Concrete
Pyroprocessing – Paving the Way for a More Sustainable Approach
Published
3 years agoon
By
admin
Optimising pyroprocessing in cement production is the key to reducing carbon emissions along with use of alternative fuels, raw materials and advanced technology. ICR delves into how energy efficient systems can make the Indian cement industry achieve its net zero target, and lead the world by its example.
Cement is a key ingredient for building everything – from roads to buildings and more. There are six major stages to the cement manufacturing process:
- raw material extraction or quarry
- raw material grinding, preparation and blending
- preheating
- kiln stage
- cooling and final grinding
- packaging or shipping
The major raw materials for cement, i.e., limestone, clay, sand, etc. are quarried and crushed into smaller pieces of about six inches. They are further broken down into smaller pieces of three inches. The crushed raw ingredients are made ready for the cement-making process in the kiln by combining them with additives and grinding them to ensure a fine homogenous mixture. The composition of cement is proportioned here depending on the desired properties of the cement. Generally, limestone is 80 per cent of the composition, and the remaining 20 per cent is clay. In the cement plant, the raw mix is dried (moisture content reduced to less than 1 per cent); heavy wheel-type rollers and rotating tables blend the raw mix and then the roller crushes it to a fine powder to be stored in silos and fed to the kiln.
A preheating chamber consists of a series of cyclones that utilise hot gases produced from the kiln in order to reduce energy consumption and make the cement-making process more environment-friendly. The raw materials are passed through here and turned into oxides to be burned in the kiln.
In the kiln stage, the principal stage of cement making process, clinker is produced from the raw mix fed to the kiln through a series of chemical reactions. This process of clinker formation in the kiln at high temperature is known as pyroprocessing.
After exiting the kiln, the clinker is rapidly cooled down from 2000°C to 100°C-200°C by passing air over it. At this stage, different additives are combined with the clinker to be ground in order to produce the final product, cement. Gypsum is added to the clinker at this stage and ground with it. This gives cement its most important property, its compressive strength.
The heat produced by the clinker is circulated back to the kiln to save energy. The last stage of making cement is the final grinding process. In the cement plant, there are rotating drums fitted with steel balls. Clinker, after being cooled, is transferred to these rotating drums and ground into such a fine powder. Cement is conveyed from grinding mills to silos (large storage tanks) where it is packed and shipped in bulk quantities.

The Kiln Phase of Cement Manufacturing
Cement kilns are used for the pyroprocessing stage of manufacture of portland and other types of hydraulic cement, in which calcium carbonate reacts with silica-bearing minerals to form a mixture of calcium silicates.
Limestone is the major raw material used in the raw mix fed to the kiln. The calcination of limestone along with some additional raw materials. Once the raw mix is fed to the kiln, and gradually heated by the burning of fuel, successive chemical reactions take place as the temperature of the raw mix rises:
- At a temperature of 70°C to 110°C the water or moisture content of the raw mix is evaporated to achieve a dry mix
- As the temperature rises from 400oC to 600°C, the clay-like minerals are decomposed into their constituent oxides; principally SiO2 and Al2O3. dolomite (CaMg(CO3)2) decomposes to calcium carbonate (CaCO3), MgO and CO2.
- When the temperature further rises to 650°C to 900°C, the calcium carbonate reacts with SiO2 to form belite (Ca2SiO4) (also known as C2S in the Cement Industry).
- As the temperature reaches 900°C to 1050°C, the remaining calcium carbonate decomposes to calcium oxide (CaO) and CO2.
- Upon achieving maximum temperature of 1300°C to 1450°C, partial (20 per cent to 30 per cent) takes place, and belite reacts with calcium oxide to form alite (Ca3O·SiO4) (also known as C3S in the Cement Industry).
At the peak temperature of 1450°C, the reaction is complete. The partial melting causes the material to aggregate into lumps or nodules, typically of diameter 1–10 mm. This is called clinker. The hot clinker next falls into a cooler which recovers most of its heat, and cools the clinker to around 100 °C, at which temperature it can be conveniently conveyed to storage.
As cited by Dr SB Hegde in his paper, Significance of Liquid Content in Clinker, the most important clinker phase is C3S (alite), which requires the presence of liquid for its formation. In the absence of liquid, alite formation is extremely slow and it would render clinkering impossible. This fact also explains why alite is formed essentially in the burning zone, where the amount of liquid is at a maximum. To understand why alite formation requires liquid content, one must first understand the alite formation mechanism:
- C2S and free CaO dissolves in the clinker melt.
- Calcium ions migrate towards C2S through chemical diffusion.
- C3S is formed and crystalised out of the liquid.
Without liquid phase the diffusion of Ca ions towards C2S would be extremely slow, and that of C2S almost impossible at clinkering temperature. It is important to mention that Na2O and K2O decrease the mobility of Ca ions, whereas MgO and sulphates considerably increase it. That is why addition of gypsum in the raw mix promotes alite formation.
Pyroprocessing Machinery
As one of the key roles in the cement manufacturing process, pyroprocessing solutions have been developed by multiple engineering giants in the industry to enhance and make this process efficient.

Preheaters are used in industrial dry kiln cement production plants to heat the raw mix and drive off carbon dioxide and water before it is fed into the kiln. There are three types of rotary kilns: kiln without preheater, kiln with preheater (PH), and kiln with both preheater and precalciner (PC). Kilns with PH are preferred to kilns without PH as they have lower energy consumption. For this reason, long rotary kilns without PH (long dry kilns) are being replaced over time. Thermal energy requirement is further reduced if a PH kiln is also equipped with a PC. New facilities usually include both PH and PC. A preheater (PH) is series of vertical cyclones in which the material is passed in counterflow with exhaust gases from the rotary kiln so that heat is transferred from the hot gas to the raw meal, which is therefore preheated and even partially calcined before entering the rotary kiln.
The moisture content of the raw materials determines the number of stages. Where moisture is less than 8.5 per cent, a PH kiln with 4 to 6 stages may be used. The higher the number of cyclone stages, the more the heat recovered. The energy demand of a 6-stage cyclone PH is about 60 MJ/t less than the demand of a 5-stage PH, and a 5-stage PH would save almost 90 MJ/t over a 4-stage PH.
Calciners represent a significant proportion of the fuel consumption i.e., up to 60 per cent of the total fuel consumed in the cement manufacturing process. The advancement and efficiency of a calciner, is therefore essential to overall fuel and process efficiency. Technically advanced calciners work on reducing the fuel consumption, thus, helping in reduction of NOx and carbon in the environment. Advanced calciners can be used with a variety of fuels like petroleum coke (petcoke) and anthracite and alternative fuels as well.
Pyroprocessing and Emissions
Carbon dioxide measured at NOAA’s Mauna Loa Atmospheric Baseline Observatory peaked for 2022 at 420.99 parts per million in May, an increase of 1.8 parts per million over 2021, pushing the atmosphere further into territory not seen for millions of years. Scientists at Scripps Institution of Oceanography, which maintains an independent record, calculated a similar monthly average of 420.78 parts per million, as published on Forbes.com.

formation of clinker.
Carbon dioxide pollution is generated by burning fossil fuels for transportation and electrical generation, by cement manufacturing, deforestation, agriculture, and many other practices.
The Emissions Gap Report 2022 report shows that updated national pledges since COP26 – held in 2021 in Glasgow, UK – make a negligible difference to predicted 2030 emissions and that we are far from the Paris Agreement goal of limiting global warming to well below 2°C, preferably 1.5°C. Policies currently in place point to a 2.8°C temperature rise by the end of the century. Implementation of the current pledges will only reduce this to a 2.4-2.6°C temperature rise by the end of the century, for conditional and unconditional pledges respectively. The report finds that only an urgent system-wide transformation can deliver the enormous cuts needed to limit greenhouse gas emissions by 2030: 45 per cent compared with projections based on policies currently in place to get on track to 1.5°C and 30 per cent for 2°C.

cuts needed to limit greenhouse gas emissions
The Indian cement industry is the second largest cement manufacturer in the world and a contributor towards the emission of carbon and other greenhouse gases. Calcination of limestone in the kiln (also known as pyroprocessing) emits the maximum carbon dioxide as a result of the chemical reaction and due to the use of fossil fuel to generate the heat in the kiln for the chemical reaction.
The industry is proactively working towards achieving Net Zero with the use of alternative fuels, raw materials and advancing its equipment in technology to achieve a higher productivity and energy efficient system that ultimately results in lower carbon generation.
Dr Hitesh Sukhwal, Deputy General Manager – Environment, Udaipur Cement Works Limited (UCWL), says, “JK Lakshmi Cement is the first organisation in the Indian Cement industry to install a Selective Non-Catalytic Resistance Equipment at their Sirohi plant for the mitigation of the oxides of nitrogen emitted during the manufacturing of cement. Subsequently at other plants of the organisation, this equipment has been installed for the mitigation of NOx emissions. As primary mitigation measures for NOx emissions, Oxy Rich, has been installed in the calciners at every manufacturing unit of the organisation with certain modifications made to suit each kiln.”
“We have taken up a target of achieving 10 per cent to 12 per cent of TSR by 2025 and up to 15 per cent by 2030. To achieve these targets, we will be installing alternative fuel feeding systems at our integrated cement plants, which are set to be executed by 2023. These alternative fuel feeding systems will be feeding both solid and liquid forms of fuels. For example, at our Durgh and Sirohi plants, both solid and liquid forms of alternative fuels and raw materials are used during pyroprocessing. At the Udaipur plant, liquid alternative fuels are being used which greatly helps in reduction of carbon emission. A major step that we have taken to curb the emission rate is to include the use of solar power in the power supply mix for the plants. Over 30 per cent renewable energy sources are being used in the energy mix of the power plants at all locations of JK Lakshmi Cement. We are tending towards the production of blended cement like Portland Slag Cement and Portland Pozzolana Cement in an effort to reduce the clinker to cement ratio. Besides the same, our grinding units are also equipped to prepare alternate cement or green cement” he adds.
Statista Report, November 2022, suggests that cement manufacturing emissions in India have experienced a steep climb in recent decades. In 2021, figures reached a high of 149 million metric tons of carbon dioxide (MtCO2). McKinsey & Company in its report, Laying the Foundation for Zero-Carbon Cement, states that it is unclear how the climate debate will unfold, reaching the goals by 2050 will be especially challenging for the cement industry, as most of its CO2 emissions result from the unavoidable chemical process known as calcination. Unlike other industries that may be further along, the development of new technologies to decarbonize cement might not be scalable for years. Nonetheless, in principle, the industry could reduce its 2017-level emissions by more than three-quarters by 2050.
Sanjay Joshi, Chief Manufacturing Officer, Nuvoco Vista, states, “Cementitious materials impact the energy consumption of cement manufacturing. These materials are easy to grind when compared to clinker which is the major constituent of cement. Thus, higher usage of cementitious materials helps in reducing energy consumption. Also, clinker usage directly involves limestone consumption as a raw material. Therefore, by using higher cementitious materials in the cement-making process, we are preserving the limestone available naturally.”
“Cement manufacturing is a closed loop wherein all raw materials from limestone mining to clinker production remain fully under controlled process parameters. The company focuses on reducing clinker consumption by increasing the blended cement ratio. Using these SCMs, Nuvoco is also aiming to save fossil fuel, along with the obvious reduction in carbon emissions. Additionally, SCMs increase the strength and durability of the product and reduce permeability,” he adds.
Rising emission of greenhouse gases, temperature and general pollution of the environment is a grave concern. It is being addressed at the global scale. The cement industry is participating actively in curbing their carbon emission rate and for the same adapting to new technologies, and alternatives to fuel and raw materials. From machinery and equipment to the formulations of blended cement, the process needs to be re-looked at to incorporate a sustainable approach to cement manufacturing while meeting the rising demands of construction and infrastructure across the globe.
-Kanika Mathur
Concrete
Adani’s Strategic Emergence in India’s Cement Landscape
Published
5 days agoon
September 16, 2025By
admin
Milind Khangan, Marketing Head, Vertex Market Research, sheds light on Adani’s rapid cement consolidation under its ‘One Business, One Company’ strategy while positioning it to rival UltraTech, and thus, shaping a potential duopoly in India’s booming cement market.
India is the second-largest cement-producing country in the world, following China. This expansion is being driven by tremendous public investment in the housing and infrastructure sectors. The industry is accelerating, with a boost from schemes such as PM Gati Shakti, Bharatmala, and the Vande Bharat corridors. An upsurge in affordable housing under the Pradhan Mantri Awas Yojana (PMAY) further supports this expansion. In May 2025, local cement production increased about 9 per cent from last year to about 40 million metric tonnes for the month. The combined cement capacity in India was recorded at 670 million metric tonnes in the 2025 fiscal year, according to the Cement Manufacturers’ Association (CMA). For the financial year 2026, this is set to grow by another 9 per cent.
In spite of the growing demand, the Indian cement industry is highly competitive. UltraTech Cement (Aditya Birla Group) is still the market leader with domestic installed capacity of more than 186 MTPA as on 2025. It is targeted to achieve 200 MTPA. Adani Cement recently became a major player and is now India’s second-largest cement company. It did this through aggressive consolidation, operational synergies, and scale efficiencies. Indian players in the cement industry are increasingly valuing operational efficiency and sustainability. Some of the strategies with high impact are alternative fuels and materials (AFR) adoption, green cement expansion, and digital technology investments to offset changing regulatory pressure and increasing energy prices.
Building Adani Cement brand
Vertex Market Research explains that the Adani Group is executing a comprehensive reorganisation and consolidation of its cement business under the ‘One Business, One Company’ strategy. The plan is to integrate its diversified holdings into one consolidated corporate entity named Adani Cement. The focus is on operating integration, governance streamlining, and cost reduction in its expanding cement business.
Integration roadmap and key milestones:
- September 2022: The consolidation process started with the $6.4 billion buyout of Holcim’s majority stakes in Ambuja Cements and ACC, with Ambuja becoming the focal point of the consolidation.
- December 2023: Bought Sanghi Industries to strengthen the firm’s presence in western India.
- August 2024: Added Penna Cement to the portfolio, improving penetration of the southern market of India.
- April 2025: Further holding addition in Orient Cement to 46.66 per cent by purchasing the same from CK Birla Group, becoming the promoter with control.
- Ambuja Cements amalgamated with Adani Cement: This was sanctioned by the NCLT on 18th July 2025 with effect from April 1, 2024. This amalgamation brings in limestone reserves and fresh assets into Ambuja.
- Subject to Sanghi and Penna merger with Ambuja: Board approvals in December 2024 with the aim to finish between September to December 2025.
- Ambuja-ACC future integration: The latter is being contemplated as the final step towards consolidation.
- Orient Cement: It would serve as a principal manufacturing facility following the merger.
Scale, capacity expansion and market position
In financial year-2025, Adani Cement, including Ambuja, surpassed 100 MTPA. This makes it one of the world’s top ten cement companies. Along with ACC’s operations, it is now firmly placed as India’s second-largest cement company. In FY25, the Adani group’s sales volume per annum clocked 65 million metric tonnes. Adani Group claims that it now supplies close to 30 per cent of the cement consumed in India’s homes and infrastructure as of June 2025.
The organisation is pursuing aggressive brownfield expansion:
- By FY 2026: Reach 118 MTPA
- By FY 2028: Target 140 MTPA
These goals will be driven by commissioning new clinker and grinding units at key sites, with civil and mechanical works underway.
As of 2024, Adani Cement had its market share pegged at around 14 to 15 per cent, with an ambition to scale this up to 20 per cent by FY?2028, emerging as a potent competitor to UltraTech’s 192?MTPA capacity (186 domestic and overseas).
Strategic advantages and competitive benefits
The consolidation simplifies decision-making by reducing legal entities, centralising oversight, and removing redundant functions. This drives compliance efficiency and transparent reporting. Using procurement power for raw materials and energy lowers costs per ton. Integrated logistics with Adani Ports and freight infrastructure has resulted in an estimated 6 per cent savings in logistics. The group aims for additional savings of INR 500 to 550 per tonne by FY 2028 by integrating green energy, using alternative fuel resources, and improving sourcing methods.
Market coverage and brand consistency
Brand integration under one strategy will provide uniform product quality and easier distribution networks. Integration with Orient Cement’s dealer base, 60 per cent of which already distributes Ambuja/ACC products, enhances outreach and responsiveness.
By having captive limestone reserves at Lakhpat (approximately 275 million tonnes) and proposed new manufacturing facilities in Raigad, Maharashtra, Adani Cement derives cost advantage, raw material security, and long-term operational robustness.
Strategic implications and risks
Consolidation at Adani Cement makes it not just a capacity leader but also an operationally agile competitor with the ability to reap digital and sustainability benefits. Its vertically integrated platform enables cost leadership, market responsiveness, and scalability.
Challenges potentially include:
- Integration challenges across systems, corporate cultures, and plant operations
- Regulatory sanctions for pending mergers and new capacity additions
- Environmental clearances in environmentally sensitive areas and debt management with input price volatility
When materialised, this revolution would create a formidable Adani–UltraTech duopoly, redefining Indian cement on the basis of scale, innovation, and sustainability. India’s leading four cement players such as Adani (ACC and Ambuja), Dalmia Cement, Shree Cement, and UltraTech are expected to dominate the cement market.
Conclusion
Adani’s aggressive consolidation under the ‘One Business, One Company’ strategy signals a decisive shift in the Indian cement industry, positioning the group as a formidable challenger to UltraTech and setting the stage for a potential duopoly that could dominate the sector for years to come. By unifying operations, leveraging economies of scale, and securing vertical integration—from raw material reserves to distribution networks—Adani Cement is building both capacity and resilience, with clear advantages in cost efficiency, market reach, and sustainability. While integration complexities, regulatory hurdles, and environmental approvals remain key challenges, the scale and strategic alignment of this consolidation promise to redefine competition, pricing dynamics, and operational benchmarks in one of the world’s fastest-growing cement markets.
About the author:
Milind Khangan is the Marketing Head at Vertex Market Research and comes with over five years of experience in market research, lead generation and team management.
Concrete
Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series
Published
1 month agoon
August 16, 2025By
admin
PowerBuild’s flagship Series M, C, F, and K geared motors deliver robust, efficient, and versatile power transmission solutions for industries worldwide.
Products – M, C, F, K: At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. PowerBuild answers this need with its flagship geared motor series: M, C, F, and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.
Series M – Helical Inline Geared Motors: Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.
Series C – Right Angled Heli-Worm Geared Motors: Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.
Series F – Parallel Shaft Mounted Geared Motors: Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes, and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.
Series K – Right Angle Helical Bevel Geared Motors: For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining, and material handling. Its flexibility in mounting and broad motor options offer engineers’ freedom in design and reliability in execution.
Together, these four series reflect PowerBuild’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design, and field-tested reliability. Whether the requirement is speed control, torque multiplication, or space efficiency, Radicon’s Series M, C, F, and K stand as trusted powerhouses for global industries.

Klüber Lubrication India’s Klübersynth GEM 4-320 N upgrades synthetic gear oil for energy efficiency.
Klüber Lubrication India has introduced a strategic upgrade for the tyre manufacturing industry by retrofitting its high-performance synthetic gear oil, Klübersynth GEM 4-320 N, into Barrel Cold Feed Extruder gearboxes. This smart substitution, requiring no hardware changes, delivered energy savings of 4-6 per cent, as validated by an internationally recognised energy audit firm under IPMVP – Option B protocols, aligned with
ISO 50015 standards.
Beyond energy efficiency, the retrofit significantly improved operational parameters:
- Lower thermal stress on equipment
- Extended lubricant drain intervals
- Reduction in CO2 emissions and operational costs
These benefits position Klübersynth GEM 4-320 N as a powerful enabler of sustainability goals in line with India’s Business Responsibility and Sustainability Reporting (BRSR) guidelines and global Net Zero commitments.
Verified sustainability, zero compromise
This retrofit case illustrates that meaningful environmental impact doesn’t always require capital-intensive overhauls. Klübersynth GEM 4-320 N demonstrated high performance in demanding operating environments, offering:
- Enhanced component protection
- Extended oil life under high loads
- Stable performance across fluctuating temperatures
By enabling quick wins in efficiency and sustainability without disrupting operations, Klüber reinforces its role as a trusted partner in India’s evolving industrial landscape.
Klüber wins EcoVadis Gold again
Further affirming its global leadership in responsible business practices, Klüber Lubrication has been awarded the EcoVadis Gold certification for the fourth consecutive year in 2025. This recognition places it in the top three per cent
of over 150,000 companies worldwide evaluated for environmental, ethical and sustainable procurement practices.
Klüber’s ongoing investments in R&D and product innovation reflect its commitment to providing data-backed, application-specific lubrication solutions that exceed industry expectations and support long-term sustainability goals.
A trusted industrial ally
Backed by 90+ years of tribology expertise and a global support network, Klüber Lubrication is helping customers transition toward a greener tomorrow. With Klübersynth GEM 4-320 N, tyre manufacturers can take measurable, low-risk steps to boost energy efficiency and regulatory alignment—proving that even the smallest change can spark a significant transformation.

Adani’s Strategic Emergence in India’s Cement Landscape

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Driving Measurable Gains

Reshaping the Competitive Landscape

CCU testbeds in Tamil Nadu

Adani’s Strategic Emergence in India’s Cement Landscape

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Driving Measurable Gains

Reshaping the Competitive Landscape
