Connect with us

Concrete

The main task in cement production is improving sustainability

Published

on

Shares

Prakhar Shrivastava, Head – Corporate Quality, JK Cement Limited, discusses the smart use of supplementary cementitious materials to improve cement production and make cement manufacturing more integral to a circular economy.

What are supplementary cementitious materials? Tell us more about their nature
of origin.

Supplementary Cementitious Materials (SCM) are materials that are obtained from other industrial waste as by-product and none have their own/individually hardened properties but contribute by grinding with clinker or blending with Ordinary Portland Cement (OPC) through hydraulic and/or pozzolanic activity. These waste products are used as supplementary cementitious materials so that the maximum utilisation of wastes is possible. SCM play a significant role in increasing the workability of the product and enhance the serviceability or durability, thus, decreasing the permeability, aiding in pumpability and finishability.
Typical SCM are flyash, slag, silica fume, natural ashes, rice husk ash, burnt shale, metakaolinite, calcined clay and natural pozzolana i.e., volcanic glass, etc. Among them, flyash and slag are widely used by cement industries for production of PPC and PSC.
Flyash or pulverised fuel ash is formed during combustion of coal from coal-fired electric and steam generating plants and obtained by electrostatic or mechanical precipitation of dust like particles from the flue gases. Earlier, it was recognised as an industrial waste but now has become an important industrial by-product.


Steel slag, a by-product of steel industries, formerly referred to as ground, granulated blast-furnace slag, is a glassy, granular material formed when molten, iron blast-furnace slag is rapidly chilled – typically by water sprays or immersion in water – and subsequently ground to cement fineness.

Tell us about the supplementary cementitious materials and their composition used by your organisation?
Supplementary cementitious materials are soluble siliceous, alumina-siliceous or calcium alumina-siliceous powders used as partial replacements of clinker in cements or as partial replacements of portland cement in concrete mixtures.
At JK Cement, we manufacture Portland Pozzolana Cement (PPC) from all our plants with addition of flyash up to 35 per cent and PPC in premium category with 20 per cent flyash to promote usage of only blended cement to fulfil customer requirements by achieving equivalent strength properties of OPC (Ordinary Portland Cement). At our south India plant in Muddapur, we also manufacture Portland Slag Cement (PSC) with the addition of slag at approximately 65 per cent, meeting all the internal product quality norms.
In our plants, flyash is sourced from different thermal power plants in accordance to the quality, cost and suitability criteria of the plants. Similarly, slag is sourced from steel plants located in Karnataka and Goa. The typical chemical composition and quality requirements as per Indian standards of flyash and slag are mentioned in the table:

Does the use of supplementary cementitious materials impact the process of cement manufacturing?
Impact of SCM can be categorised in two aspects i.e., challenges and benefits. Below are the few challenges faced during the process of cement manufacturing.

Benefits of using SCM include reduction in CO2 emissions, less water usage and decrease in waste generation.
  • Major SCM are available across the country, such as, dry flyash and pond ash; however, less availability of dry flyash directly connected with thermal power plants (TPP) operation.
  • Though there is abundance of pond ash, the major concern in its usage is the high moisture content and coarser size, which creates constraint of jamming, leading to lower production, higher power consumption, blended cement quality and slower production.
  • Additional feeding systems are required.
  • Challenges of further grinding of abrasive/harder to grind materials such as coarser pond ash, GGBS, copper slag.
  • It may increase the cost of the product especially where some SCM are more expensive than cement. i.e., the availability of SCM.
  • SCM used for the clinkerisation process required high grade limestone to maintain the desired quality of clinker which affects the mine life.

What are the key advantages of using supplementary cementitious materials in the cement manufacturing process?
The key advantages of using supplementary cementitious materials are:

  • Increased clinker substitution; reduces CO2 emission per ton of cement production.
  • Reduces use of fossil fuel per ton of cement production.
  • Increases the life of limestone mines.
  • Reduces consumption of thermal and electrical energy.
  • Reduces water consumption.
  • Reduces generation of garbage materials at the location, which in turn leads to clean India.

How does the use of supplementary materials increase the profitability of the cement manufacturing for your organisation?
SCM play a vital role in increasing the profitability of the cement manufacturing; with the addition of SCM during cement production, it enhances the overall cement capacity. All our plants are using SCM which are available nearby to plant location. We are investing a lot at locations where SCM are available at a lower cost value and hence reducing the overall cost of cement as compared to clinker cost. Also, these SCM help in reducing the power consumption per ton of cement due to increase in cement volume. Another benefit is the increased cement volume that results in intangible benefit by increasing limestone mine life and conserving natural resources of compendious materials.

Tell us about the quality standards and checks implemented for the final product made using supplementary materials.
The Indian standards have been framed to define the quality of SCM by BIS. Each SCM has a specific Indian standard with specific quality norms like for pulverised fuel ash (IS 3812 Part-1), slag (IS 12089), calcined clay pozzolana (IS: 1344-1981 (Part-II) etc. According to IS specification; internal quality standards have been specified to monitor the SCM quality and these quality specifications are specified in the purchase order for vendor reference. A structured and systematic approach is made to check the SCM quality by the quality control department and all test results are recorded in SIT formats.
In order to make different grade products following checks have been implemented

  • Has established a distinct location/yard/silo for proper storage of SCM and to avoid contamination.
  • Different hoppers are assigned for each type of material storage and to introduce during the manufacturing process.
  • For controlled and calculated addition; weigh feeders are installed.
  • For each process or step, quality norms have defined and organised the monitoring and testing in stipulated frequency as per IS requirement.
  • Prior to dispatch and release of product in market or to customer the prescribed quality testing performed for quality reassurance.

Tell us about the role of technology in deciding the proportions of supplementary cementitious materials.
Today, the main task in cement production is improving sustainability by reducing emissions. This is achieved by promoting the use of green fuels that lower the conventional fuel consumption and by utilising the alternative raw materials i.e. SCM while producing reliable products at a competitive cost for the construction industry. Less clinker and more SCM is the challenge for the cement industry. The control and optimisation of clinker and cement reactivity is one important key to reach these targets. A problem today is that clinker and cement reactivity are not quantified at cement plants, except by slow and indirect methods like compressive strength testing.
XRF and XRD studies are valuable to understand the composition. However, quantitative XRD does not directly assess the reactivity of SCM. Recently isothermal heat flow calorimetry techniques have been suggested as a new analytical tool for process control and deciding the proportion of SCM in cement.
Recently, the beneficiation or processing of flyash has become hugely important. Flyash Beneficiation Technology or process converts waste from coal-fired power stations (pulverised fuel ash or flyash) by separating the constituent minerals to generate a range of sustainable, environment-friendly products with unique physical and chemical characteristics.

What are the major challenges you face while using supplementary materials for cement manufacturing?
The major concern is availability in terms of quality and quantity; the second factor is cost because the overall cost depends on the distance between the generation unit to the cement manufacturing plant which eventually impacts the cost of cement.
Constantly the SCM demand is increasing and the availability of good quality SCM is very limited and on high cost, the high moisture content of slag and pond ash creates operational challenges. The quality of SCM, largely influenced by the existence of high quartz, heavy metals, alkalis and the fineness that determine the quality of cement. Indian flyash is more crystalline compared to what is generated in other countries and the ratio of formers (SiO2,+Al2O3+Fe2O3) to network modifiers (Na2O+K2O+CaO+MgO) in the Indian flyash is very high and imbalanced.
Depending on the source of coal that varies from mine to mine impacts the composition of flyash like bituminous coals, sub-bituminous and lignite coal determine the flyash colour, fineness and other radicals. Among all SCM, flyash is mostly used in cement plants and as thermal power plants (TPP) are the source of flyash, the present availability of coal and its high cost is a major concern for TPP operations that is affecting the flyash generation. The availability and sources of slag in India are limited, which are affecting its usage in blended cement. Except for flyash and slag, other SCM availability is very less and not too economical.

How does the use of cement made of supplementary materials impact its carbon footprint?
We have committed to achieving our SBTi goal by cutting our GHG emissions according to climate science and as a Global Member of GCCA, by pledging for UNFCCC’s ‘Race to Zero Campaign’ to achieve Net Zero Carbon by 2050.
Clinker manufacturing is responsible for 80 per cent of the carbon emissions and supplementary cementitious materials reduce the clinker content in cement to a great extent without compromising the quality of the product. JK Cement’s green vision is to deliver a sustainable product to meet the stakeholder’s demands while taking several measures that can reduce CO2 emissions in the clinker manufacturing process. This can be achieved by using different types of alternative fuels, RDF/MSW, biomass fuels etc. and various industrial waste such as raw mix components like red mud, GCP dust, iron sludge, zinc slag etc.
Supplementary cementitious materials such as flyash, slag, waste gypsum and industrial waste are the crucial components of JK Cement’s business strategies for conservation of the mineral resources which enables us to produce sustainable construction materials in terms of low embodied carbon at a competitive cost. This has transformed our operations by setting up a benchmark for achieving the best sustainable business practices in the industries and producing Green Certified Cement.


Tell us about the impact of cement made with supplementary materials on the construction and allied industries.
As the construction sector is incessantly challenged by the growing societal demands for safer and cost-effective infrastructures, more and more environment-friendly products and processes must be developed and adopted into our industrial practice. Although supplementary cementitious materials are one of the most used construction materials worldwide, there are still some major concerns about their sustainability and durability.
Firstly, the production of concrete is releasing large volumes of carbon dioxide into the atmosphere, one of the greenhouse gases attributable to
climate change. Secondly, even though cementitious materials are very versatile and robust they may suffer from various deteriorative processes, leading to shortened service life, and consequently, intrusive or expensive costs for maintenance and repair.
To meet the expectations of consumers, demanding more durable, less labour and service intensive materials at a competitive price, numerous new composite materials and technologies have been developed over the last couple of decades including blended cements with Supplementary Cementitious Materials (SCM).

Some of the positive impacts are summarised as follows:

  • The use of supplementary cementitious materials in construction not only improves the mechanical property of cement matrix but also reduces its impacts on the environment.
  • Blended cement helps to reduce the damage to the concrete from alkali-silica reaction and provides higher resistance to chloride ingress thus reducing the risk of reinforcement corrosion.
  • Mitigating sulphate phase formation, which takes place when sulphates found in seawater and some soils react with tricalcium aluminate in concrete.
  • Some of the allied industries have started making limestone bricks, AAC blocks, hollow blocks, flyash bricks which are not only considered as green products but also reduce the cost of construction works.

How do you foresee the future of the global cement industry in terms of using alternative materials for cement manufacturing and running the race of decarbonisation?
The production of Ordinary Portland Cement (OPC) is continuously declining, with a simultaneous increase in the production of blended cement like PPC, PSC, and Composite Cement based on flyash and granulated blast furnace slag. SCM are increasingly used to minimise cement-related CO2 emissions and increase plant efficiency from an economic and environmental perspective.
At present, blended cements have a greater share (73 per cent) in comparison to ordinary portland cement (27 per cent). Other cement formulations such as Portland Limestone Cement (PLC) and Limestone Calcined Clay Cement (LC3) are also at different stages of development in India.
In recent years, globally and in India several research has been conducted for the development of environment-friendly and less CO2 emission cement i.e., Calcium Sulfo-Aluminate Cement, Reactive Belite Cement, Alkali Activated Cement etc., that is found to be more energy-saving, less carbon intensive and optimises waste-utilisation. Further studies were carried out on carbon capture storage and usage, zero emission mining, oxyfuel combustion in kiln etc. If these solutions become economically viable, they may contribute to a considerable reduction in CO2 output from the cement industry.

Kanika Mathur

Concrete

Adani’s Strategic Emergence in India’s Cement Landscape

Published

on

By

Shares



Milind Khangan, Marketing Head, Vertex Market Research, sheds light on Adani’s rapid cement consolidation under its ‘One Business, One Company’ strategy while positioning it to rival UltraTech, and thus, shaping a potential duopoly in India’s booming cement market.

India is the second-largest cement-producing country in the world, following China. This expansion is being driven by tremendous public investment in the housing and infrastructure sectors. The industry is accelerating, with a boost from schemes such as PM Gati Shakti, Bharatmala, and the Vande Bharat corridors. An upsurge in affordable housing under the Pradhan Mantri Awas Yojana (PMAY) further supports this expansion. In May 2025, local cement production increased about 9 per cent from last year to about 40 million metric tonnes for the month. The combined cement capacity in India was recorded at 670 million metric tonnes in the 2025 fiscal year, according to the Cement Manufacturers’ Association (CMA). For the financial year 2026, this is set to grow by another 9 per cent.
In spite of the growing demand, the Indian cement industry is highly competitive. UltraTech Cement (Aditya Birla Group) is still the market leader with domestic installed capacity of more than 186 MTPA as on 2025. It is targeted to achieve 200 MTPA. Adani Cement recently became a major player and is now India’s second-largest cement company. It did this through aggressive consolidation, operational synergies, and scale efficiencies. Indian players in the cement industry are increasingly valuing operational efficiency and sustainability. Some of the strategies with high impact are alternative fuels and materials (AFR) adoption, green cement expansion, and digital technology investments to offset changing regulatory pressure and increasing energy prices.

Building Adani Cement brand
Vertex Market Research explains that the Adani Group is executing a comprehensive reorganisation and consolidation of its cement business under the ‘One Business, One Company’ strategy. The plan is to integrate its diversified holdings into one consolidated corporate entity named Adani Cement. The focus is on operating integration, governance streamlining, and cost reduction in its expanding cement business.
Integration roadmap and key milestones:

  • September 2022: The consolidation process started with the $6.4 billion buyout of Holcim’s majority stakes in Ambuja Cements and ACC, with Ambuja becoming the focal point of the consolidation.
  • December 2023: Bought Sanghi Industries to strengthen the firm’s presence in western India.
  • August 2024: Added Penna Cement to the portfolio, improving penetration of the southern market of India.
  • April 2025: Further holding addition in Orient Cement to 46.66 per cent by purchasing the same from CK Birla Group, becoming the promoter with control.
  • Ambuja Cements amalgamated with Adani Cement: This was sanctioned by the NCLT on 18th July 2025 with effect from April 1, 2024. This amalgamation brings in limestone reserves and fresh assets into Ambuja.
  • Subject to Sanghi and Penna merger with Ambuja: Board approvals in December 2024 with the aim to finish between September to December 2025.
  • Ambuja-ACC future integration: The latter is being contemplated as the final step towards consolidation.
  • Orient Cement: It would serve as a principal manufacturing facility following the merger.

Scale, capacity expansion and market position
In financial year-2025, Adani Cement, including Ambuja, surpassed 100 MTPA. This makes it one of the world’s top ten cement companies. Along with ACC’s operations, it is now firmly placed as India’s second-largest cement company. In FY25, the Adani group’s sales volume per annum clocked 65 million metric tonnes. Adani Group claims that it now supplies close to 30 per cent of the cement consumed in India’s homes and infrastructure as of June 2025.
The organisation is pursuing aggressive brownfield expansion:

  • By FY 2026: Reach 118 MTPA
  • By FY 2028: Target 140 MTPA

These goals will be driven by commissioning new clinker and grinding units at key sites, with civil and mechanical works underway.
As of 2024, Adani Cement had its market share pegged at around 14 to 15 per cent, with an ambition to scale this up to 20 per cent by FY?2028, emerging as a potent competitor to UltraTech’s 192?MTPA capacity (186 domestic and overseas).

Strategic advantages and competitive benefits
The consolidation simplifies decision-making by reducing legal entities, centralising oversight, and removing redundant functions. This drives compliance efficiency and transparent reporting. Using procurement power for raw materials and energy lowers costs per ton. Integrated logistics with Adani Ports and freight infrastructure has resulted in an estimated 6 per cent savings in logistics. The group aims for additional savings of INR 500 to 550 per tonne by FY 2028 by integrating green energy, using alternative fuel resources, and improving sourcing methods.

Market coverage and brand consistency
Brand integration under one strategy will provide uniform product quality and easier distribution networks. Integration with Orient Cement’s dealer base, 60 per cent of which already distributes Ambuja/ACC products, enhances outreach and responsiveness.
By having captive limestone reserves at Lakhpat (approximately 275 million tonnes) and proposed new manufacturing facilities in Raigad, Maharashtra, Adani Cement derives cost advantage, raw material security, and long-term operational robustness.

Strategic implications and risks
Consolidation at Adani Cement makes it not just a capacity leader but also an operationally agile competitor with the ability to reap digital and sustainability benefits. Its vertically integrated platform enables cost leadership, market responsiveness, and scalability.

Challenges potentially include:

  • Integration challenges across systems, corporate cultures, and plant operations
  • Regulatory sanctions for pending mergers and new capacity additions
  • Environmental clearances in environmentally sensitive areas and debt management with input price volatility

When materialised, this revolution would create a formidable Adani–UltraTech duopoly, redefining Indian cement on the basis of scale, innovation, and sustainability. India’s leading four cement players such as Adani (ACC and Ambuja), Dalmia Cement, Shree Cement, and UltraTech are expected to dominate the cement market.

Conclusion
Adani’s aggressive consolidation under the ‘One Business, One Company’ strategy signals a decisive shift in the Indian cement industry, positioning the group as a formidable challenger to UltraTech and setting the stage for a potential duopoly that could dominate the sector for years to come. By unifying operations, leveraging economies of scale, and securing vertical integration—from raw material reserves to distribution networks—Adani Cement is building both capacity and resilience, with clear advantages in cost efficiency, market reach, and sustainability. While integration complexities, regulatory hurdles, and environmental approvals remain key challenges, the scale and strategic alignment of this consolidation promise to redefine competition, pricing dynamics, and operational benchmarks in one of the world’s fastest-growing cement markets.

About the author:
Milind Khangan is the Marketing Head at Vertex Market Research and comes with over five years of experience in market research, lead generation and team management.

Continue Reading

Concrete

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Published

on

By

Shares



PowerBuild’s flagship Series M, C, F, and K geared motors deliver robust, efficient, and versatile power transmission solutions for industries worldwide.

Products – M, C, F, K: At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. PowerBuild answers this need with its flagship geared motor series: M, C, F, and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.
Series M – Helical Inline Geared Motors: Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.
Series C – Right Angled Heli-Worm Geared Motors: Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.
Series F – Parallel Shaft Mounted Geared Motors: Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes, and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.
Series K – Right Angle Helical Bevel Geared Motors: For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining, and material handling. Its flexibility in mounting and broad motor options offer engineers’ freedom in design and reliability in execution.
Together, these four series reflect PowerBuild’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design, and field-tested reliability. Whether the requirement is speed control, torque multiplication, or space efficiency, Radicon’s Series M, C, F, and K stand as trusted powerhouses for global industries.

Continue Reading

Concrete

Driving Measurable Gains

Published

on

By

Shares



Klüber Lubrication India’s Klübersynth GEM 4-320 N upgrades synthetic gear oil for energy efficiency.

Klüber Lubrication India has introduced a strategic upgrade for the tyre manufacturing industry by retrofitting its high-performance synthetic gear oil, Klübersynth GEM 4-320 N, into Barrel Cold Feed Extruder gearboxes. This smart substitution, requiring no hardware changes, delivered energy savings of 4-6 per cent, as validated by an internationally recognised energy audit firm under IPMVP – Option B protocols, aligned with
ISO 50015 standards.

Beyond energy efficiency, the retrofit significantly improved operational parameters:

  • Lower thermal stress on equipment
  • Extended lubricant drain intervals
  • Reduction in CO2 emissions and operational costs

These benefits position Klübersynth GEM 4-320 N as a powerful enabler of sustainability goals in line with India’s Business Responsibility and Sustainability Reporting (BRSR) guidelines and global Net Zero commitments.

Verified sustainability, zero compromise
This retrofit case illustrates that meaningful environmental impact doesn’t always require capital-intensive overhauls. Klübersynth GEM 4-320 N demonstrated high performance in demanding operating environments, offering:

  • Enhanced component protection
  • Extended oil life under high loads
  • Stable performance across fluctuating temperatures

By enabling quick wins in efficiency and sustainability without disrupting operations, Klüber reinforces its role as a trusted partner in India’s evolving industrial landscape.

Klüber wins EcoVadis Gold again
Further affirming its global leadership in responsible business practices, Klüber Lubrication has been awarded the EcoVadis Gold certification for the fourth consecutive year in 2025. This recognition places it in the top three per cent
of over 150,000 companies worldwide evaluated for environmental, ethical and sustainable procurement practices.
Klüber’s ongoing investments in R&D and product innovation reflect its commitment to providing data-backed, application-specific lubrication solutions that exceed industry expectations and support long-term sustainability goals.

A trusted industrial ally
Backed by 90+ years of tribology expertise and a global support network, Klüber Lubrication is helping customers transition toward a greener tomorrow. With Klübersynth GEM 4-320 N, tyre manufacturers can take measurable, low-risk steps to boost energy efficiency and regulatory alignment—proving that even the smallest change can spark a significant transformation.

Continue Reading

Trending News