Connect with us

Concrete

Integrating Advanced Technologies

Published

on

Shares

Prashant Verma, Director & India Head, Nanoprecise Sci Corp., explains how technology can be a pillar of sustainability for improving the efficiency of manufacturing processes.

In an era where industrial growth is accompanied by growing concerns about environmental impact, the need for sustainable practices has never been more pressing. The traditional methods of industrial operations have often contributed to pollution, resource depletion, and ecological imbalance, so it’s imperative to mitigate the impact and find sustainable alternatives. As the global community increasingly acknowledges the urgency of addressing these environmental challenges, technology emerges as a beacon of hope and a powerful solution.
From Artificial Intelligence (AI) to the Internet of Things (IoT), technological innovations offer a way forward, providing tools to revolutionise how industries operate. These technologies not only address environmental concerns but also enhance operational efficiency and profitability. This shift towards sustainable technology is not just a trend but a necessity for industries aiming to thrive in the long term.

Predictive Maintenance
For decades, industries adhered to a reactive maintenance approach, addressing equipment issues only when failures occur. This ‘fix it when it breaks’ mentality not only resulted in frequent downtime but also contributed significantly to inefficiency and increased environmental impact. Unplanned breakdowns necessitate immediate and often costly repairs, and can significantly impact productivity, increase maintenance expenses, and negatively affect overall operational efficiency. Moreover, machines operating under faulty conditions contribute to higher energy consumption, resulting in an increased carbon footprint. Streamlining these maintenance processes is crucial to promoting a more sustainable and efficient manufacturing environment.
Predictive maintenance has emerged as a transformative solution, challenging the status quo of reactive practices. Unlike reactive maintenance, which responds to failures, predictive maintenance employs advanced technologies to anticipate equipment issues before they escalate. This foresight enables planned, proactive interventions, preventing unexpected breakdowns and optimising the use of resources.
It utilises technologies such as AI, IoT, cloud computing and edge computing to empower manufacturers and operators with the right data at the right time. By leveraging data-driven insights, predictive maintenance enables more informed decision-making, thereby reducing the environmental impact traditionally associated with reactive approaches.

Real-Time Condition Monitoring
Real-time condition monitoring refers to the monitoring of the health and performance of industrial assets. It is achieved with the help of IoT devices that collect the output parameters such as acoustic emissions, vibration, temperature or speed of equipment sets.
This not only facilitates the rapid identification of potential issues but also enables proactive decision-making to prevent disruptions before they escalate. With a continuous flow of actionable data, manufacturers can optimise processes, improve quality control, and enhance overall productivity. The dynamic nature of real-time monitoring paves the way for a more responsive, adaptive, and sustainable manufacturing environment.

Prescriptive Maintenance
The integration of IoT has brought massive volumes of data at the disposal of maintenance professionals, and AI is the most advanced tool that has the potential to comb through vast amounts of complex machine data and provide the much-needed insights to improve maintenance activities.
The genuine value of AI is its ability to analyse large volumes of different kinds of data, in conjunction with complex machine operations and real-world applications to provide a better understanding of the overall health and performance of industrial assets.
AI can not only predict when equipment is likely to fail but also prescribe specific actions to optimise performance and prevent breakdowns. This advanced form of maintenance goes beyond merely forecasting issues; it recommends precise steps to address identified vulnerabilities, minimising the risk of unexpected failures. By continuously learning and adapting to evolving conditions, AI-driven prescriptive maintenance aligns with the principles of Industry 4.0, fostering a dynamic and responsive manufacturing environment.

Smart Energy Management
Traditionally, manufacturing processes struggle with energy inefficiencies due to equipment faults. Malfunctioning machines experience heightened frictional losses and consume higher energy to compensate for these inefficiencies. However, with IoT hardware and AI-driven analytics, manufacturers can achieve efficient energy usage. IoT sensors placed strategically on the machines themselves, collect real-time data used by the AI to identify energy-intensive zones, thereby pinpointing areas of energy wastage. The insights offered by AI empower manufacturers to take targeted actions to reduce energy wastage and optimise energy consumption.

Cellular Networks
As organisations increasingly adopt technology to address various industrial challenges, the focus on obtaining data from diverse machines gains prominence. The growing affordability and widespread availability of cellular IoT devices intensifies interest in their application.
The impact of different cellular standards, such as LTE, on IoT connectivity has been profound, offering low cost, ease of implementation, and low power requirements. The introduction of e-sim platforms further resolves challenges related to deployment bottlenecks, providing flexibility in carrier selection, and facilitating faster scalability for IoT applications.
As the manufacturing sector embraces cellular IoT connectivity, the benefits of high network reliability, increased data rates, and enhanced mobility contribute significantly to reduced downtime, improved productivity, and accelerated progress on the Industry 4.0 journey. Furthermore, the transition to 5G not only propels connectivity to new heights but also unleashes the full potential of Industrial IoT by enabling greater capacity for handling real-time information, offering a quicker, less expensive means to monitor industrial assets even in remote and challenging environments.

Edge and Cloud Computing
Cloud computing, with its centralised storage and processing capabilities, enables manufacturers to efficiently manage and analyse vast datasets, fostering collaboration and data-driven decision-making. On the other hand, edge computing brings computation closer to the IoT hardware, reducing latency and enabling real-time processing. It offers real-time monitoring without full-time connectivity. This collaborative approach not only enhances overall performance but also contributes to a more sustainable and environmentally conscious evolution in manufacturing processes by minimising energy consumption and reducing the environmental impact associated with traditional computing models.

Conclusion
The integration of advanced technologies in manufacturing marks a pivotal step towards a sustainable and forward-thinking industrial landscape. The journey from reactive to predictive maintenance, facilitated by AI and IoT, showcases a commitment to proactive interventions, minimising disruptions and optimising resource usage. It collectively propels manufacturing operations toward efficient resource utilisation, enhanced energy efficiency and improved safety practices. The interconnectedness of these technologies marks a radical change in how industries approach their environmental footprint, paving the way for a more sustainable and ecologically responsible future.

ABOUT THE AUTHOR:
Prashant Verma, Director & India Head, Nanoprecise Sci Corp.
is passionate about solving problems by building world-class products. With an engineering background and entrepreneurial mind, he has been a founding member of three deep-tech startups in the past decade.

Concrete

The primary high-power applications are fans and mills

Published

on

By

Shares



Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how plants can achieve both cost competitiveness and sustainability by lowering emissions, reducing downtime and planning for significant power savings.

As one of the most energy-intensive industries, cement manufacturing faces growing pressure to optimise power consumption, reduce emissions and improve operational reliability. Technology providers like Innomotics India are enabling this transformation by combining advanced motors, AI-driven digital solutions and intelligent monitoring systems that enhance process stability and reduce energy costs. From severe duty motors built for extreme kiln environments to DigiMine AI solutions that optimise pyro and mill operations, Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how the company is helping cement plants achieve measurable energy savings while moving closer to their sustainability goals.

How does your Energy Performance Contracting model typically reduce power consumption in cement plants—e.g., MWh saved?
Our artificial intelligence-based DigiMine AI Pyro and Mill solutions developed specifically for the cement industry, supports our customers in improving their process stability, productivity and process efficiency. In Pyro, this is achieved by optimising fuel consumption (Coal / AFR), reducing Specific Heat Consumption and reduction in emissions (CO2, SOx and NOx) through continuous monitoring of thermodynamics in pyro and recommending set-points of crucial parameters in advance for maintaining stable operations.
Within the mill, this is achieved by improving throughput, reduce energy / power consumption and maintaining stable operations on a continuous basis. Our ROI-based value proposition captures the project KPIs like reduction of coal usage, increase of AFR, reduction of specific heat consumption (Kcal / Kg), reduction of specific power consumption (KWH / tonne), reduction of emissions, etc., by a specific percentage. This gives clarity to our customers to understand the investment vis-à-vis savings and estimate the recovery time of their investment, which typically is achieved within one year of DigiMine AI Pyro and Mill solutions implementation.

What role do digitalisation and motor monitoring play in overall plant energy optimisation?
Motors are being used extensively in cement production, and their monitoring play crucial role in ensuring continuous operation of applications. The monitoring system can automatically generate alerts for any anomaly / abnormalities in motor parameters, which allows plant team to take corrective actions and avoid any major equipment damage and breakdown. The alerts help maintenance team to plan maintenance schedule and related activity efficiently. Centralised and organised data gives overview to the engineers for day-to-day activities. Cement is amongst the top energy intensive industries in comparison to other industries. Hence, it becomes critically important to optimise efficiency, productivity and up-time of plant equipment. Motor monitoring and digitalisation plays a vital role in it. Monitoring and control of multiple applications and areas
within the plant or multiple plants becomes possible with digitalisation.
Digitalisation adds a layer on top of OT systems, bringing machine and process data onto a single interface. This solves the challenges such as system silo, different communications protocol, databases and most importantly, creates a common definition and measurement to plant KPIs. Relevant stakeholders, such as engineers, head of departments and plant heads, can see accurate information, analyse it and make better decisions with appropriate timing. In doing so, plant teams can take proactive actions before machine breakdown, enable better coordination during maintenance activities while improving operational efficiency and productivity.
Further using latest technologies like Artificial Intelligence can even assist operators in running their plant with minimal requirement of human intervention, which allows operators to utilise their time in focusing on more critical topics like analysing data to identify further improvements in operation.

Which of your high-efficiency IEC low-voltage motors deliver the best energy savings for cement mills or fans?
Innomotics India offers a range of IEC-compliant low-voltage motors engineered to deliver superior performance and energy savings, particularly for applications such as cement mills, large fans, and blowers. Innomotics has the complete range of IE4 motors from 0.37kW to 1000kW to meet the demands of cement industry. The IE5 range is also available for specific requirements.

Can safe area motors operate safely and efficiently in cement kiln environments?
Yes, safe area motors are designed to operate reliably in these environments without the risk of overheating. These motors have ingress protection that prevents dust, moisture ingress and can withstand mechanical stress. These motors are available in IE3 / IE4 efficiency classes thereby ensuring lower energy consumption during continuous operation. These motors comply with relevant Indian as well as international standards.

How do your SD Severe Duty motors contribute to lower emissions and lower cost in heavy duty cement applications?
Severe duty motors enhances energy efficiency and durability in demanding cement applications, directly contributing to lower emissions and operational costs. With high-efficiency ratings (such as IE3 or better), they reduce power consumption, minimising CO2 output from energy use. Their robust design handles extreme heat, dust and vibration—common in cement environments—ensuring reliable performance and fewer energy losses.
These motors also lower the total cost of ownership by reducing downtime, maintenance and replacement frequency. Their extended service life and minimal performance degradation help cement plants meet sustainability targets, comply with emissions regulations and improve overall energy management—all while keeping production consistent and cost-effective.

What pump, fan or compressor drive upgrades have shown approximately 60 per cent energy savings in industrial settings and can be replicated in cement plants?
In the cement industry, the primary high-power applications are fans and mills. Among these, fans have the greatest potential for energy savings. Examples, the pre-heater fan, bag house fan, and cooler fans. When there are variations in airflow or the need to maintain a constant pressure in a process, using a variable speed drive (VSD) system is a more effective option for starting and controlling these fans. This adaptive approach can lead to significant energy savings. For instance, vanes and dampers can remain open while the variable frequency drive and motor system manage airflow regulation efficiently.

Continue Reading

Concrete

We conduct regular internal energy audits

Published

on

By

Shares



Shaping the future of low-carbon cement production involves integrating renewables, digitalisation and innovative technologies. Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, gives us a detailed account of how.

In an industry where energy consumption can account for a significant portion of operating costs, cement manufacturers are under increasing pressure to adopt sustainable practices without compromising efficiency. Nuvoco Vistas has taken a decisive step in this direction, leveraging digitalisation, renewable energy and innovative technologies to drive energy efficiency across its operations. In this exclusive conversation, Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, shares its approach to energy management, challenges of modernising brownfield plants and its long-term roadmap to align efficiency with India’s net-zero vision.

How has your company improved energy efficiency over the past five years?
Over the past five years, we have prioritised energy conservation by enhancing operational efficiency and scaling up renewable energy adoption. Through strategic fuel mix optimisation, deployment of cleaner technologies, and greater integration of renewables, we have steadily reduced our environmental footprint while meeting energy needs sustainably.
Technological upgrades across our plants have further strengthened efficiency. These include advanced process control systems, enhanced trend analysis, grinding media optimisation and the integration of solar-powered utilities. Importantly, grid integration at our key plants has delivered significant cost savings and streamlined energy management.
A notable milestone has been the expansion of our solar power capacity and Waste Heat Recovery Systems (WHRS). Our solar power capacity has grown from 1.5 MW in FY 2021–22 to 5.5 MW, while our WHRS capacity has increased from 44.7 MW to 49 MW, underscoring our commitment to sustainable energy solutions.

What technologies or practices have shown the highest energy-saving potential in cement production?
One of our most significant achievements in advancing energy efficiency has been the successful commissioning of a 132 KV Grid Integration Project, which unified three of our major manufacturing units under a single power network. This milestone, enabled by a dedicated transmission line and a state-of-the-art Line-In Line-Out (LILO) substation, has transformed our energy management and operational capabilities.
With this integration, we have substantially reduced our contract demand, eliminated power disruptions, and enhanced operational continuity. Supported by an optical fibre network for real-time communication and automation, this project stands as a testament to our innovation-led manufacturing excellence and underscores Nuvoco’s vision of building a safer, smarter, and sustainable world.

What role does digitalisation play in achieving energy efficiency in your operations?
Digitalisation plays a transformative role in driving energy efficiency across our operations. At Nuvoco, we are leveraging cutting-edge technologies and advanced digital tools to enhance productivity, optimise energy consumption and strengthen our commitment to sustainability and employee safety.
We are developing AI-enabled dashboards to optimise WHRS and kiln operations, ensuring maximum efficiency. Additionally, our advanced AI models evaluate multiple operational parameters — including fuel pricing, moisture content and energy output — to identify the most cost-effective fuel combinations in real time. These initiatives are enabling data-driven decision-making, improving operational excellence and reducing our environmental footprint.

What is your long-term strategy for aligning energy efficiency with decarbonisation goals?
As part of India’s climate action agenda, the cement sector has laid out a clear decarbonisation roadmap to achieve net-zero CO2 emissions by 2070. At Nuvoco, we view this as both a responsibility and an opportunity to redefine the future of sustainable construction. Our long-term strategy focuses on aligning energy efficiency with decarbonisation goals by embracing innovative technologies, alternative raw materials and renewable energy solutions.
We are making strategic investments to scale up solar power installations and enhance our renewable energy mix significantly by 2028. These initiatives are a key part of our broader vision to reduce Scope 2 emissions and strengthen our contribution to India’s net-zero journey, while continuing to deliver innovative and sustainable solutions to our customers.

How do you measure and benchmark energy performance across different plants?
We adopt a comprehensive approach to measure and benchmark energy performance across our plants. Key metrics include Specific Heat Consumption (kCal/kg of clinker) and Specific Power Consumption (kWh/tonne of cement), which are continuously tracked against Best Available Technology (BAT) benchmarks, industry peers and global standards such as the WBCSD-CSI and CII benchmarks.
To ensure consistency and drive improvements, we conduct regular internal energy audits, leverage real-time dashboards and implement robust KPI tracking systems. These tools enable us to compare performance across plants effectively, identify optimisation opportunities and set actionable targets for energy efficiency and sustainability.

What are the key challenges in adopting energy-efficient equipment in brownfield cement plants?
Adopting energy-efficient technologies in brownfield cement plants presents a unique set of challenges due to the constraints of working within existing infrastructure. Firstly, the high capital expenditure and relatively long payback periods often require careful evaluation before investments are made. Additionally, integrating new technologies with legacy equipment can be complex, requiring significant customisation to ensure seamless compatibility and performance.
Another major challenge is minimising production disruptions during installation. Since brownfield plants are already operational, upgrades must be planned meticulously to avoid affecting output. In many cases, space constraints in older facilities add to the difficulty of accommodating advanced equipment without compromising existing layouts.
At Nuvoco, we address these challenges through a phased implementation approach, detailed project planning and by fostering a culture of innovation and collaboration across our plants. This helps us balance operational continuity with our commitment to driving energy efficiency and sustainability.

Continue Reading

Concrete

Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport

The airport is set to become Asia’s largest air connectivity hub.

Published

on

By

Shares



Enlight Metals has supplied 3,200 metric tonne of steel for the newly inaugurated Navi Mumbai International Airport, marking a major contribution to one of India’s largest infrastructure projects and reinforcing the company’s commitment to supporting national development.

The Navi Mumbai International Airport, developed under a Public-Private Partnership led by the Adani Group, was inaugurated today by Prime Minister Narendra Modi. The airport is set to become Asia’s largest air connectivity hub, enhancing regional connectivity, boosting economic growth, and expanding trade opportunities. Prime Minister Modi described the project as a “glimpse of Viksit Bharat,” highlighting its transformative impact on infrastructure and development in the region.

“The supply of 3,200 metric tonne of steel for this key project aligns with our focus on supporting critical infrastructure development through reliable and timely metal sourcing. Enlight Metals is committed to enhancing transparency and efficiency in the steel supply chain, contributing to projects integral to India’s growth objectives,” said Vedant Goel, Director, Enlight Metals.

Enlight Metals has implemented technology-driven solutions to strengthen supply chain efficiency, ensuring consistent availability of construction materials for large-scale projects nationwide. Its contribution to the Navi Mumbai International Airport underscores the company’s growing role in supporting India’s infrastructure development initiatives.

This milestone reflects Enlight Metals’ ongoing engagement in delivering quality materials and timely services for major national projects, further cementing its position as a reliable partner in India’s infrastructure sector

Continue Reading

Trending News