasi depot is part of Kaushalya Logistics’ aggressive expansion strategy, which has seen the establishment of 19 new depots in FY 2024-25. With this addition, the company’s total network has grown to 93 depots, significantly strengthening its market presence. This expansion further reinforces Kaushalya Logistics’ role as a key logistics partner for leading cement manufacturers, ensuring efficient and uninterrupted cement distribution across diverse regions in India.
News source: ANI

UltraTech Cement Ventures into Wires and Cables with Rs 18 Bn Plan

Star Cement to Invest Rs 32 Bn in Assam for New Clinker Plant

Jayesh Ranjan & Cement Expo Forum Leaders converge in Hyderabad

World’s First Book on Carbon Steel Sourcing Launched by Hero Steels CEO

Viva ACP Unveils Bricklyn: A Fusion of Tradition and Innovation

UltraTech Cement Ventures into Wires and Cables with Rs 18 Bn Plan

Star Cement to Invest Rs 32 Bn in Assam for New Clinker Plant

Jayesh Ranjan & Cement Expo Forum Leaders converge in Hyderabad

World’s First Book on Carbon Steel Sourcing Launched by Hero Steels CEO

Viva ACP Unveils Bricklyn: A Fusion of Tradition and Innovation
Trending News
-
Concrete1 month ago
Bangur Cement Launches Premium Product for Solid Bright Homes
-
Concrete4 weeks ago
UltraTech Expands Cement Capacity in West Bengal
-
Uncategorized4 weeks ago
Baldota Group to Set Up Rs 540 Billion Steel Plant in Koppal
-
Concrete4 weeks ago
Decarbonisation is a focus for our R&D effort