Concrete
Grinding: Smarter Solutions
Published
3 years agoon
By
admin
Grinding might be an individual step in the cement production line but it is a crucial one, given the energy consumption and impact on the quality of output that it gives. ICR explores how grinding methods have evolved with the help of technology and with the use of modern-age grinding aids.
Grinding in the cement manufacturing process takes place at three stages: raw meal grinding, cement grinding, and raw coal grinding. The process mainly includes the mixed materials crushing, material batching, pre-grinding, fine grinding, powder classification, dust collecting, automatic control, and other technologies, making cement production high yield and high quality, in line with the requirements of energy-saving and emission reduction.
According to an article published in Journal of Materials Research and Technology, Volume 9, Issue 4, 2020, Grinding is a central process in mineral processing to achieve particle size reduction and mineral liberation, and is highly energy-intensive. It accounts for 50 per cent of power consumption in a concentrator. In general, grinding has poor energy efficiency and accounts for about 2 per cent to 3 per cent of the world’s generated electricity. Due to the depleting resources, the processing of refractory ores is becoming common. Such processes require fine grinding or ultrafine grinding to liberate the valuable minerals from gangue material; thus, energy-efficient technologies and strategies are required.

Post clinkerisation of raw material, the clinker is extracted from the tank and transported to the cement mill hopper by belt conveyors. A measured quantity of clinker and gypsum is fed into our closed-circuit ball mill which incorporates a high-efficiency separator. At this stage, the type of cement can be differentiated. For example, OPC is produced by the inter-grinding and blending of 95 per cent clinker with 5 per cent gypsum to a fineness of 280 sq m per kg. PPC is produced by the inter-grinding and blending of 65 per cent clinker with 30 per cent fly ash and 5 per cent gypsum to a fineness of 320 sq m per kg. Where, fineness is a controlled parameter for cement to ensure better hydration and strength development. Ground cement is then stored in a water-proof concrete silo for packing.
The cement grinding station is an individual step in the cement production line. The new-age cement grinding units adopt pre-grinding technology. It not only reduces the particles of feeding materials, but also helps to produce cracks and flaws inside the particles, which largely increase the production capacity of cement mill, reduce the energy consumption. Cement grinding station can greatly digest the slag, fly ash, slag, coal gangue and other industrial waste residues near the city, is a green industry.
Evolution of cement grinding technology
A cement mill is the equipment used to grind the hard, nodular clinker from the cement kiln into the fine grey powder that is cement. Historically, the hydraulic cements were known to be relatively soft and could be readily ground with the primitive technology of the day, using flat millstones. The emergence of Portland cement in the 1840s made grinding considerably more difficult, because the clinker produced by the kiln is often as hard as the millstone material. Because of this, cement continued to be ground very coarsely (typically 20 per cent over 100 μm particle diameter) until better grinding technology became available.
The year 1885 saw the development of specialised steel that led to the development of new forms of grinding equipment. With this the cement grinding became finer with time and advancement of technology and equipment. The progressive reduction in the proportion of larger, un-reactive cement particles has been partially responsible for the fourfold
increase in the strength of Portland cement during the twentieth century.
The principle of Grate Discharge grinding is nearly universally adapted in the cement grinding industry. Grate Discharge Ball Mills are the rule rather than the exception. Rod Mills for raw and finished grinding began to enter the picture. Larger and larger diameter mills have become common. Lengths tend to shorten.
Raw Cement Grinding: This phase may be a wet or dry grinding phase, the end product of it goes to the kiln. Typically, the materials ground includes limestone cement rock, marl or marine shells along with secondary materials like shale or clay. A typical raw mix consists of 75 per cent to 85 per cent limestone, 12 per cent to 25 per cent shale, and the balance materials in this mix consist of silica or quartzite and iron oxide. Exact proportioning of the same depends upon their chemical properties before and after calcining to cement clinker.
During the wet grinding of raw materials, a thorough mixing takes place during comminution, making the process more efficient and permitting a balanced feed direct to the grinding mill. Another pro of this process is the elimination of the dust hazard and cleaner plants. Theories suggest that where low cost fuel is available, the extra heat required during calcining, to drive off water in the process, is actually less costly than resorting to less efficient dry grinding. Improvements in air separators and more efficient dust collecting systems have minimised some of these problems to a point where present day costs become closely parallel.
Anirudh Dani, Grinding Unit Head, JK Cement Works, says, “Major key technical functionalities are production capacity, cement grade, special energy consumption, maintenance cost, construction cost etc., for the installation of the grinding unit. Further, major key strategic deciding factors are land availability, market demand, logistics optimisation, geographical analysis, raw material availability etc., for the finalisation of the cement grinding location.”

“Cement grinding cost is 40 to 45 per cent of variable cost of cement production. By effective control measures and minuscule innovations, we can achieve a significant impact on profit maximisation with environmental sustainability,” he adds.
Cement Grinding Machines
Equipment required for the cement grinding plant include cement roller press, cement silos, belt conveyors, cement mills, classifiers, bucket elevators, packing machines, etc. The grinding mill and cement roller press are the core equipment of the cement grinding units. These grinding mills directly decide the quality and cost of whole cement grinding unknit. There are three common solutions for cement grinding plants: cement roller press and ball mill, closed-circuit cement mill, and cement crusher and ball mill.
In the cement roller press and ball mill system, the ground materials from the roller press are first processed by the separator and divided into two parts: the coarse part and the fine part. The fine part is sent to the ball mill and ground to produce cement, the coarse part is returned to the roller press to be ground again. The finished product cement from this system also has wide particle size distribution and stable performance. With the invention of the V-type separator, the combined grinding system composed of roller press and ball mill has been developed to further reduce the energy consumption of the cement grinding process. This system is considered efficient and productive for the cement manufacturing process.
Cement grinding is a flexible and generally intermittent operation. With mills that have sufficient capacity to grind the clinker considerably faster than kilns produce, this allows them to meet the maximum demands when necessary: at other times, they can be run at a capacity less than full or they can be stopped completely.
Considering the consumption of energy, mills are known to have a capacity greater than that of clinker production, thus grinding can be done during periods that offer the most favourable energy rates. The power supply and charges vary from plant to plant and also the arrangements for programming the grinding.
Grinding can be either ‘open circuit’ or ‘closed circuit’. In an open-circuit system, the feed of incoming clinker is adjusted in such a way that it achieves the desired fineness of the product. In the present day, open circuits have become obsolete. However, in a closed-circuit system, coarse particles are separated from the finer product in a separator and then brought back to a mill for further grinding. Energy consumption, during grinding operation, whether raw material or finished products, is of paramount importance. Therefore, any innovation to reduce energy consumption is always watched closely not only in India but across the globe. Power generation, distribution and consumption are focused areas to many current world issues, controlling the industry’s energy usage is a matter of interest to different federal governments across the globe.
Grinding Aids for Cement
Cement grinding aids are added to the clinker during the grinding process for the prime reason of eliminating the coating effect of the clinker on grinding mill walls and to increase the production rate of cement keeping the surface area constant. They also allow cement to be transported in delivery trucks and storage in silos without lump formation. However, cement grinding aids also determine and improve the clinker grinding efficiency, power flowability, and strength development of binders. They also impact the mechanical properties of cement in a positive manner, such as, setting time, compressive strength, surface area, and mortar workability. The principal application of cement grinding aids concerns with the mill output and dry cement handling.
The demand for cement in the current day and age of urbanisation and industrialisation is growing steadily. Selection of cement for these purposes is mainly dependent on efficiency and low cost. Cement grinding aids are used to improve the efficiency of cement production and reduce energy consumption and current consumers of cement are making their choices of buying cement on these factors and grinding aids play a key role in determining the same.
Looking Ahead
According to a report by IMARC, the global cement grinding aid and performance enhancers market is expected to exhibit a CAGR of 3.68 per cent during 2022-2027.
Over the last few decades, in order to address the high energy consumption and scarcity of potable water for mineral processing, chemical additives or grinding aids have become a promising alternative in the cement manufacturing process. Also, studying the effect of grinding aids on size reduction units is crucial for the beneficiation value chain of minerals and the impact on downstream processes.
Grinding aids range from organic to inorganic chemicals. For example, organic chemicals include, polyols, alcohols, esters, amines, while, inorganic chemicals include, calcium oxide, sodium silicate, sodium carbonate, sodium chloride etc. The process of grinding cement is required to be efficient and productive. Grinding aids are added to support the same. Grinding efficiency is mainly evaluated based on energy consumed per given mass of material as a function of time. A study on these materials shows reduction in the energy consumption increases by increasing grinding aid dosage to a maximum, after which further addition gives no effect.
Vimal Jain, Director – Technical, Heidelberg Cement India Ltd., says, “Approximately 60 per cent of the consumed power of the whole process is absorbed in the grinding process. To be competitive in the market it is mandatory for any organisation to have a minimum power consumption. This would mean accordingly minimising our input cost.”
“Some of the older technology and older design of the mills used upto 45 units of energy per tonne of cement, but with the advancement of technology, the energy consumption is significantly reduced, thus reducing the cost for the same. This energy saving or reduction in use directly contributes to the profitability of the process,” he adds.
Energy conservation and reducing carbon emission are the primary motives of every cement making organisation. Grinding units are energy intensive sections of the manufacturing process, thus, need to be looked at with advanced technological support as well as material support with grinding aids. Continuous research and development is the solution to find newer materials that will help make the grinding process more productive and efficient, while simplifying the application and functionality for all those involved.
-Kanika Mathur
Concrete
The primary high-power applications are fans and mills
Published
2 days agoon
October 10, 2025By
admin
Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how plants can achieve both cost competitiveness and sustainability by lowering emissions, reducing downtime and planning for significant power savings.
As one of the most energy-intensive industries, cement manufacturing faces growing pressure to optimise power consumption, reduce emissions and improve operational reliability. Technology providers like Innomotics India are enabling this transformation by combining advanced motors, AI-driven digital solutions and intelligent monitoring systems that enhance process stability and reduce energy costs. From severe duty motors built for extreme kiln environments to DigiMine AI solutions that optimise pyro and mill operations, Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how the company is helping cement plants achieve measurable energy savings while moving closer to their sustainability goals.
How does your Energy Performance Contracting model typically reduce power consumption in cement plants—e.g., MWh saved?
Our artificial intelligence-based DigiMine AI Pyro and Mill solutions developed specifically for the cement industry, supports our customers in improving their process stability, productivity and process efficiency. In Pyro, this is achieved by optimising fuel consumption (Coal / AFR), reducing Specific Heat Consumption and reduction in emissions (CO2, SOx and NOx) through continuous monitoring of thermodynamics in pyro and recommending set-points of crucial parameters in advance for maintaining stable operations.
Within the mill, this is achieved by improving throughput, reduce energy / power consumption and maintaining stable operations on a continuous basis. Our ROI-based value proposition captures the project KPIs like reduction of coal usage, increase of AFR, reduction of specific heat consumption (Kcal / Kg), reduction of specific power consumption (KWH / tonne), reduction of emissions, etc., by a specific percentage. This gives clarity to our customers to understand the investment vis-à-vis savings and estimate the recovery time of their investment, which typically is achieved within one year of DigiMine AI Pyro and Mill solutions implementation.
What role do digitalisation and motor monitoring play in overall plant energy optimisation?
Motors are being used extensively in cement production, and their monitoring play crucial role in ensuring continuous operation of applications. The monitoring system can automatically generate alerts for any anomaly / abnormalities in motor parameters, which allows plant team to take corrective actions and avoid any major equipment damage and breakdown. The alerts help maintenance team to plan maintenance schedule and related activity efficiently. Centralised and organised data gives overview to the engineers for day-to-day activities. Cement is amongst the top energy intensive industries in comparison to other industries. Hence, it becomes critically important to optimise efficiency, productivity and up-time of plant equipment. Motor monitoring and digitalisation plays a vital role in it. Monitoring and control of multiple applications and areas
within the plant or multiple plants becomes possible with digitalisation.
Digitalisation adds a layer on top of OT systems, bringing machine and process data onto a single interface. This solves the challenges such as system silo, different communications protocol, databases and most importantly, creates a common definition and measurement to plant KPIs. Relevant stakeholders, such as engineers, head of departments and plant heads, can see accurate information, analyse it and make better decisions with appropriate timing. In doing so, plant teams can take proactive actions before machine breakdown, enable better coordination during maintenance activities while improving operational efficiency and productivity.
Further using latest technologies like Artificial Intelligence can even assist operators in running their plant with minimal requirement of human intervention, which allows operators to utilise their time in focusing on more critical topics like analysing data to identify further improvements in operation.
Which of your high-efficiency IEC low-voltage motors deliver the best energy savings for cement mills or fans?
Innomotics India offers a range of IEC-compliant low-voltage motors engineered to deliver superior performance and energy savings, particularly for applications such as cement mills, large fans, and blowers. Innomotics has the complete range of IE4 motors from 0.37kW to 1000kW to meet the demands of cement industry. The IE5 range is also available for specific requirements.
Can safe area motors operate safely and efficiently in cement kiln environments?
Yes, safe area motors are designed to operate reliably in these environments without the risk of overheating. These motors have ingress protection that prevents dust, moisture ingress and can withstand mechanical stress. These motors are available in IE3 / IE4 efficiency classes thereby ensuring lower energy consumption during continuous operation. These motors comply with relevant Indian as well as international standards.
How do your SD Severe Duty motors contribute to lower emissions and lower cost in heavy duty cement applications?
Severe duty motors enhances energy efficiency and durability in demanding cement applications, directly contributing to lower emissions and operational costs. With high-efficiency ratings (such as IE3 or better), they reduce power consumption, minimising CO2 output from energy use. Their robust design handles extreme heat, dust and vibration—common in cement environments—ensuring reliable performance and fewer energy losses.
These motors also lower the total cost of ownership by reducing downtime, maintenance and replacement frequency. Their extended service life and minimal performance degradation help cement plants meet sustainability targets, comply with emissions regulations and improve overall energy management—all while keeping production consistent and cost-effective.
What pump, fan or compressor drive upgrades have shown approximately 60 per cent energy savings in industrial settings and can be replicated in cement plants?
In the cement industry, the primary high-power applications are fans and mills. Among these, fans have the greatest potential for energy savings. Examples, the pre-heater fan, bag house fan, and cooler fans. When there are variations in airflow or the need to maintain a constant pressure in a process, using a variable speed drive (VSD) system is a more effective option for starting and controlling these fans. This adaptive approach can lead to significant energy savings. For instance, vanes and dampers can remain open while the variable frequency drive and motor system manage airflow regulation efficiently.
Concrete
We conduct regular internal energy audits
Published
2 days agoon
October 10, 2025By
admin
Shaping the future of low-carbon cement production involves integrating renewables, digitalisation and innovative technologies. Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, gives us a detailed account of how.
In an industry where energy consumption can account for a significant portion of operating costs, cement manufacturers are under increasing pressure to adopt sustainable practices without compromising efficiency. Nuvoco Vistas has taken a decisive step in this direction, leveraging digitalisation, renewable energy and innovative technologies to drive energy efficiency across its operations. In this exclusive conversation, Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, shares its approach to energy management, challenges of modernising brownfield plants and its long-term roadmap to align efficiency with India’s net-zero vision.
How has your company improved energy efficiency over the past five years?
Over the past five years, we have prioritised energy conservation by enhancing operational efficiency and scaling up renewable energy adoption. Through strategic fuel mix optimisation, deployment of cleaner technologies, and greater integration of renewables, we have steadily reduced our environmental footprint while meeting energy needs sustainably.
Technological upgrades across our plants have further strengthened efficiency. These include advanced process control systems, enhanced trend analysis, grinding media optimisation and the integration of solar-powered utilities. Importantly, grid integration at our key plants has delivered significant cost savings and streamlined energy management.
A notable milestone has been the expansion of our solar power capacity and Waste Heat Recovery Systems (WHRS). Our solar power capacity has grown from 1.5 MW in FY 2021–22 to 5.5 MW, while our WHRS capacity has increased from 44.7 MW to 49 MW, underscoring our commitment to sustainable energy solutions.
What technologies or practices have shown the highest energy-saving potential in cement production?
One of our most significant achievements in advancing energy efficiency has been the successful commissioning of a 132 KV Grid Integration Project, which unified three of our major manufacturing units under a single power network. This milestone, enabled by a dedicated transmission line and a state-of-the-art Line-In Line-Out (LILO) substation, has transformed our energy management and operational capabilities.
With this integration, we have substantially reduced our contract demand, eliminated power disruptions, and enhanced operational continuity. Supported by an optical fibre network for real-time communication and automation, this project stands as a testament to our innovation-led manufacturing excellence and underscores Nuvoco’s vision of building a safer, smarter, and sustainable world.
What role does digitalisation play in achieving energy efficiency in your operations?
Digitalisation plays a transformative role in driving energy efficiency across our operations. At Nuvoco, we are leveraging cutting-edge technologies and advanced digital tools to enhance productivity, optimise energy consumption and strengthen our commitment to sustainability and employee safety.
We are developing AI-enabled dashboards to optimise WHRS and kiln operations, ensuring maximum efficiency. Additionally, our advanced AI models evaluate multiple operational parameters — including fuel pricing, moisture content and energy output — to identify the most cost-effective fuel combinations in real time. These initiatives are enabling data-driven decision-making, improving operational excellence and reducing our environmental footprint.
What is your long-term strategy for aligning energy efficiency with decarbonisation goals?
As part of India’s climate action agenda, the cement sector has laid out a clear decarbonisation roadmap to achieve net-zero CO2 emissions by 2070. At Nuvoco, we view this as both a responsibility and an opportunity to redefine the future of sustainable construction. Our long-term strategy focuses on aligning energy efficiency with decarbonisation goals by embracing innovative technologies, alternative raw materials and renewable energy solutions.
We are making strategic investments to scale up solar power installations and enhance our renewable energy mix significantly by 2028. These initiatives are a key part of our broader vision to reduce Scope 2 emissions and strengthen our contribution to India’s net-zero journey, while continuing to deliver innovative and sustainable solutions to our customers.
How do you measure and benchmark energy performance across different plants?
We adopt a comprehensive approach to measure and benchmark energy performance across our plants. Key metrics include Specific Heat Consumption (kCal/kg of clinker) and Specific Power Consumption (kWh/tonne of cement), which are continuously tracked against Best Available Technology (BAT) benchmarks, industry peers and global standards such as the WBCSD-CSI and CII benchmarks.
To ensure consistency and drive improvements, we conduct regular internal energy audits, leverage real-time dashboards and implement robust KPI tracking systems. These tools enable us to compare performance across plants effectively, identify optimisation opportunities and set actionable targets for energy efficiency and sustainability.
What are the key challenges in adopting energy-efficient equipment in brownfield cement plants?
Adopting energy-efficient technologies in brownfield cement plants presents a unique set of challenges due to the constraints of working within existing infrastructure. Firstly, the high capital expenditure and relatively long payback periods often require careful evaluation before investments are made. Additionally, integrating new technologies with legacy equipment can be complex, requiring significant customisation to ensure seamless compatibility and performance.
Another major challenge is minimising production disruptions during installation. Since brownfield plants are already operational, upgrades must be planned meticulously to avoid affecting output. In many cases, space constraints in older facilities add to the difficulty of accommodating advanced equipment without compromising existing layouts.
At Nuvoco, we address these challenges through a phased implementation approach, detailed project planning and by fostering a culture of innovation and collaboration across our plants. This helps us balance operational continuity with our commitment to driving energy efficiency and sustainability.
Concrete
Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport
The airport is set to become Asia’s largest air connectivity hub.
Published
2 days agoon
October 10, 2025By
admin
Enlight Metals has supplied 3,200 metric tonne of steel for the newly inaugurated Navi Mumbai International Airport, marking a major contribution to one of India’s largest infrastructure projects and reinforcing the company’s commitment to supporting national development.
The Navi Mumbai International Airport, developed under a Public-Private Partnership led by the Adani Group, was inaugurated today by Prime Minister Narendra Modi. The airport is set to become Asia’s largest air connectivity hub, enhancing regional connectivity, boosting economic growth, and expanding trade opportunities. Prime Minister Modi described the project as a “glimpse of Viksit Bharat,” highlighting its transformative impact on infrastructure and development in the region.
“The supply of 3,200 metric tonne of steel for this key project aligns with our focus on supporting critical infrastructure development through reliable and timely metal sourcing. Enlight Metals is committed to enhancing transparency and efficiency in the steel supply chain, contributing to projects integral to India’s growth objectives,” said Vedant Goel, Director, Enlight Metals.
Enlight Metals has implemented technology-driven solutions to strengthen supply chain efficiency, ensuring consistent availability of construction materials for large-scale projects nationwide. Its contribution to the Navi Mumbai International Airport underscores the company’s growing role in supporting India’s infrastructure development initiatives.
This milestone reflects Enlight Metals’ ongoing engagement in delivering quality materials and timely services for major national projects, further cementing its position as a reliable partner in India’s infrastructure sector

The primary high-power applications are fans and mills

We conduct regular internal energy audits

Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport

World of Concrete India 2025 Showcases Global Expertise and Green Solutions

JSW Cement Opens Rs 1 Billion Plant in Odisha

The primary high-power applications are fans and mills

We conduct regular internal energy audits

Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport

World of Concrete India 2025 Showcases Global Expertise and Green Solutions

JSW Cement Opens Rs 1 Billion Plant in Odisha
Trending News
-
Concrete4 weeks ago
Adani’s Strategic Emergence in India’s Cement Landscape
-
Concrete2 weeks ago
Cement Margins Seen Rising 12–18 per cent in FY26
-
Uncategorized1 week ago
Jindal Steel Commissions 5 MTPA Blast Furnace At Angul
-
Uncategorized1 week ago
Nippon Steel Buys 30% Stake In Canada’s Kami Iron Ore Project