Connect with us

Concrete

Today, managing energy is a full time job

Published

on

Shares

Jamshed N Cooper, Managing Director, HeidelbergCement India Ltd. and Zuari Cement, looks at energy consumption across various areas of cement production while emphasising the need to measure energy usage in terms of consumption vis-a-vis the cost per unit.

What kind of innovations in the area of energy consumption do you wish to see in the cement industry?
In cement manufacturing process, maximum energy is consumed at the clinkering stage. Electrical energy ranges from 50 to 80 units and thermal energy ranges from 2.9 to 3.25 GigaJoule per tonne. Therefore, clinkering stage is the one that becomes the focus of attention when it comes to adopting new technologies. Cement companies are always on a lookout for energy efficient kilns that are capable of operating with a combination of fuel mix and low on energy consumption. Resultant benefit also flows in by way of low CO2 generation.

To achieve economies of scale, mass continuous production needs to be achieved. For example, a million tonne kiln in today’s time is termed as an energy guzzler. As a thumb rule, a kiln of 5500 TPD is now the entry level. The general trend is to flog kilns of 5,000 TPD to deliver 6,000 TPD at the same time keeping MTBF (Mean Time Between Failure) at maximum, one would be able to optimise energy consumption.

Significant development has happened during the years and now we have fourth generation cross bar coolers which are energy efficient. Another potential area to reduce energy is by deploying VFDs in an optimal manner. Since VFDs are costly, payback analysis on case to case basis should be taken up and replacement of direct drives to be prioritised with a goal to do away with less efficient equipment.

Post clinkering, it’s the grinding stage that consumes a good amount of electrical energy. The industry has worked upon this area and have succeeded in implementing solutions to reduce energy consumption.

At one point of time, cement grinding used to take up to 50 to 60 units of power. The latest energy efficient mills we separator are able to grind clinker consuming as low as 20 to 25 units of energy.

Deployment of vertical roller mills (VRM) and prepress roller mills have led to productivity enhancement and reduced energy consumption on per ton output.

Use of AFR (Alternative Fuel Resource), is yet another avenue available to the cement industry to reduce its thermal energy cost and reduce CO2 footprint. Although, the heat requirement for the pyro-process remains the same, energy substituted from AFR has good potential in reducing costs. Power generation from waste heat recovery (WHR). has come a long way and the cement industry has wisely adopted this technology gainfully.

The drive to reduce energy consumption by the cement industry is now compelling us to embrace digital technology. Digitalisation is fast catching up in the cement industry and is becoming the harbinger in the area of energy optimisation and reduction of CO2 footprint.

How does automation and technology help in optimising the use of energy in cement plants?
Talking about automation, earlier we used to have a significant human interface for plant operations. For example, highly skilled workmen called “Burners” were required for operating kilns. These workmen used their experienced based judgement for controlling the kiln fuel to the kiln by watching the condition of the flame. Today, all of this is controlled from the Central Control Room (CCR) using state of the art digital technology making it possible to monitor plant operations with deft accuracy and speed At HeidelbergCement, we use Px Trends – a system that gathers system data and does trend analysis based on which it provides solutions to the operators for controlling various equipment. The big data gathered over the years offers immense potential to deploy Artificial Intelligence (AI) engines and optimise various operating parameters in real time automatically. Cement manufacturing deals with large volumes of raw materials and this compromises accuracy when it comes to measurement in real time. Given the volumes processed every minute, it’s humanly not possible to regulate their flows with accuracy nor easy to predict accurately the quality of raw materials being mined. By digitalising, we have created processes and methodologies custom built by HeidelbergCement that facilitate optimisation of fuel and energy.

HeidelbergCement Group has also invested in IT companies with a long term aim to digitalise its operations and become future ready. Our Group is relentlessly working to deploy digital technology as we believe that it holds the key to a better future. Remote management of our cement mills is one such example deployed in India to achieve improved productivity and control of the processes.

What is the energy consumption in one cycle of cement manufacturing process? Which process is the most energy intensive?
On average, the electrical energy consumption for producing a tonne of cement ranges from 60 units to 90 units and is dependent on the type of cement produced and the technology deployed. In the same company, there could be multiple kilns and processes installed over different time horizons and the energy consumption for the same would not be similar. The latest technologies bank on large production lines that deliver optimal energy efficiency and would consume about 60 to 65 units.

What are the major challenges your organisation faces in managing the energy needs of the cement manufacturing process?
In today’s times and especially since the fuel prices have more than tripled, managing energy has become a fulltime job. Energy which used to constitute about 30 per cent of the manufacturing cost has now become close to 45 per cent. Therefore, managing our energy needs becomes one of the bigger challenges for us and the industry as well. HeidelbergCement has developed several ways to manage its energy needs and deploy customised systems that have been developed by the Group.

Energy consumed to manufacture a tonne of cement is measured in Kcal or Giga Joules but more relevant is how do we achieve the lowest cost per Kcal or Gj. It therefore becomes prudent to manage the fuel mix based on its landed cost at the plant. To be able to optimise the energy consumption and its cost, we constantly evaluate and keep altering our fuel recipes.

On one hand is the cost of various fuels and on the other is its consumption. In the cement manufacturing process, a lot of heat is lost if thermal radiation is not contained. “Heat Contained is Heat Saved”. Periodic and astute maintenance schedules not only hold the key to improve plant availability but go a long way in reducing energy consumption.

We constantly endeavor to replace fossil fuels with AFR and maximise power generation from WHR. Replacing high cost grid power with low cost renewable power such as solar and wind have remained in sharp focus for HeidelbergCement India. Over a period of the last few years, we have been able to reduce our energy consumption by upgrading the plant and machinery in our plants.

How does energy conservation impact the profitability of the organisation? What impact does it have on the productivity of the process?
As I mentioned, reduction in energy consumption results in reduction of manufacturing costs as well and adds to the bottom line. Replacing high cost conventional energy sources with WHR and low renewable energy sources helps us save enough to be able to invest and adapt to newer technologies. It’s a self-fulfilling cycle that improves the competitive advantage which in the Indian context is a necessity for survival and growth.

Productivity and Energy efficiency go hand in hand and every employee in our organisation understands this. Drop in productivity of any equipment gets reflected in terms of higher energy consumption per unit of cement produced. For example, a kiln of 5,000 TPD if operated to deliver an output of 5800 TPD clinker, the incremental energy requirement will be marginally higher in relation to the energy consumed when operated at 5000 TPD.

With oil prices shooting through the roof, what has been its impact on the cement industry?
Escalated fuel cost has dealt a severe blow to the cement industry. Fuel related costs have added the most to our woes. The costs have gone up by 20 per cent to 30 per cent during the last two years and continue to rise unabated. Due to overhang of capacity and intense competition, the cement industry has not been able to pass on the price increases to the consumers.

In December 2020, pet coke prices were about $50 per tonne. Today the same is close to US$ 220 which makes the increase 3x of what it was. Today imported coal is hovering in the range of US$195 to $200 per tonne. Looking at the geopolitical situation and the state of economies across the globe, it does not seem that fuel prices would relent much in the coming year or so.

While industry continues to strive and contain its costs by deploying efficient technologies, it has its limitations. The cost savings thus achieved fall significantly short when it comes to matching the pace at which raw material costs have been increasing.

The recent past declared quarterly financial results of cement companies, makes it obvious that if the industry fails to pass on the cost increases to the customers, it could have a debilitating effect on the foreseeable future of the industry.

What are the major compliances and standards for efficiently handling fuel and energy in the organisation?
The statutory compliances to be fulfilled by cement manufacturers are well defined by the respective Government agencies. When it comes to improving energy efficiencies, we have to achieve the targets under the PAT cycle. We have been witnessing over the years as to how the PAT cycle has shaped the industry’s approach to becoming energy efficient.

A few of the environmental compliances in India are more stringent than those applicable in developed economies. Nevertheless, the Indian Cement Manufacturers have time and again demonstrated their commitment to meet all the norms and standards laid down by the MoEF. As a good corporate citizen, we at HeidelbergCement take pride in ensuring total compliance with the laws of the land and the industry.

How often are audits done to ensure optimum use of energy and what is the suggested duration for the same?
We undertake all requisite audits periodically and file our reports as required under the law. As a responsible corporate, we do our own energy audits as well.

We believe in the philosophy of “Continuous Improvement”. Besides our internal standards, we benchmark our performance with our past best achievements and also that of our competitors and replicate the same. We strive to become better than the previous year.

At our India operations, we pursue a target to achieve a two-degree lower ambient temperature in our plants compared to than prevailing a Km away.

This journey we commenced in 2014 and now two of our cement plants have achieved the goal and the remaining ones are close to emerging winners. The average reduction for all our units operating in India now stands at 1.4 degree Celsius lower. This act of ours has led to creation of a cooler work environment and is resulting in higher productivity.

How have been the carbon emission norms for the cement industry in India vis-à-vis the World? What percentage of your carbon emission reduction target are you set to achieve by 2030?
The CO2 emission by the cement industry worldwide in 2018-19 reduced to 640 kg per tonne of cement from 760 kg per tonne in 1990 thereby recording a significant reduction of 16 per cent. At our India operations, we take pride in having achieved 585 kg CO2 per tonne of cement in 2018-19 from a level of 800 kg per tonne in 1990.

During FY 2021, CO2 emissions for our India operations stood at 570 kg per tonne of cement and now we strive to further reduce it to 550 kg by 2025. By 2030, we have the ambition to touch 534 kg CO2. In Central India, we manufacture 100 per cent blended cement with a CO2 footprint of 510 kg per tonne of cement pursuing a target to further reduce it to 495 kg by 2030. The group is pushing us to achieve this target and compete at Global levels.

CO2 emissions while manufacturing Cement is inevitable. When we say that we are going to achieve carbon neutrality, it implies that going forward deploying carbon capture or utilisation will come into play.

HeidelbergCement Group is poised to emerge as a pioneer in the cement industry as it continues to build the first of its king state of art carbon capture units in Norway. A delegation comprising members of DPIIT and NCCBM, visited the establishment to witness the same.

HeidelbergCement Group is working on close to eight carbon capture technologies which are at various Technological Readiness Levels (TRLs).

These include processes like post combustion, oxy fuel, lilac technology, direct separation, micro algae, hydrogen burning and kiln electrification. These pioneering efforts of our Group are poised to become a boon for the cement industry and the society as well.

Our slogan “Materials to Build Our Future” energises us day after day to renew our commitment to “making the world a wonderful place to live for our generations to come”.

Concrete

Adani’s Strategic Emergence in India’s Cement Landscape

Published

on

By

Shares



Milind Khangan, Marketing Head, Vertex Market Research, sheds light on Adani’s rapid cement consolidation under its ‘One Business, One Company’ strategy while positioning it to rival UltraTech, and thus, shaping a potential duopoly in India’s booming cement market.

India is the second-largest cement-producing country in the world, following China. This expansion is being driven by tremendous public investment in the housing and infrastructure sectors. The industry is accelerating, with a boost from schemes such as PM Gati Shakti, Bharatmala, and the Vande Bharat corridors. An upsurge in affordable housing under the Pradhan Mantri Awas Yojana (PMAY) further supports this expansion. In May 2025, local cement production increased about 9 per cent from last year to about 40 million metric tonnes for the month. The combined cement capacity in India was recorded at 670 million metric tonnes in the 2025 fiscal year, according to the Cement Manufacturers’ Association (CMA). For the financial year 2026, this is set to grow by another 9 per cent.
In spite of the growing demand, the Indian cement industry is highly competitive. UltraTech Cement (Aditya Birla Group) is still the market leader with domestic installed capacity of more than 186 MTPA as on 2025. It is targeted to achieve 200 MTPA. Adani Cement recently became a major player and is now India’s second-largest cement company. It did this through aggressive consolidation, operational synergies, and scale efficiencies. Indian players in the cement industry are increasingly valuing operational efficiency and sustainability. Some of the strategies with high impact are alternative fuels and materials (AFR) adoption, green cement expansion, and digital technology investments to offset changing regulatory pressure and increasing energy prices.

Building Adani Cement brand
Vertex Market Research explains that the Adani Group is executing a comprehensive reorganisation and consolidation of its cement business under the ‘One Business, One Company’ strategy. The plan is to integrate its diversified holdings into one consolidated corporate entity named Adani Cement. The focus is on operating integration, governance streamlining, and cost reduction in its expanding cement business.
Integration roadmap and key milestones:

  • September 2022: The consolidation process started with the $6.4 billion buyout of Holcim’s majority stakes in Ambuja Cements and ACC, with Ambuja becoming the focal point of the consolidation.
  • December 2023: Bought Sanghi Industries to strengthen the firm’s presence in western India.
  • August 2024: Added Penna Cement to the portfolio, improving penetration of the southern market of India.
  • April 2025: Further holding addition in Orient Cement to 46.66 per cent by purchasing the same from CK Birla Group, becoming the promoter with control.
  • Ambuja Cements amalgamated with Adani Cement: This was sanctioned by the NCLT on 18th July 2025 with effect from April 1, 2024. This amalgamation brings in limestone reserves and fresh assets into Ambuja.
  • Subject to Sanghi and Penna merger with Ambuja: Board approvals in December 2024 with the aim to finish between September to December 2025.
  • Ambuja-ACC future integration: The latter is being contemplated as the final step towards consolidation.
  • Orient Cement: It would serve as a principal manufacturing facility following the merger.

Scale, capacity expansion and market position
In financial year-2025, Adani Cement, including Ambuja, surpassed 100 MTPA. This makes it one of the world’s top ten cement companies. Along with ACC’s operations, it is now firmly placed as India’s second-largest cement company. In FY25, the Adani group’s sales volume per annum clocked 65 million metric tonnes. Adani Group claims that it now supplies close to 30 per cent of the cement consumed in India’s homes and infrastructure as of June 2025.
The organisation is pursuing aggressive brownfield expansion:

  • By FY 2026: Reach 118 MTPA
  • By FY 2028: Target 140 MTPA

These goals will be driven by commissioning new clinker and grinding units at key sites, with civil and mechanical works underway.
As of 2024, Adani Cement had its market share pegged at around 14 to 15 per cent, with an ambition to scale this up to 20 per cent by FY?2028, emerging as a potent competitor to UltraTech’s 192?MTPA capacity (186 domestic and overseas).

Strategic advantages and competitive benefits
The consolidation simplifies decision-making by reducing legal entities, centralising oversight, and removing redundant functions. This drives compliance efficiency and transparent reporting. Using procurement power for raw materials and energy lowers costs per ton. Integrated logistics with Adani Ports and freight infrastructure has resulted in an estimated 6 per cent savings in logistics. The group aims for additional savings of INR 500 to 550 per tonne by FY 2028 by integrating green energy, using alternative fuel resources, and improving sourcing methods.

Market coverage and brand consistency
Brand integration under one strategy will provide uniform product quality and easier distribution networks. Integration with Orient Cement’s dealer base, 60 per cent of which already distributes Ambuja/ACC products, enhances outreach and responsiveness.
By having captive limestone reserves at Lakhpat (approximately 275 million tonnes) and proposed new manufacturing facilities in Raigad, Maharashtra, Adani Cement derives cost advantage, raw material security, and long-term operational robustness.

Strategic implications and risks
Consolidation at Adani Cement makes it not just a capacity leader but also an operationally agile competitor with the ability to reap digital and sustainability benefits. Its vertically integrated platform enables cost leadership, market responsiveness, and scalability.

Challenges potentially include:

  • Integration challenges across systems, corporate cultures, and plant operations
  • Regulatory sanctions for pending mergers and new capacity additions
  • Environmental clearances in environmentally sensitive areas and debt management with input price volatility

When materialised, this revolution would create a formidable Adani–UltraTech duopoly, redefining Indian cement on the basis of scale, innovation, and sustainability. India’s leading four cement players such as Adani (ACC and Ambuja), Dalmia Cement, Shree Cement, and UltraTech are expected to dominate the cement market.

Conclusion
Adani’s aggressive consolidation under the ‘One Business, One Company’ strategy signals a decisive shift in the Indian cement industry, positioning the group as a formidable challenger to UltraTech and setting the stage for a potential duopoly that could dominate the sector for years to come. By unifying operations, leveraging economies of scale, and securing vertical integration—from raw material reserves to distribution networks—Adani Cement is building both capacity and resilience, with clear advantages in cost efficiency, market reach, and sustainability. While integration complexities, regulatory hurdles, and environmental approvals remain key challenges, the scale and strategic alignment of this consolidation promise to redefine competition, pricing dynamics, and operational benchmarks in one of the world’s fastest-growing cement markets.

About the author:
Milind Khangan is the Marketing Head at Vertex Market Research and comes with over five years of experience in market research, lead generation and team management.

Continue Reading

Concrete

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Published

on

By

Shares



PowerBuild’s flagship Series M, C, F, and K geared motors deliver robust, efficient, and versatile power transmission solutions for industries worldwide.

Products – M, C, F, K: At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. PowerBuild answers this need with its flagship geared motor series: M, C, F, and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.
Series M – Helical Inline Geared Motors: Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.
Series C – Right Angled Heli-Worm Geared Motors: Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.
Series F – Parallel Shaft Mounted Geared Motors: Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes, and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.
Series K – Right Angle Helical Bevel Geared Motors: For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining, and material handling. Its flexibility in mounting and broad motor options offer engineers’ freedom in design and reliability in execution.
Together, these four series reflect PowerBuild’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design, and field-tested reliability. Whether the requirement is speed control, torque multiplication, or space efficiency, Radicon’s Series M, C, F, and K stand as trusted powerhouses for global industries.

Continue Reading

Concrete

Driving Measurable Gains

Published

on

By

Shares



Klüber Lubrication India’s Klübersynth GEM 4-320 N upgrades synthetic gear oil for energy efficiency.

Klüber Lubrication India has introduced a strategic upgrade for the tyre manufacturing industry by retrofitting its high-performance synthetic gear oil, Klübersynth GEM 4-320 N, into Barrel Cold Feed Extruder gearboxes. This smart substitution, requiring no hardware changes, delivered energy savings of 4-6 per cent, as validated by an internationally recognised energy audit firm under IPMVP – Option B protocols, aligned with
ISO 50015 standards.

Beyond energy efficiency, the retrofit significantly improved operational parameters:

  • Lower thermal stress on equipment
  • Extended lubricant drain intervals
  • Reduction in CO2 emissions and operational costs

These benefits position Klübersynth GEM 4-320 N as a powerful enabler of sustainability goals in line with India’s Business Responsibility and Sustainability Reporting (BRSR) guidelines and global Net Zero commitments.

Verified sustainability, zero compromise
This retrofit case illustrates that meaningful environmental impact doesn’t always require capital-intensive overhauls. Klübersynth GEM 4-320 N demonstrated high performance in demanding operating environments, offering:

  • Enhanced component protection
  • Extended oil life under high loads
  • Stable performance across fluctuating temperatures

By enabling quick wins in efficiency and sustainability without disrupting operations, Klüber reinforces its role as a trusted partner in India’s evolving industrial landscape.

Klüber wins EcoVadis Gold again
Further affirming its global leadership in responsible business practices, Klüber Lubrication has been awarded the EcoVadis Gold certification for the fourth consecutive year in 2025. This recognition places it in the top three per cent
of over 150,000 companies worldwide evaluated for environmental, ethical and sustainable procurement practices.
Klüber’s ongoing investments in R&D and product innovation reflect its commitment to providing data-backed, application-specific lubrication solutions that exceed industry expectations and support long-term sustainability goals.

A trusted industrial ally
Backed by 90+ years of tribology expertise and a global support network, Klüber Lubrication is helping customers transition toward a greener tomorrow. With Klübersynth GEM 4-320 N, tyre manufacturers can take measurable, low-risk steps to boost energy efficiency and regulatory alignment—proving that even the smallest change can spark a significant transformation.

Continue Reading

Trending News