Connect with us

Concrete

Recycling will increase the life of oils and grease.”

Published

on

Shares

Mukesh Saxena, Joint President, Star Cement, discusses the different kinds of lubricants used in the cement industry and the sustainable methods of using them.

How are the different types of lubricants corelated to their specific applications at a cement plant?
The term ‘lubricant’ describes a substance used to reduce friction between moving parts in a machine. Applied to individual components and complete engine systems, the main goal of lubricants is to minimise friction during movement. This helps to prevent wear and tear on moving parts and reduce the risk of mechanical failure due
to overheating.
The types of lubricants used in the cement industry include:
Oil lubricants:
Thin and highly viscous, oil-based lubricants are made up of long polymer chains enhanced with additives. These can include corrosion inhibitors to prevent rust, antioxidants to prevent oxidisation and detergents to prevent the formation of deposits.
The viscous characteristics of oil-based lubricants make them useful for applications where even the smallest increases in resistance can affect performance. As oil is easy to disperse, these types of lubricants are also useful for applications where it’s not possible to disassemble the entire machine. In these scenarios, oil can be fed into the machine, where it will quickly disperse to all moving parts.
Lubricating Oils SP220, SP320, SP420: Used in gearboxes depending on temperature generations. High viscosity oil is used whereas temperature is high, for normal temperatures SP320 is used, whereas for low temperatures and low ambient temperatures SP220 is used.
Required in VRM gearboxes, kiln main gearboxes, conveyor gearboxes etc. Hydraulic oils used for hydraulic systems are operative and accordingly based on pressure required, for vertical mills hydraulic systems, kiln thruster etc.
Grease lubricants: Generally manufactured by combining an oil (usually mineral based) with thickeners (often a lithium, calcium, or sodium-based soap), greases blend well with existing lubricants in the oil, helping them accumulate on the surface and add an extra layer of lubricity. This type of product is often used to lubricate gears, bearings, linkages and chains.
Grease is also an excellent barrier, helping to protect surfaces from water droplets and dust as well as build ups of debris and contaminants. The viscous consistency of grease gives it good longevity and ongoing performance, winning it points when it comes to minimising maintenance.

  • Uses of Grease
  • For normal solid lubricants EP2 used
  • For high temperatures graphite-based greases are used


Special Synthetic lubricants: High pressure synthetic lubricants are used in specific high temperatures and systems like high pressure hydraulic systems, kiln girth gear etc.
Penetrating lubricants: Unlike oils and grease, penetrating lubricants aren’t designed for long-term performance. This type of lubricant has ultra-low viscosity and is designed to infiltrate small fractures in the surface. The goal is to increase lubrication and break up any rust or debris that may have formed. Penetrating lubricants are often used to loosen seized screws and bolts.
Dry lubricants: Step up when oils and grease are unsuitable. They are capable of withstanding higher temperatures and don’t undergo the same state changes when the mercury rises. Dry lubricants also perform well in the face of excessive wear, migration, and exposure to debris. Rather than degrade in tough conditions, they remain intact and offer ongoing lubrication. This makes them ideal for use with heavy-duty infrastructure.
Dry lubricants are generally available as fluorocarbons (such as PTFE) or crystalline lattice structures (including graphite, tungsten disulphide and molybdenum). Impressive anti-friction, bond strength and chemical resistance capabilities make dry lubricants the product of choice for a wide range of applications in the oil and gas industry.

How do you ensure the quality of the lubricants used in your facility? What certification processes do you use?
A variety of methods are used to test for the quality of lubricants, including globally used standards published by ASTM International. Some of the methods used for lubricant quality testing are:
ASTM D445 for viscometrics: This ASTM test method is designed to determine the kinematic viscosity of both opaque and transparent lubricants. It uses a calibrated glass capillary viscometer to measure the rate at which the lubricant flows
under gravity.
ASTM D5182 for abrasive wear and friction control: This method assesses gear-tooth face wear to determine the scuffing resistance of lubricants. ASTM has strict guidelines, with rigs operated at 1450 rpm and teeth inspected at 15-minute intervals. As well as visible condition, the net weight loss of gear teeth is calculated to assess abrasive wear.
ASTM D943 for oxidation resistance: ASTM D943 is considered the gold-standard method for measuring the oxidation stability of lubricants. It is particularly useful for lubricants that are at risk of water contamination.
ASTM D1401 for water separation: This calculates the water separation characteristics of lubricants exposed to turbulence and H2O contamination.
ASTM D2896 for base number: Acidic titration is used to identify and quantify basic constituents (also known as additives) in lubricants. The ASTM D2896 method calculates the base number of each additive, with the test used to monitor quality assurance in new products and measure degradation in existing lubricants.
ASTM D2711 for demulsibility: Exposure to turbulence caused by circulation and pumping can fast-track water contamination and produce water-in-oil emulsions. The ASTM D2711 test measures the demulsibility characteristics of a lubricant and helps determine suitability for different applications.
ASTM D4951-09 for detergency: In some lubricants, additives can combine to act as detergents that actively prevents the build-up of deposits on solid surfaces.
ASTM D665 for corrosion resistance: Exposure to water and condensation can accelerate corrosion, making lubricants with anti-corrosion properties desirable for applications such as steam turbine gears. The ASTM D665 is used to evaluate the corrosion resistance of a lubricant and can also be used to test for degradation in circulating oils.
ASTM D97 for pour point: Pour point is another characteristic that can affect performance, with the ASTM D97 used to determine the lowest temperature at which flow is compromised and a lubricant becomes semi-solid.

What are the external environmental factors affecting the performance of the lubricants? How do they affect the lubricants?

  • Oxidation: The chemical combination of oil or grease with oxygen. Oxidation is the most limiting factor to a lubricant’s useful life. Oil possibly may gel and become unpumpable, and eventually cause severe wear and seizure. Varnish and sludge (polymerised products) increase oil viscosity, decrease viscosity index, reduce heat transfer abilities, block oil ways, and promote foaming and emulsification. Severely oxidised oils tend to become very viscous at low temperatures. Volatile and non-volatile acids attack white-metal bearings, can be water-soluble and are more aggressive when the lubricant is wet. Sludge, varnish, emulsification, poor air release.
  • Thermal degradation: Cracking at high temperatures, in the absence of oxygen. Safety hazard due to lowered flash points of the oil. Rapidly forming deposits on metal surfaces are not able to function as lubricants. Thermally degraded oils form carbonaceous residues and volatile gases. Heat built-up.
  • Contamination: Most common contaminants of oils or greases are: water, fluid-soluble materials, fluid-insoluble materials erroneous fluid additives and fluid degradation. First, contamination is the most common cause of oil failure or rejection. It affects aeration, foaming, air release and demulsibility. Aeration can cause reduced compressibility of hydraulic fluids: reduced volumetric efficiency of hydraulic system pumps; loss of power transmission efficiency; cavitation damage in pump suctions and servo-valves; inadequate response times for turbine over-speed systems; localised oil oxidation in highly loaded regions; interference to oil flow through filters.
  • Foaming: The action of frothy bubbles being formed in the fluid due to excess air. Foam is not a good lubricant. Air or oil foam can accumulate in the headspace of reservoirs, gearboxes, crankcases, sumps, and other components with vapor spaces. Excessive foam may be forced out of the reservoir through the breather cap. May be ingested into the circulation pump. May interfere with the effective lubrication of gears and bearings.
  • Air release: Letting air out of bubbles in the oil. This should occur quickly. Significantly affected by oil viscosity and temperature. Poor air release can contribute to oil foaming. High oil viscosity. Low oil temperature. Contamination by diesel engine oils, greases, and corrosion preventives. Presence of rust particles. Contact with very hard water.
  • Demulsibility: The ability to release or shed water. Undesirable if water is not separating rapidly from the oil (especially in turbine and gear oils or hydraulic fluids). Poor oil or grease demulsibility can cause corrosion of ferrous metals, significant reduction in the fatigue life of ball bearings, roller bearings and gears; and the removal of rust inhibitors and some anti wear and lubricity additives from oils.

Tell us about recent innovations in lubricant technology that you have implemented.
Use of nanotechnology in lubricants. Nanoparticle additives show significant enhancements in lubricant attributes like anti-oxidation capability, tribological features, and thermal properties. Nanotechnology offers the possibility of using nanosised additives to increase the performance of lubricating oil. The addition of nanoparticles to conventional base oils is a promising method for improving properties like friction and wear resistance in instruments.

How do you ensure proper storage and handling of lubricants at your facility?

  • Lube room design and requirements: A properly designed lube room must be functional, safe, and expandable, and provide all necessary storage and handling requirements for the facility. Lube room designs should allow the maximum storage capacity without allowing for too much bulk oil and grease storage. Limiting the amount of bulk oil and grease storage will allow the oils that are stored to be used in a timely manner.
  • Bulk oil storage: The first area of a lubricant storage and handling system that requires attention is bulk storage. Whether storing lubricants in a 10,000-gallon tank or 55-gallon drums, it is very important to ensure the lubricants’ quality is not tainted by contamination or additive settling. To help ensure lubricants stay in an optimal condition, one must determine how much lubricant should be stored at one time.
  • New oil receiving: Oftentimes, improper receiving techniques do nothing but promote higher risks of contamination ingression, mixing of lubricants, etc. Proper written receiving procedures should be in place to ensure the highest level of consistency and cleanliness is maintained.
  • Quality control: Quality control of lubricants delivered from lube suppliers must be verified to ensure the correct product is being delivered and that the cleanliness of the delivered lubricant is up to current target particle and moisture cleanliness levels.
  • Presence of mixed or contaminated lubricants: Oil analysis results and other quality assurance variables, such as damaged containers, rusted containers, and any other quality issue, should be well documented and catalogued.
  • Dispensing options for stored oils: When stored oil is transferred from the bulk storage system to the top-up container, it is best to filter the dispensing oil. This can be made very easy with the use of a hard plumbed filtration system and a rack mounted storage system fitted with dedicated dispensing nozzles. If using 55-gallon drums, they can be fitted with quick connect fittings, a hand pump, an inline filter manifold breather and sight glass to achieve the same goal.
  • Precision top-ups and drain and fills: Once the bulk storage system is properly set up, one should consider the method for transporting oil and filling machines. The best top-up method
  • utilises a proper top-up container, one that is sealed from the environment, has a built in spout, hand pump, etc.
  • Proper top-up container and grease gun storage: Storage for top-up containers, grease guns, rags, etc., is another important step to ensure contaminants are not introduced to the lubricants as a result of poor housekeeping. These tools should have their own dedicated fire-proof storage cabinets for easy access and organisation.
  • Lifecycles and lubricant shelf life: For both oil and grease, one should be aware of their respective shelf life. Exceeding their OEM shelf life may render the product useless or severely hamper its performance. For this reason, it is best to use the First-In, First-Out (FIFO) method.
  • Labelling and identification: Lubricant labelling is one aspect of storage and handling that is often overlooked. Labelling is just as critical as periodic filtration and without proper labelling it is very easy for lubricant cross contamination to occur. Lubricant cross contamination is a result of mixing two lubricants together and can yield a devastating result. This happens more often in the dispensing equipment rather than the bulk storage equipment.

How do you evaluate the cost-effectiveness of different lubricants, and what factors do you consider while making purchasing decisions?
The three main cost areas most organisations consider are parts, labour and downtime. Everyone budgets these items, but ultimately, they are all reactive measurements. The true cost can only be seen after the maintenance events have already occurred. However, there are ways to project or estimate how the changes made in your procedures and equipment while driving your lubrication programme toward excellence will impact overall profitability.
A machine that runs more often should be more profitable in that it is achieving its desired operational purpose and not drawing the attention of the maintenance team for additional parts or labour. Therefore, it makes sense to approach the larger cost-improvement issue from a standpoint of how to reduce equipment downtime by preventing lubrication-related failures.
It is apparent that using the right oils and greases and maintaining them inside the proper operating conditions will go a long way toward correcting or preventing most mechanical failures at your job site.
Generally breaks down the journey to lubrication excellence into six categories: lubricant selection, reception and storage, handling and application, contamination control, lubricant analysis, and environmental disposal. This article will focus on the first five categories and provide examples of how to improve in regard to overall lubrication excellence and cost-effectiveness. While environmental disposal is critical, it’s not necessarily a good place to look for cost savings.
Selecting the proper lubricant from the beginning is the most important step you can take to improve machine productivity. Your equipment’s needs will drive the selection process, but having a thorough understanding of different lubricant properties will allow you to pick the optimum solution.
Three types of base oils make up all lubricants: mineral, synthetic and vegetable. Synthetic-based oils tend to cost more upfront but have more consistent properties and are therefore more stable. Additionally, some synthetics can be used in hazardous plant conditions outside the specific considerations of the machine in question. For example, many synthetic-based oils have a higher flash point and are thus less susceptible as a fire hazard. If your plant
operates at higher temperatures (from the climate or a process), it likely will be beneficial to switch to a synthetic oil.
Similarly, most synthetics have a lower pour point and are better for machines starting up in very cold conditions. Again, synthetics often cost more initially, but by having better fluid properties and a longer useful life, they can pay for themselves in short order.
The most important property to consider when selecting a lubricant is the viscosity, and the first place to look for assistance when choosing the viscosity is the equipment manufacturer. Even if the manufacturer’s recommendation is not always the best advice, it is the best starting point to determine the base range for the machine. For instance, an oil-pumping system may be designed to operate at around 125 degrees F, but at certain times it can run as high as 155 degrees F due to certain plant conditions. The manufacturer’s guide only takes into account the normal operating temperature of 125 degrees F in its viscosity recommendation.
To ensure your lubricant remains viable, select an oil that meets both the minimum and maximum operating conditions and has a viscosity index (VI) that can withstand condition changes. If you work in a climate that is particularly hot or cold, the manufacturer’s recommended lubricant may be incorrect solely because it is assumed the machine is operating in more temperate climates.
Temperature is an important factor to consider, because lubricant life is closely tied to operating temperature. Reducing the oil’s operating temperature by 18 degrees F will double its life expectancy. This means fewer oil changes as well as less labour and downtime. If the system operating temperatures cannot be changed, a similar (but lesser) result can be achieved by making certain that the selected lubricant has the right VI additive to allow for all environmental and climate conditions.
There are many other additives and fluid properties to be considered for a specific machine application, but accounting for the viscosity and VI is the most effective means to improve lubrication. Some lubricant vendors can supply oil and grease with almost any desired package of properties. An easy way to produce cost savings at this stage is by simplifying your overall lubrication order. You may discover that you were needlessly purchasing a more expensive oil or grease. More likely, you will find that most machines can safely use the same type of oil and grease, and another area of savings can be established simply by ordering fewer lubricant types overall. Even if it costs a little more to adjust the oils and greases ordered, savings will be realised when machinery downtime decreases.

How is the role of lubricants evolving, and what steps are you taking to stay ahead of the curve?
Based on analysis, it is predicted that the value in the global lubricant market will increase by 44 per cent in the next 15 years due to more advanced formulated synthetic lubricants and with the increased demand for industrial applications. Recycling and adding more additives will increase the life of oils and greases. The cement industry has to be very cautious with the use of lubricants and to increase its uses and proper handling of used oil for recycling.

Concrete

Refractory demands in our kiln have changed

Published

on

By

Shares

Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, points out why performance, predictability and life-cycle value now matter more than routine replacement in cement kilns.

As Indian cement plants push for higher throughput, increased alternative fuel usage and tighter shutdown cycles, refractory performance in kilns and pyro-processing systems is under growing pressure. In this interview, Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, shares how refractory demands have evolved on the ground and how smarter digital monitoring is improving kiln stability, uptime and clinker quality.

How have refractory demands changed in your kiln and pyro-processing line over the last five years?
Over the last five years, refractory demands in our kiln and pyro line have changed. Earlier, the focus was mostly on standard grades and routine shutdown-based replacement. But now, because of higher production loads, more alternative fuels and raw materials (AFR) usage and greater temperature variation, the expectation from refractory has increased.
In our own case, the current kiln refractory has already completed around 1.5 years, which itself shows how much more we now rely on materials that can handle thermal shock, alkali attack and coating fluctuations. We have moved towards more stable, high-performance linings so that we don’t have to enter the kiln frequently for repairs.
Overall, the shift has been from just ‘installation and run’ to selecting refractories that give longer life, better coating behaviour and more predictable performance under tougher operating conditions.

What are the biggest refractory challenges in the preheater, calciner and cooler zones?
• Preheater: Coating instability, chloride/sulphur cycles and brick erosion.
• Calciner: AFR firing, thermal shock and alkali infiltration.
• Cooler: Severe abrasion, red-river formation and mechanical stress on linings.
Overall, the biggest challenge is maintaining lining stability under highly variable operating conditions.

How do you evaluate and select refractory partners for long-term performance?
In real plant conditions, we don’t select a refractory partner just by looking at price. First, we see their past performance in similar kilns and whether their material has actually survived our operating conditions. We also check how strong their technical support is during shutdowns, because installation quality matters as much as the material itself.
Another key point is how quickly they respond during breakdowns or hot spots. A good partner should be available on short notice. We also look at their failure analysis capability, whether they can explain why a lining failed and suggest improvements.
On top of this, we review the life they delivered in the last few campaigns, their supply reliability and their willingness to offer plant-specific custom solutions instead of generic grades. Only a partner who supports us throughout the life cycle, which includes selection, installation, monitoring and post-failure analysis, fits our long-term requirement.

Can you share a recent example where better refractory selection improved uptime or clinker quality?
Recently, we upgraded to a high-abrasion basic brick at the kiln outlet. Earlier we had frequent chipping and coating loss. With the new lining, thermal stability improved and the coating became much more stable. As a result, our shutdown interval increased and clinker quality remained more consistent. It had a direct impact on our uptime.

How is increased AFR use affecting refractory behaviour?
Increased AFR use is definitely putting more stress on the refractory. The biggest issue we see daily is the rise in chlorine, alkalis and volatiles, which directly attack the lining, especially in the calciner and kiln inlet. AFR firing is also not as stable as conventional fuel, so we face frequent temperature fluctuations, which cause more thermal shock and small cracks in the lining.
Another real problem is coating instability. Some days the coating builds too fast, other days it suddenly drops, and both conditions impact refractory life. We also notice more dust circulation and buildup inside the calciner whenever the AFR mix changes, which again increases erosion.
Because of these practical issues, we have started relying more on alkali-resistant, low-porosity and better thermal shock–resistant materials to handle the additional stress coming from AFR.

What role does digital monitoring or thermal profiling play in your refractory strategy?
Digital tools like kiln shell scanners, IR imaging and thermal profiling help us detect weakening areas much earlier. This reduces unplanned shutdowns, helps identify hotspots accurately and allows us to replace only the critical sections. Overall, our maintenance has shifted from reactive to predictive, improving lining life significantly.

How do you balance cost, durability and installation speed during refractory shutdowns?
We focus on three points:
• Material quality that suits our thermal profile and chemistry.
• Installation speed, in fast turnarounds, we prefer monolithic.
• Life-cycle cost—the cheapest material is not the most economical. We look at durability, future downtime and total cost of ownership.
This balance ensures reliable performance without unnecessary expenditure.

What refractory or pyro-processing innovations could transform Indian cement operations?
Some promising developments include:
• High-performance, low-porosity and nano-bonded refractories
• Precast modular linings to drastically reduce shutdown time
• AI-driven kiln thermal analytics
• Advanced coating management solutions
• More AFR-compatible refractory mixes

These innovations can significantly improve kiln stability, efficiency and maintenance planning across the industry.

Continue Reading

Concrete

Digital supply chain visibility is critical

Published

on

By

Shares

MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, discusses how data, discipline and scale are turning Industry 4.0 into everyday business reality.

Over the past five years, digitalisation in Indian cement manufacturing has moved decisively beyond experimentation. Today, it is a strategic lever for cost control, operational resilience and sustainability. In this interview, MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, explains how integrated digital foundations, advanced analytics and real-time visibility are helping deliver measurable business outcomes.

How has digitalisation moved from pilot projects to core strategy in Indian cement manufacturing over the past five years?
Digitalisation in Indian cement has evolved from isolated pilot initiatives into a core business strategy because outcomes are now measurable, repeatable and scalable. The key shift has been the move away from standalone solutions toward an integrated digital foundation built on standardised processes, governed data and enterprise platforms that can be deployed consistently across plants and functions.
At Shree Cement, this transition has been very pragmatic. The early phase focused on visibility through dashboards, reporting, and digitisation of critical workflows. Over time, this has progressed into enterprise-level analytics and decision support across manufacturing and the supply chain,
with clear outcomes in cost optimisation, margin protection and revenue improvement through enhanced customer experience.
Equally important, digital is no longer the responsibility of a single function. It is embedded into day-to-day operations across planning, production, maintenance, despatch and customer servicing, supported by enterprise systems, Industrial Internet of Things (IIoT) data platforms, and a structured approach to change management.

Which digital interventions are delivering the highest ROI across mining, production and logistics today?
In a capital- and cost-intensive sector like cement, the highest returns come from digital interventions that directly reduce unit costs or unlock latent capacity without significant capex.
Supply chain and planning (advanced analytics): Tools for demand forecasting, S&OP, network optimisation and scheduling deliver strong returns by lowering logistics costs, improving service levels, and aligning production with demand in a fragmented and regionally diverse market.
Mining (fleet and productivity analytics): Data-led mine planning, fleet analytics, despatch discipline, and idle-time reduction improve fuel efficiency and equipment utilisation, generating meaningful savings in a cost-heavy operation.
Manufacturing (APC and process analytics): Advanced Process Control, mill optimisation, and variability reduction improve thermal and electrical efficiency, stabilise quality and reduce rework and unplanned stoppages.
Customer experience and revenue enablement (digital platforms): Dealer and retailer apps, order visibility and digitally enabled technical services improve ease of doing business and responsiveness. We are also empowering channel partners with transparent, real-time information on schemes, including eligibility, utilisation status and actionable recommendations, which improves channel satisfaction and market execution while supporting revenue growth.
Overall, while Artificial Intelligence (AI) and IIoT are powerful enablers, it is advanced analytics anchored in strong processes that typically delivers the fastest and most reliable ROI.

How is real-time data helping plants shift from reactive maintenance to predictive and prescriptive operations?
Real-time and near real-time data is driving a more proactive and disciplined maintenance culture, beginning with visibility and progressively moving toward prediction and prescription.
At Shree Cement, we have implemented a robust SAP Plant Maintenance framework to standardise maintenance workflows. This is complemented by IIoT-driven condition monitoring, ensuring consistent capture of equipment health indicators such as vibration, temperature, load, operating patterns and alarms.
Real-time visibility enables early detection of abnormal conditions, allowing teams to intervene before failures occur. As data quality improves and failure histories become structured, predictive models can anticipate likely failure modes and recommend timely interventions, improving MTBF and reducing downtime. Over time, these insights will evolve into prescriptive actions, including spares readiness, maintenance scheduling, and operating parameter adjustments, enabling reliability optimisation with minimal disruption.
A critical success factor is adoption. Predictive insights deliver value only when they are embedded into daily workflows, roles and accountability structures. Without this, they remain insights without action.

In a cost-sensitive market like India, how do cement companies balance digital investment with price competitiveness?
In India’s intensely competitive cement market, digital investments must be tightly linked to tangible business outcomes, particularly cost reduction, service improvement, and faster decision-making.
This balance is achieved by prioritising high-impact use cases such as planning efficiency, logistics optimisation, asset reliability, and process stability, all of which typically deliver quick payback. Equally important is building scalable and governed digital foundations that reduce the marginal cost of rolling out new use cases across plants.
Digitally enabled order management, live despatch visibility, and channel partner platforms also improve customer centricity while controlling cost-to-serve, allowing service levels to improve without proportionate increases in headcount or overheads.
In essence, the most effective digital investments do not add cost. They protect margins by reducing variability, improving planning accuracy, and strengthening execution discipline.

How is digitalisation enabling measurable reductions in energy consumption, emissions, and overall carbon footprint?
Digitalisation plays a pivotal role in improving energy efficiency, reducing emissions and lowering overall carbon intensity.
Real-time monitoring and analytics enable near real-time tracking of energy consumption and critical operating parameters, allowing inefficiencies to be identified quickly and corrective actions to be implemented. Centralised data consolidation across plants enables benchmarking, accelerates best-practice adoption, and drives consistent improvements in energy performance.
Improved asset reliability through predictive maintenance reduces unplanned downtime and process instability, directly lowering energy losses. Digital platforms also support more effective planning and control of renewable energy sources and waste heat recovery systems, reducing dependence on fossil fuels.
Most importantly, digitalisation enables sustainability progress to be tracked with greater accuracy and consistency, supporting long-term ESG commitments.

What role does digital supply chain visibility play in managing demand volatility and regional market dynamics in India?
Digital supply chain visibility is critical in India, where demand is highly regional, seasonality is pronounced, and logistics constraints can shift rapidly.
At Shree Cement, planning operates across multiple horizons. Annual planning focuses on capacity, network footprint and medium-term demand. Monthly S&OP aligns demand, production and logistics, while daily scheduling drives execution-level decisions on despatch, sourcing and prioritisation.
As digital maturity increases, this structure is being augmented by central command-and-control capabilities that manage exceptions such as plant constraints, demand spikes, route disruptions and order prioritisation. Planning is also shifting from aggregated averages to granular, cost-to-serve and exception-based decision-making, improving responsiveness, lowering logistics costs and strengthening service reliability.

How prepared is the current workforce for Industry 4.0, and what reskilling strategies are proving most effective?
Workforce preparedness for Industry 4.0 is improving, though the primary challenge lies in scaling capabilities consistently across diverse roles.
The most effective approach is to define capability requirements by role and tailor enablement accordingly. Senior leadership focuses on digital literacy for governance, investment prioritisation, and value tracking. Middle management is enabled to use analytics for execution discipline and adoption. Frontline sales and service teams benefit from
mobile-first tools and KPI-driven workflows, while shop-floor and plant teams focus on data-driven operations, APC usage, maintenance discipline, safety and quality routines.
Personalised, role-based learning paths, supported by on-ground champions and a clear articulation of practical benefits, drive adoption far more effectively than generic training programmes.

Which emerging digital technologies will fundamentally reshape cement manufacturing in the next decade?
AI and GenAI are expected to have the most significant impact, particularly when combined with connected operations and disciplined processes.
Key technologies likely to reshape the sector include GenAI and agentic AI for faster root-cause analysis, knowledge access, and standardisation of best practices; industrial foundation models that learn patterns across large sensor datasets; digital twins that allow simulation of process changes before implementation; and increasingly autonomous control systems that integrate sensors, AI, and APC to maintain stability with minimal manual intervention.
Over time, this will enable more centralised monitoring and management of plant operations, supported by strong processes, training and capability-building.

Continue Reading

Concrete

Redefining Efficiency with Digitalisation

Published

on

By

Shares

Professor Procyon Mukherjee discusses how as the cement industry accelerates its shift towards digitalisation, data-driven technologies are becoming the mainstay of sustainability and control across the value chain.

The cement industry, long perceived as traditional and resistant to change, is undergoing a profound transformation driven by digital technologies. As global infrastructure demand grows alongside increasing pressure to decarbonise and improve productivity, cement manufacturers are adopting data-centric tools to enhance performance across the value chain. Nowhere is this shift more impactful than in grinding, which is the energy-intensive final stage of cement production, and in the materials that make grinding more efficient: grinding media and grinding aids.

The imperative for digitalisation
Cement production accounts for roughly 7 per cent to 8 per cent of global CO2 emissions, largely due to the energy intensity of clinker production and grinding processes. Digital solutions, such as AI-driven process controls and digital twins, are helping plants improve stability, cut fuel use and reduce emissions while maintaining consistent product quality. In one deployment alongside ABB’s process controls at a Heidelberg plant in Czechia, AI tools cut fuel use by 4 per cent and emissions by 2 per cent, while also improving operational stability.
Digitalisation in cement manufacturing encompasses a suite of technologies, broadly termed as Industrial Internet of Things (IIoT), AI and machine learning, predictive analytics, cloud-based platforms, advanced process control and digital twins, each playing a role in optimising various stages of production from quarrying to despatch.

Grinding: The crucible of efficiency and cost
Of all the stages in cement production, grinding is among the most energy-intensive, historically consuming large amounts of electricity and representing a significant portion of plant operating costs. As a result, optimising grinding operations has become central to digital transformation strategies.
Modern digital systems are transforming grinding mills from mechanical workhorses into intelligent, interconnected assets. Sensors throughout the mill measure parameters such as mill load, vibration, mill speed, particle size distribution, and power consumption. This real-time data, fed into machine learning and advanced process control (APC) systems, can dynamically adjust operating conditions to maintain optimal throughput and energy usage.
For example, advanced grinding systems now predict inefficient conditions, such as impending mill overload, by continuously analysing acoustic and vibration signatures. The system can then proactively adjust clinker feed rates and grinding media distribution to sustain optimal conditions, reducing energy consumption and improving consistency.

Digital twins: Seeing grinding in the virtual world
One of the most transformative digital tools applied in cement grinding is the digital twin, which a real-time virtual replica of physical equipment and processes. By integrating sensor data and
process models, digital twins enable engineers to simulate process variations and run ‘what-if’
scenarios without disrupting actual production. These simulations support decisions on variables such as grinding media charge, mill speed and classifier settings, allowing optimisation of energy use and product fineness.
Digital twins have been used to optimise kilns and grinding circuits in plants worldwide, reducing unplanned downtime and allowing predictive maintenance to extend the life of expensive grinding assets.

Grinding media and grinding aids in a digital era
While digital technologies improve control and prediction, materials science innovations in grinding media and grinding aids have become equally crucial for achieving performance gains.
Grinding media, which comprise the balls or cylinders inside mills, directly influence the efficiency of clinker comminution. Traditionally composed of high-chrome cast iron or forged steel, grinding media account for nearly a quarter of global grinding media consumption by application, with efficiency improvements translating directly to lower energy intensity.
Recent advancements include ceramic and hybrid media that combine hardness and toughness to reduce wear and energy losses. For example, manufacturers such as Sanxin New Materials in China and Tosoh Corporation in Japan have developed sub-nano and zirconia media with exceptional wear resistance. Other innovations include smart media embedded with sensors to monitor wear, temperature, and impact forces in real time, enabling predictive maintenance and optimal media replacement scheduling. These digitally-enabled media solutions can increase grinding efficiency by as much as 15 per cent.
Complementing grinding media are grinding aids, which are chemical additives that improve mill throughput and reduce energy consumption by altering the surface properties of particles, trapping air, and preventing re-agglomeration. Technology leaders like SIKA AG and GCP Applied Technologies have invested in tailored grinding aids compatible with AI-driven dosing platforms that automatically adjust additive concentrations based on real-time mill conditions. Trials in South America reported throughput improvements nearing 19 per cent when integrating such digital assistive dosing with process control systems.
The integration of grinding media data and digital dosing of grinding aids moves the mill closer to a self-optimising system, where AI not only predicts media wear or energy losses but prescribes optimal interventions through automated dosing and operational adjustments.

Global case studies in digital adoption
Several cement companies around the world exemplify digital transformation in practice.
Heidelberg Materials has deployed digital twin technologies across global plants, achieving up to 15 per cent increases in production efficiency and 20 per cent reductions in energy consumption by leveraging real-time analytics and predictive algorithms.
Holcim’s Siggenthal plant in Switzerland piloted AI controllers that autonomously adjusted kiln operations, boosting throughput while reducing specific energy consumption and emissions.
Cemex, through its AI and predictive maintenance initiatives, improved kiln availability and reduced maintenance costs by predicting failures before they occurred. Global efforts also include AI process optimisation initiatives to reduce energy consumption and environmental impact.

Challenges and the road ahead
Despite these advances, digitalisation in cement grinding faces challenges. Legacy equipment may lack sensor readiness, requiring retrofits and edge-cloud connectivity upgrades. Data governance and integration across plants and systems remains a barrier for many mid-tier producers. Yet, digital transformation statistics show momentum: more than half of cement companies have implemented IoT sensors for equipment monitoring, and digital twin adoption is growing rapidly as part of broader Industry 4.0 strategies.
Furthermore, as digital systems mature, they increasingly support sustainability goals: reduced energy use, optimised media consumption and lower greenhouse gas emissions. By embedding intelligence into grinding circuits and material inputs like grinding aids, cement manufacturers can strike a balance between efficiency and environmental stewardship.
Conclusion
Digitalisation is not merely an add-on to cement manufacturing. It is reshaping the competitive and sustainability landscape of an industry often perceived as inertia-bound. With grinding representing a nexus of energy intensity and cost, digital technologies from sensor networks and predictive analytics to digital twins offer new levers of control. When paired with innovations in grinding media and grinding aids, particularly those with embedded digital capabilities, plants can achieve unprecedented gains in efficiency, predictability and performance.
For global cement producers aiming to reduce costs and carbon footprints simultaneously, the future belongs to those who harness digital intelligence not just to monitor operations, but to optimise and evolve them continuously.

About the author:
Professor Procyon Mukherjee, ex-CPO Lafarge-Holcim India, ex-President Hindalco, ex-VP Supply Chain Novelis Europe,
has been an industry leader in logistics, procurement, operations and supply chain management. His career spans 38 years starting from Philips, Alcan Inc (Indian Aluminum Company), Hindalco, Novelis and Holcim. He authored the book, ‘The Search for Value in Supply Chains’. He serves now as Visiting Professor in SP Jain Global, SIOM and as the Adjunct Professor at SBUP. He advises leading Global Firms including Consulting firms on SCM and Industrial Leadership and is a subject matter expert in aluminum and cement. An Alumnus of IIM Calcutta and Jadavpur University, he has completed the LH Senior Leadership Programme at IVEY Academy at Western University, Canada.

Continue Reading

Trending News