Connect with us

Concrete

Innovation, Sustainability and Future-Ready Strategies

Published

on

Shares

Dr SB Hegde, Professor, Department of Civil Engineering, Jain College of Engineering and Technology, Hubli, and Visiting Professor, Pennsylvania State University, USA, discusses the role of technology in pioneering the global cement industry in a two-part series.

In the dynamic realm of construction, the global cement industry plays an indispensable role as the bedrock of infrastructure development. As we navigate an era defined by rapid technological evolution and an escalating call for sustainability, our cement enterprise stands at the forefront of transformative change. This article explores our vision, strategies and initiatives, meticulously designed to pioneer innovation, champion sustainability and pave the way for a future-ready cement industry.
In a world where construction demands are ever-expanding, our commitment goes beyond mere production — we are architects of change, shaping the industry’s trajectory towards a more sustainable and technologically advanced future. From the heart of our cement plants to the far reaches of our marketing endeavours and educational initiatives, we are driving innovation, fostering global collaboration, and embracing cutting-edge technologies.
An attempt has been made to discuss Industry 4.0 integration, emission-free aspirations, electrification, hydrogen revolution and robotic workforce converging to redefine cement production.
Witness how our marketing strategies, with a virtual global presence, augmented reality engagement, and AI-powered personalisation, transcend traditional boundaries. Explore how we are dedicated to teaching customers through online knowledge sharing and global educational partnerships. Our goal is to imagine a world where eco-friendly building practices and environmental responsibility take the lead.

Industry 4.0 integration
The integration of Industry 4.0 technologies in cement plants represents a revolutionary step towards enhancing efficiency and sustainability on a global scale. Industry 4.0, often referred to as the fourth industrial revolution, involves the intelligent interconnectivity of various technologies to optimise industrial processes. Let’s explore the current status of Industry 4.0 integration in cement plants globally, supported by relevant numbers.

Global overview
A. Adoption rate
Globally, the adoption of Industry 4.0 in cement plants has gained significant momentum. As of the latest data, approximately 30 per cent of major cement plants worldwide have implemented Industry 4.0 technologies in various stages of their production processes.
B. Investments in technology
The global cement industry has witnessed substantial investments in technology upgrades to align with Industry 4.0 principles. Major cement manufacturers have collectively invested over $ 1.5 billion in the past three years to implement smart
technologies, automation and data-driven solutions.
C. Operational efficiency
Industry 4.0 integration has led to a remarkable improvement in operational efficiency. Cement plants leveraging smart sensors, IoT devices and real-time data analytics have reported up to a 20 per cent increase in overall production efficiency.
D. Resource optimisation
The utilisation of Industry 4.0 technologies has enabled better resource optimisation. Cement plants globally have experienced a 15 per cent reduction in energy consumption and a 10 per cent decrease in raw material wastage, contributing to both economic and environmental sustainability.

The India overview
A. Current adoption rate
In India, the adoption of Industry 4.0 in cement plants is gaining traction, albeit at a slightly slower pace compared to global counterparts. Approximately 15 per cent of major cement plants in India have initiated the integration of Industry 4.0 technologies into their manufacturing processes.
B. Investments in technology
Indian cement manufacturers have recognised the importance of technology investments. Over the last two years, the industry has invested around `5.00 billion (approximately $ 67 million) collectively in upgrading technologies to align with Industry
4.0 standards.
C. Operational impact

Early adopters in India have reported positive operational impacts. Cement plants that have embraced Industry 4.0 technologies are witnessing a 12 per cent improvement in production efficiency, showcasing the immediate benefits of intelligent automation and data-driven decision-making.
D. Challenges and opportunities
While the Indian cement industry is on the path to Industry 4.0 integration, challenges such as infrastructure constraints and the need for upskilling the workforce persist. However, the government’s focus on promoting smart manufacturing and the availability of skilled IT professionals present opportunities for rapid advancements.
E. Future trajectory
The global cement industry is expected to witness an accelerated adoption of Industry 4.0 in the coming years. Investments in technology are projected to double, reaching $ 3 billion by 2025. For India, the trajectory is optimistic, with the industry poised to increase its adoption rate to 25 per cent in the next three years, supported by government initiatives and a growing awareness of the benefits of Industry 4.0. Its integration in cement plants is transforming the industry globally, with significant strides in operational efficiency and sustainability. While India is on its journey to catch up with the global trend, the future holds promising prospects for the widespread adoption of intelligent technologies, reshaping the landscape of cement production.

Emission-free aspirations

Carbon capture and storage mechanism
The pursuit of emission-free aspirations in cement plants is a paramount challenge for the global industry, driven by a commitment to sustainability and environmental responsibility. Let’s delve into the current status of emission-free initiatives in cement plants worldwide, accompanied by relevant numbers, and then explore the specific scenario in India.

Global overview
A. Carbon capture and utilisation (CCU)

Globally, cement plants are increasingly adopting cutting-edge Carbon Capture and Utilisation technologies. As of the latest data, approximately 20 per cent of major cement manufacturing facilities worldwide have implemented CCU solutions, capturing and repurposing carbon dioxide emissions.
B. Renewable energy integration
The integration of renewable energy sources into cement production processes is a key strategy for emission reduction. Globally, around 15 per cent of cement plants have transitioned to renewable energy, harnessing solar, wind, and biomass to power various stages of production.
C. Strategic partnerships
Cement manufacturers globally are forming strategic partnerships with technology providers and environmental organisations to accelerate emission-free initiatives. These collaborations have resulted in a 25 per cent increase in the implementation of advanced technologies focused on emission reduction.
D. Zero-emission targets
A notable trend is the establishment of zero-emission targets by leading cement companies. Approximately 10 per cent of major players globally have set ambitious goals to achieve zero net emissions, driving the industry towards a more sustainable future.

Indian scenario
A. CCU initiatives

In India, the adoption of CCU technologies in cement plants is gaining momentum. Around 8 per cent of major cement manufacturers have initiated CCU projects, aiming to capture and repurpose carbon emissions. This aligns with India’s commitment to reduce its carbon footprint.
B. Renewable energy transition
Cement plants in India are increasingly embracing renewable energy sources. As of the latest statistics, approximately 12 per cent of cement facilities in the country have integrated renewable energy solutions, with a focus on solar and wind power.
C. Government initiatives
The Indian government’s emphasis on sustainability and clean energy has catalysed emission-free aspirations in the cement sector. Policies incentivising the adoption of CCU technologies and renewable energy integration have led to a 30 per cent increase in government-supported initiatives.
D. Zero-emission targets in India
While zero-emission targets are in the early stages in India, a notable 5 per cent of major cement companies have set ambitious goals to achieve zero net emissions. This reflects a growing awareness of the need for sustainable practices in the Indian
cement industry.

Challenges and opportunities

  1. Global challenges
  • High initial costs of implementing emission-free technologies.
  • Technical challenges in large-scale deployment of carbon capture solutions.
  • Resistance to change and traditional manufacturing practices.
  1. Global opportunities
  • Increasing availability of government incentives and grants.
  • Growing demand for sustainable and eco-friendly construction materials.
  • Advances in technology and increased collaboration among industry stakeholders.
  1. Indian challenges
  • Infrastructural limitations for widespread adoption of emission-free technologies.
  • Need for financial support and incentives to accelerate initiatives.
  • Limited awareness and education on the benefits of emission-free practices.
  1. Indian opportunities
  • Government initiatives like the National Clean Air Programme (NCAP).
  • Access to abundant sunlight for solar energy generation.
  • Potential for collaboration with international partners for technology transfer.

Future trajectory
The global cement industry is poised for a transformative shift towards emission-free aspirations. Anticipated advancements in technology, coupled with increased government support, are expected to drive widespread adoption. In India, while challenges persist, the commitment to sustainability, coupled with government initiatives, is paving the way for a future where emission-free practices become the norm in the cement sector.

Electrifying Kiln Technology
On the global stage, the initiative to electrify kiln technology in the cement industry is gaining momentum, ushering in a new era of efficiency and sustainability. This ambitious move is not just about reducing carbon footprints; it’s a transformative step that is opening new horizons and setting the stage for a more sustainable future in cement production.
A. Current global initiatives
Several leading cement manufacturers around the world have embraced the electrification of kiln technology, recognising its potential to revolutionise traditional manufacturing processes. As of the latest data, the global cement industry contributes to approximately 8 per cent of total carbon dioxide emissions. Electrification is emerging as a key strategy to address this environmental challenge.
B. Investments and impact
Global investments in electrifying kiln technology are substantial, reflecting a commitment to sustainable practices. For instance, a major cement plant in Europe has invested over €80 million (approximately $ 90 million) in retrofitting its kilns with advanced electric heating systems. This investment is projected to lead to a 30 per cent reduction in carbon emissions from the kiln operations.
C. Technology adoption and innovations
Cutting-edge electric heating elements and control systems are being implemented globally to replace traditional fuel-based kiln technologies. These innovations not only facilitate a significant reduction in greenhouse gas emissions but also offer enhanced temperature control and efficiency, thereby improving overall production quality.

The cement industry looks at solar energy as a beacon of sustainability but there are challenges that need to be addressed to make it more feasible


D. Collaborations and knowledge exchange
The global cement industry is witnessing collaborative efforts between manufacturers, technology providers, and research institutions to accelerate the adoption of electrification technologies. Knowledge exchange platforms and industry collaborations are contributing to a collective understanding of best practices and challenges associated with the electrification transition.
E. Environmental impact
The environmental impact of electrifying kiln technology is substantial. By reducing reliance on fossil fuels, the cement industry can significantly lower its carbon footprint. The precise control afforded by electric heating systems also contributes to a more energy-efficient and environmentally friendly production process.
F. Regulatory drivers
Governments and regulatory bodies worldwide are increasingly recognising the importance of sustainable industrial practices. Incentives, policies, and regulations supporting the adoption of clean technologies are serving as catalysts for the global cement industry to prioritise electrification in kiln operations.
G. Future trajectory
As the global cement industry continues its journey toward electrification, the future trajectory looks promising. Anticipated advancements in technology, increased investments, and collaborative research efforts are expected to drive widespread adoption. This not only benefits individual cement plants but also contributes to the industry’s collective efforts in mitigating climate change.


H. Robust electrification cement plants
In the Indian cement industry, a paradigm shift is underway with a strategic focus on robust electrification. This transformative initiative involves the electrification of kiln technology, a move that not only reduces the industry’s carbon footprint but also opens new horizons in efficient and sustainable cement production.

Current Status
As of now, several prominent Indian cement plants are actively engaged in transitioning their
kiln technology from conventional fossil fuel-based systems to electrified alternatives. The aim is to achieve a substantial reduction in greenhouse gas emissions associated with traditional cement manufacturing processes.

Investments
The investments made in the electrification of kiln technology are both substantial and indicative of the industry’s commitment to sustainability. To provide a concrete example, a leading cement manufacturer in India has allocated over `1.50 billion (approximately $ 20 million) to implement electrified kiln technology. This investment is anticipated to result in an immediate 25 per cent reduction in carbon emissions from the kiln operation.

Technology implementation
Electrification of kiln technology involves the integration of electrically-powered heating systems in lieu of traditional fuel-fired methods. Advanced electrical heating elements are employed to achieve the high temperatures required for the cement manufacturing process, eliminating the reliance on fossil fuels and significantly reducing emissions.

Efficiency gains
Beyond the environmental benefits, the electrification of kiln technology is poised to enhance operational efficiency in cement plants. The precision and controllability of electric heating systems allow for better temperature management, leading to improved product quality and energy efficiency.

Renewable energy integration
In conjunction with electrification, many Indian cement plants are exploring the integration of renewable energy sources to power their operations. Solar and wind energy installations are being considered to meet the electricity demand of electrified kilns,further reducing the carbon intensity of the cement production process.

Governmental support
The Indian government’s push for sustainable industrial practices aligns with the cement industry’s electrification efforts. Incentives, subsidies and favourable policies supporting the adoption of clean technologies play a crucial role in encouraging cement manufacturers to embrace electrification.

Future landscape
Looking ahead, electrification is poised to become a cornerstone of sustainable cement production in India. Continued investments, technology advancements, and industry collaborations are expected to drive widespread adoption, reshaping the sector’s environmental impact and bolstering India’s position in sustainable manufacturing.

List of references will be featured in the concluding part.

ABOUT THE AUTHOR:


Dr SB Hegde is an industrial leader with expertise in cement plant operation and optimisation, plant commissioning, new cement plant establishment, etc. His industry knowledge cover manufacturing, product development, concrete technology and technical services.

Concrete

Refractory demands in our kiln have changed

Published

on

By

Shares

Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, points out why performance, predictability and life-cycle value now matter more than routine replacement in cement kilns.

As Indian cement plants push for higher throughput, increased alternative fuel usage and tighter shutdown cycles, refractory performance in kilns and pyro-processing systems is under growing pressure. In this interview, Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, shares how refractory demands have evolved on the ground and how smarter digital monitoring is improving kiln stability, uptime and clinker quality.

How have refractory demands changed in your kiln and pyro-processing line over the last five years?
Over the last five years, refractory demands in our kiln and pyro line have changed. Earlier, the focus was mostly on standard grades and routine shutdown-based replacement. But now, because of higher production loads, more alternative fuels and raw materials (AFR) usage and greater temperature variation, the expectation from refractory has increased.
In our own case, the current kiln refractory has already completed around 1.5 years, which itself shows how much more we now rely on materials that can handle thermal shock, alkali attack and coating fluctuations. We have moved towards more stable, high-performance linings so that we don’t have to enter the kiln frequently for repairs.
Overall, the shift has been from just ‘installation and run’ to selecting refractories that give longer life, better coating behaviour and more predictable performance under tougher operating conditions.

What are the biggest refractory challenges in the preheater, calciner and cooler zones?
• Preheater: Coating instability, chloride/sulphur cycles and brick erosion.
• Calciner: AFR firing, thermal shock and alkali infiltration.
• Cooler: Severe abrasion, red-river formation and mechanical stress on linings.
Overall, the biggest challenge is maintaining lining stability under highly variable operating conditions.

How do you evaluate and select refractory partners for long-term performance?
In real plant conditions, we don’t select a refractory partner just by looking at price. First, we see their past performance in similar kilns and whether their material has actually survived our operating conditions. We also check how strong their technical support is during shutdowns, because installation quality matters as much as the material itself.
Another key point is how quickly they respond during breakdowns or hot spots. A good partner should be available on short notice. We also look at their failure analysis capability, whether they can explain why a lining failed and suggest improvements.
On top of this, we review the life they delivered in the last few campaigns, their supply reliability and their willingness to offer plant-specific custom solutions instead of generic grades. Only a partner who supports us throughout the life cycle, which includes selection, installation, monitoring and post-failure analysis, fits our long-term requirement.

Can you share a recent example where better refractory selection improved uptime or clinker quality?
Recently, we upgraded to a high-abrasion basic brick at the kiln outlet. Earlier we had frequent chipping and coating loss. With the new lining, thermal stability improved and the coating became much more stable. As a result, our shutdown interval increased and clinker quality remained more consistent. It had a direct impact on our uptime.

How is increased AFR use affecting refractory behaviour?
Increased AFR use is definitely putting more stress on the refractory. The biggest issue we see daily is the rise in chlorine, alkalis and volatiles, which directly attack the lining, especially in the calciner and kiln inlet. AFR firing is also not as stable as conventional fuel, so we face frequent temperature fluctuations, which cause more thermal shock and small cracks in the lining.
Another real problem is coating instability. Some days the coating builds too fast, other days it suddenly drops, and both conditions impact refractory life. We also notice more dust circulation and buildup inside the calciner whenever the AFR mix changes, which again increases erosion.
Because of these practical issues, we have started relying more on alkali-resistant, low-porosity and better thermal shock–resistant materials to handle the additional stress coming from AFR.

What role does digital monitoring or thermal profiling play in your refractory strategy?
Digital tools like kiln shell scanners, IR imaging and thermal profiling help us detect weakening areas much earlier. This reduces unplanned shutdowns, helps identify hotspots accurately and allows us to replace only the critical sections. Overall, our maintenance has shifted from reactive to predictive, improving lining life significantly.

How do you balance cost, durability and installation speed during refractory shutdowns?
We focus on three points:
• Material quality that suits our thermal profile and chemistry.
• Installation speed, in fast turnarounds, we prefer monolithic.
• Life-cycle cost—the cheapest material is not the most economical. We look at durability, future downtime and total cost of ownership.
This balance ensures reliable performance without unnecessary expenditure.

What refractory or pyro-processing innovations could transform Indian cement operations?
Some promising developments include:
• High-performance, low-porosity and nano-bonded refractories
• Precast modular linings to drastically reduce shutdown time
• AI-driven kiln thermal analytics
• Advanced coating management solutions
• More AFR-compatible refractory mixes

These innovations can significantly improve kiln stability, efficiency and maintenance planning across the industry.

Continue Reading

Concrete

Digital supply chain visibility is critical

Published

on

By

Shares

MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, discusses how data, discipline and scale are turning Industry 4.0 into everyday business reality.

Over the past five years, digitalisation in Indian cement manufacturing has moved decisively beyond experimentation. Today, it is a strategic lever for cost control, operational resilience and sustainability. In this interview, MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, explains how integrated digital foundations, advanced analytics and real-time visibility are helping deliver measurable business outcomes.

How has digitalisation moved from pilot projects to core strategy in Indian cement manufacturing over the past five years?
Digitalisation in Indian cement has evolved from isolated pilot initiatives into a core business strategy because outcomes are now measurable, repeatable and scalable. The key shift has been the move away from standalone solutions toward an integrated digital foundation built on standardised processes, governed data and enterprise platforms that can be deployed consistently across plants and functions.
At Shree Cement, this transition has been very pragmatic. The early phase focused on visibility through dashboards, reporting, and digitisation of critical workflows. Over time, this has progressed into enterprise-level analytics and decision support across manufacturing and the supply chain,
with clear outcomes in cost optimisation, margin protection and revenue improvement through enhanced customer experience.
Equally important, digital is no longer the responsibility of a single function. It is embedded into day-to-day operations across planning, production, maintenance, despatch and customer servicing, supported by enterprise systems, Industrial Internet of Things (IIoT) data platforms, and a structured approach to change management.

Which digital interventions are delivering the highest ROI across mining, production and logistics today?
In a capital- and cost-intensive sector like cement, the highest returns come from digital interventions that directly reduce unit costs or unlock latent capacity without significant capex.
Supply chain and planning (advanced analytics): Tools for demand forecasting, S&OP, network optimisation and scheduling deliver strong returns by lowering logistics costs, improving service levels, and aligning production with demand in a fragmented and regionally diverse market.
Mining (fleet and productivity analytics): Data-led mine planning, fleet analytics, despatch discipline, and idle-time reduction improve fuel efficiency and equipment utilisation, generating meaningful savings in a cost-heavy operation.
Manufacturing (APC and process analytics): Advanced Process Control, mill optimisation, and variability reduction improve thermal and electrical efficiency, stabilise quality and reduce rework and unplanned stoppages.
Customer experience and revenue enablement (digital platforms): Dealer and retailer apps, order visibility and digitally enabled technical services improve ease of doing business and responsiveness. We are also empowering channel partners with transparent, real-time information on schemes, including eligibility, utilisation status and actionable recommendations, which improves channel satisfaction and market execution while supporting revenue growth.
Overall, while Artificial Intelligence (AI) and IIoT are powerful enablers, it is advanced analytics anchored in strong processes that typically delivers the fastest and most reliable ROI.

How is real-time data helping plants shift from reactive maintenance to predictive and prescriptive operations?
Real-time and near real-time data is driving a more proactive and disciplined maintenance culture, beginning with visibility and progressively moving toward prediction and prescription.
At Shree Cement, we have implemented a robust SAP Plant Maintenance framework to standardise maintenance workflows. This is complemented by IIoT-driven condition monitoring, ensuring consistent capture of equipment health indicators such as vibration, temperature, load, operating patterns and alarms.
Real-time visibility enables early detection of abnormal conditions, allowing teams to intervene before failures occur. As data quality improves and failure histories become structured, predictive models can anticipate likely failure modes and recommend timely interventions, improving MTBF and reducing downtime. Over time, these insights will evolve into prescriptive actions, including spares readiness, maintenance scheduling, and operating parameter adjustments, enabling reliability optimisation with minimal disruption.
A critical success factor is adoption. Predictive insights deliver value only when they are embedded into daily workflows, roles and accountability structures. Without this, they remain insights without action.

In a cost-sensitive market like India, how do cement companies balance digital investment with price competitiveness?
In India’s intensely competitive cement market, digital investments must be tightly linked to tangible business outcomes, particularly cost reduction, service improvement, and faster decision-making.
This balance is achieved by prioritising high-impact use cases such as planning efficiency, logistics optimisation, asset reliability, and process stability, all of which typically deliver quick payback. Equally important is building scalable and governed digital foundations that reduce the marginal cost of rolling out new use cases across plants.
Digitally enabled order management, live despatch visibility, and channel partner platforms also improve customer centricity while controlling cost-to-serve, allowing service levels to improve without proportionate increases in headcount or overheads.
In essence, the most effective digital investments do not add cost. They protect margins by reducing variability, improving planning accuracy, and strengthening execution discipline.

How is digitalisation enabling measurable reductions in energy consumption, emissions, and overall carbon footprint?
Digitalisation plays a pivotal role in improving energy efficiency, reducing emissions and lowering overall carbon intensity.
Real-time monitoring and analytics enable near real-time tracking of energy consumption and critical operating parameters, allowing inefficiencies to be identified quickly and corrective actions to be implemented. Centralised data consolidation across plants enables benchmarking, accelerates best-practice adoption, and drives consistent improvements in energy performance.
Improved asset reliability through predictive maintenance reduces unplanned downtime and process instability, directly lowering energy losses. Digital platforms also support more effective planning and control of renewable energy sources and waste heat recovery systems, reducing dependence on fossil fuels.
Most importantly, digitalisation enables sustainability progress to be tracked with greater accuracy and consistency, supporting long-term ESG commitments.

What role does digital supply chain visibility play in managing demand volatility and regional market dynamics in India?
Digital supply chain visibility is critical in India, where demand is highly regional, seasonality is pronounced, and logistics constraints can shift rapidly.
At Shree Cement, planning operates across multiple horizons. Annual planning focuses on capacity, network footprint and medium-term demand. Monthly S&OP aligns demand, production and logistics, while daily scheduling drives execution-level decisions on despatch, sourcing and prioritisation.
As digital maturity increases, this structure is being augmented by central command-and-control capabilities that manage exceptions such as plant constraints, demand spikes, route disruptions and order prioritisation. Planning is also shifting from aggregated averages to granular, cost-to-serve and exception-based decision-making, improving responsiveness, lowering logistics costs and strengthening service reliability.

How prepared is the current workforce for Industry 4.0, and what reskilling strategies are proving most effective?
Workforce preparedness for Industry 4.0 is improving, though the primary challenge lies in scaling capabilities consistently across diverse roles.
The most effective approach is to define capability requirements by role and tailor enablement accordingly. Senior leadership focuses on digital literacy for governance, investment prioritisation, and value tracking. Middle management is enabled to use analytics for execution discipline and adoption. Frontline sales and service teams benefit from
mobile-first tools and KPI-driven workflows, while shop-floor and plant teams focus on data-driven operations, APC usage, maintenance discipline, safety and quality routines.
Personalised, role-based learning paths, supported by on-ground champions and a clear articulation of practical benefits, drive adoption far more effectively than generic training programmes.

Which emerging digital technologies will fundamentally reshape cement manufacturing in the next decade?
AI and GenAI are expected to have the most significant impact, particularly when combined with connected operations and disciplined processes.
Key technologies likely to reshape the sector include GenAI and agentic AI for faster root-cause analysis, knowledge access, and standardisation of best practices; industrial foundation models that learn patterns across large sensor datasets; digital twins that allow simulation of process changes before implementation; and increasingly autonomous control systems that integrate sensors, AI, and APC to maintain stability with minimal manual intervention.
Over time, this will enable more centralised monitoring and management of plant operations, supported by strong processes, training and capability-building.

Continue Reading

Concrete

Redefining Efficiency with Digitalisation

Published

on

By

Shares

Professor Procyon Mukherjee discusses how as the cement industry accelerates its shift towards digitalisation, data-driven technologies are becoming the mainstay of sustainability and control across the value chain.

The cement industry, long perceived as traditional and resistant to change, is undergoing a profound transformation driven by digital technologies. As global infrastructure demand grows alongside increasing pressure to decarbonise and improve productivity, cement manufacturers are adopting data-centric tools to enhance performance across the value chain. Nowhere is this shift more impactful than in grinding, which is the energy-intensive final stage of cement production, and in the materials that make grinding more efficient: grinding media and grinding aids.

The imperative for digitalisation
Cement production accounts for roughly 7 per cent to 8 per cent of global CO2 emissions, largely due to the energy intensity of clinker production and grinding processes. Digital solutions, such as AI-driven process controls and digital twins, are helping plants improve stability, cut fuel use and reduce emissions while maintaining consistent product quality. In one deployment alongside ABB’s process controls at a Heidelberg plant in Czechia, AI tools cut fuel use by 4 per cent and emissions by 2 per cent, while also improving operational stability.
Digitalisation in cement manufacturing encompasses a suite of technologies, broadly termed as Industrial Internet of Things (IIoT), AI and machine learning, predictive analytics, cloud-based platforms, advanced process control and digital twins, each playing a role in optimising various stages of production from quarrying to despatch.

Grinding: The crucible of efficiency and cost
Of all the stages in cement production, grinding is among the most energy-intensive, historically consuming large amounts of electricity and representing a significant portion of plant operating costs. As a result, optimising grinding operations has become central to digital transformation strategies.
Modern digital systems are transforming grinding mills from mechanical workhorses into intelligent, interconnected assets. Sensors throughout the mill measure parameters such as mill load, vibration, mill speed, particle size distribution, and power consumption. This real-time data, fed into machine learning and advanced process control (APC) systems, can dynamically adjust operating conditions to maintain optimal throughput and energy usage.
For example, advanced grinding systems now predict inefficient conditions, such as impending mill overload, by continuously analysing acoustic and vibration signatures. The system can then proactively adjust clinker feed rates and grinding media distribution to sustain optimal conditions, reducing energy consumption and improving consistency.

Digital twins: Seeing grinding in the virtual world
One of the most transformative digital tools applied in cement grinding is the digital twin, which a real-time virtual replica of physical equipment and processes. By integrating sensor data and
process models, digital twins enable engineers to simulate process variations and run ‘what-if’
scenarios without disrupting actual production. These simulations support decisions on variables such as grinding media charge, mill speed and classifier settings, allowing optimisation of energy use and product fineness.
Digital twins have been used to optimise kilns and grinding circuits in plants worldwide, reducing unplanned downtime and allowing predictive maintenance to extend the life of expensive grinding assets.

Grinding media and grinding aids in a digital era
While digital technologies improve control and prediction, materials science innovations in grinding media and grinding aids have become equally crucial for achieving performance gains.
Grinding media, which comprise the balls or cylinders inside mills, directly influence the efficiency of clinker comminution. Traditionally composed of high-chrome cast iron or forged steel, grinding media account for nearly a quarter of global grinding media consumption by application, with efficiency improvements translating directly to lower energy intensity.
Recent advancements include ceramic and hybrid media that combine hardness and toughness to reduce wear and energy losses. For example, manufacturers such as Sanxin New Materials in China and Tosoh Corporation in Japan have developed sub-nano and zirconia media with exceptional wear resistance. Other innovations include smart media embedded with sensors to monitor wear, temperature, and impact forces in real time, enabling predictive maintenance and optimal media replacement scheduling. These digitally-enabled media solutions can increase grinding efficiency by as much as 15 per cent.
Complementing grinding media are grinding aids, which are chemical additives that improve mill throughput and reduce energy consumption by altering the surface properties of particles, trapping air, and preventing re-agglomeration. Technology leaders like SIKA AG and GCP Applied Technologies have invested in tailored grinding aids compatible with AI-driven dosing platforms that automatically adjust additive concentrations based on real-time mill conditions. Trials in South America reported throughput improvements nearing 19 per cent when integrating such digital assistive dosing with process control systems.
The integration of grinding media data and digital dosing of grinding aids moves the mill closer to a self-optimising system, where AI not only predicts media wear or energy losses but prescribes optimal interventions through automated dosing and operational adjustments.

Global case studies in digital adoption
Several cement companies around the world exemplify digital transformation in practice.
Heidelberg Materials has deployed digital twin technologies across global plants, achieving up to 15 per cent increases in production efficiency and 20 per cent reductions in energy consumption by leveraging real-time analytics and predictive algorithms.
Holcim’s Siggenthal plant in Switzerland piloted AI controllers that autonomously adjusted kiln operations, boosting throughput while reducing specific energy consumption and emissions.
Cemex, through its AI and predictive maintenance initiatives, improved kiln availability and reduced maintenance costs by predicting failures before they occurred. Global efforts also include AI process optimisation initiatives to reduce energy consumption and environmental impact.

Challenges and the road ahead
Despite these advances, digitalisation in cement grinding faces challenges. Legacy equipment may lack sensor readiness, requiring retrofits and edge-cloud connectivity upgrades. Data governance and integration across plants and systems remains a barrier for many mid-tier producers. Yet, digital transformation statistics show momentum: more than half of cement companies have implemented IoT sensors for equipment monitoring, and digital twin adoption is growing rapidly as part of broader Industry 4.0 strategies.
Furthermore, as digital systems mature, they increasingly support sustainability goals: reduced energy use, optimised media consumption and lower greenhouse gas emissions. By embedding intelligence into grinding circuits and material inputs like grinding aids, cement manufacturers can strike a balance between efficiency and environmental stewardship.
Conclusion
Digitalisation is not merely an add-on to cement manufacturing. It is reshaping the competitive and sustainability landscape of an industry often perceived as inertia-bound. With grinding representing a nexus of energy intensity and cost, digital technologies from sensor networks and predictive analytics to digital twins offer new levers of control. When paired with innovations in grinding media and grinding aids, particularly those with embedded digital capabilities, plants can achieve unprecedented gains in efficiency, predictability and performance.
For global cement producers aiming to reduce costs and carbon footprints simultaneously, the future belongs to those who harness digital intelligence not just to monitor operations, but to optimise and evolve them continuously.

About the author:
Professor Procyon Mukherjee, ex-CPO Lafarge-Holcim India, ex-President Hindalco, ex-VP Supply Chain Novelis Europe,
has been an industry leader in logistics, procurement, operations and supply chain management. His career spans 38 years starting from Philips, Alcan Inc (Indian Aluminum Company), Hindalco, Novelis and Holcim. He authored the book, ‘The Search for Value in Supply Chains’. He serves now as Visiting Professor in SP Jain Global, SIOM and as the Adjunct Professor at SBUP. He advises leading Global Firms including Consulting firms on SCM and Industrial Leadership and is a subject matter expert in aluminum and cement. An Alumnus of IIM Calcutta and Jadavpur University, he has completed the LH Senior Leadership Programme at IVEY Academy at Western University, Canada.

Continue Reading

Trending News