Connect with us

Concrete

Optimising Heat Utilisation

Published

on

Shares

With Waste Heat Recovery as a viable alternative for the power needs of cement plants, Triveni Turbines presents case studies to support their findings on the role of thermal renewable fuels in aiding the cement sector inch closer to its goal of a sustainable future.

The cement industry is an energy-intensive industry. On an average, the energy cost is around 40 per cent of the cost of production for cement manufacturing. The heat generated in cement processes is generally lost up to 30 to 40 per cent.
Cement plants in India have Captive Power Plants (CPP), which are fired using fossil fuel (coal). These are in operation for several decades. Nowadays, the CPPs installed in cement plants use heat through Waste Heat Recovery (WHR) to generate power. Typically 20 to 30 per cent of the power requirement for cement plants can be fulfilled using waste heat for power generation.
Globally, WHR based plants installed in the cement industry are based on three processes, namely

  • Steam Rankine Cycle System (SRC)
  • Organic Rankine Cycle System (ORC)
  • Kalina Based System

The function of the WHR is to recover the heat from the hot stream using Heat Recovery Steam Generators (HRSG) or Waste Heat Recovery Boiler (WHRB) to generate superheated steam. It can be used in the process (for co-generation) or to drive a steam turbine (combined cycle). 
The WHR based power plants installed in cement processing plants use the heat generated through rotary kiln preheater (PH) and after quenching cooler (AQC) exhaust hot gases for power generation. 
In India, the customer prefers SRC for WHR power generation in Cement Plants. Technically, in SRC, the exhaust gases from the rotary kiln pass through PH and go to the PH boiler. Similarly, mid-tapping from AQC gives hot gases to the AQC boiler. One cement kiln line requires 2 PH boilers and 1 AQC boiler. Based on the heat source, these boilers generate low-pressure steam of 12 ata to 18 ata at a temperature of 350 to 450 degree Celsius. and Low Pressure (LP)steam 2 ata to 3 ata pressure and temperature of 175 to 195 degree Celsius.
WHR-based power plants also exist in the sectors like sponge iron, steel and chemicals, which came into existence from the year 2000 onwards in the Indian market. Initially in India, the major cement manufacturers installed cement WHR plants made in China while over the last decade or so, Indian boiler and Turbine OEMs offered products indigenously designed and manufactured catering to the market dynamics, demand requirements and providing sustained long-term aftermarket services.

Steam turbines for a Waste Heat Recovery based power plants in an overseas location.

Cement WHR
Triveni Turbines is associated with cement WHR for many years now and has executed numerous prestigious projects with leading cement manufacturers in India and abroad. The requirement for cement WHR depends on the cement kiln capacity, heat utilisation, and plant efficiency.
Triveni is currently in the process of installing many cement WHR projects and is also working on multiple projects that are either in the enquiry or in the order finalisation stage.
Triveni has developed efficient injection condensing turbines that use medium pressure steam as turbine inlet and low pressure as injection steam. With the addition of 7th generation turbine blades developed by Triveni, power generation output is more for input steam parameters or gas parameters.


Salient features of Triveni’s steam turbines in the cement industry are as follows:

  • Integral Lube Oil tank: Triveni offers an Integral Lube Oil tank for Power House Layout and civil cost optimisations of TG House. The benefits include a reduction in the civil cost of the project.
  • Mechanical Run Test (MRT): Live steam mechanical run test at Triveni’s manufacturing facility for the steam turbines. The Turbine is tested with live steam from boilers at Bengaluru works with job-mounted turbo supervisory systems, Woodward governor, and gearbox.
  • In-house Manufacturing: Turbine components like blades, rotors, and casing are manufactured and assembled at Triveni’s facility.
  • Vacuum Tunnel: High-speed balancing of turbine rotor on ‘Schenk’ Vacuum Tunnel 
  • Gear Box (Triveni Power Transmission) assembly is done along with the Turbine on the same base plate and converts into a single product. A separate foundation of the gearbox is not required.
  • Inlet Valve: Triveni supplies a customised inlet governing valve is designed in-house to overcome the varied load fluctuations in the cement industry
  • Injection Control Valve: Triveni supplies a specially designed globe control valve to maintain the minimum differential pressure to avoid the energy loss which results in the indirect losses in the final output.

Best practices on steam turbine design solution
Large cement companies are primarily considering WHR power plants for their Greenfield projects. Dependency on the Chinese turbines has now declined in the Indian market as the Indian OEM’s adapted to injection condensing turbines technology with a dominant leadership. Triveni has a firm reference of injection condensing turbines supplied to cement WHR plants across India. 
Specific design consideration is vital in the injection and admission zone. The rotor designed by Triveni has the higher stability to offset the excitation due to fluctuating injection steam loads. To meet customer requirements for various mid-pressure and low-pressure steam combinations, an injection condensing turbine was developed by Triveni and is successfully working in the Indian Cement Industry. Design and engineering teams carried out Computational Fluid Dynamic (CFD) analysis and creep-fatigue analysis to address this issue. This design philosophy is a value-addition for Triveni for its robust and efficient cement
WHR solution.

Environmental concerns and the solutions offered
According to industry sources, cement manufacturing accounts for an estimated 4 to 8 per cent of the world’s carbon dioxide (CO2) emission, making it a significant contributor to global warming. Increasing the energy efficiency of cement plants by replacing fossil fuels with thermal renewable fuels (such as waste heat) and capturing and storing the CO2 to contain greenhouse gas (GHG) emissions are some of the solutions common to the cement industry and other industrial sectors.

WHR power potential
There is a vast potential for power generation from waste heat across the world. The installation of cement WHR based power plants in China is over 80 per cent, much ahead of India. Similarly, Europe, the USA, and Latin America plan to implement WHR in their cement plants. It is observed that waste heat recovery-based power plants are emerging as an excellent value addition to the existing captive power plants. Other than reducing energy costs significantly, it can also be a reliable source of power. 

Case studies of Triveni                                                                                                      
a. Waste Heat Recovery based Power plant in Madhya Pradesh, India
Driven by Triveni 1*22.5 MWe Injection Condensing steam turbines with an inlet steam parameter of 12 Bar and 425 degree Celsius with 0.2 Bar Exhaust

Specific design consideration is vital in the injection and admission zone.

Customer challenge                                                                                                       
The steam flow in this project was from multiple sources (i.e., multiple boilers). Steam generation depends on the waste heat generated from hot gas temperature from the preheating process and AQC process. There is a variation in the steam inlet at Medium Pressure (MP) and Low Pressure (LP) side and load variation in load or power output.

Solution                                                                                                                        
The steam turbine we proposed is an Injection condensing turbine that receives MP steam as an inlet and LP steam as an injection in the middle steam path. The steam collected was from 4 No’s of Preheater (PH) boilers and 2 No’s of After Quenching Cooler (AQC) Boilers from the two cement kilns of 7,000 TPD and 8,000 TPD capacity.                                  
The steam turbine generator (STG) is suitable for an air-cooled condenser with a new generation blade design and reaction stages. Despite various challenges, the commissioning of the Turbine was executed with quick delivery of eight months, which set a benchmark for Triveni in the cement industry.

Benefits                                                                                                                             
The company does not have a captive power plant installed, and this WHR plant has offered many benefits. The waste gas generated at around
400 degree Celsius is cooled to 130 degree Celsius, thus safeguarding the environment and simultaneously utilising the waste heat to generate almost free power.     
b. Waste Heat Recovery based Power plant installed overseas
Driven by Triveni 1*30 MWe Bleed condensing steam turbines with an inlet steam pressure of
65 Bar and 505 degree Celsius with 0.1 Bar
Exhaust pressure

Customer challenge                                                                                                                                     
The customer proposed installing a power plant and expanding the company’s manufacturing capacity and was on the lookout for a steam turbine solution provider. The customer wanted to generate the necessary power by banking on their captive power capacities and to ensure a steady supply for critical processes.

Solution                                                                                                                                     
Triveni offered the best solution to meet the plant efficiency by utilising the waste heat recovered from the existing blast furnace for power generation.

Benefits                                                                                                                                                   The company entrusted Triveni’s expertise in manufacturing robust and highly reliable products. It awarded us with the supply contract of a steam turbine that benefits from improving the plant’s energy efficiency, reducing the energy cost, and transmitting surplus electricity to the grid.
To complement the above new product portfolio, Triveni’s refurbishment arm Triveni REFURB steps up to provide an aftermarket solution for the complete range of rotating equipment across the globe. From steam turbines, compressors to the gas turbine range, we have adapted ourselves to ensure that customers find a one stop solution.
Over a period of time, the existing turbines degrade thereby reducing the efficiency of the turbines by consuming more steam. The Triveni REFURB team provides solutions to enhance the efficiency of turbines of ‘Any make, Any age’ by only replacing the critical components of the turbine i.e., rotor, guide blade carriers and bearings, which ensures the efficiency is restored and thereby reducing the carbon footprint.
Triveni REFURB converts the existing turbine into injection mode turbine. The turbines are then re-engineered to allow additional steam to be injected into the turbine and improve the efficiency of the plant.
a. Conversion of Bleed Condensing Turbine to Injection Condensing
A Chinese Turbine 1*25MWe Bleed Condensing Turbine with 84 Bar 515 degree Celsius inlet conditions and 0.176 Bar Exhaust pressure

Customer challenge                                                                                                                                     
A major cement Industry customer wanted to convert their existing Chinese make turbine from a 3 bleed condensing to injection condensing turbine. The pressure at the inlet was reduced to 13 Bar 425 degree Celsius as against 84 bar 515 degree Celsius. The injection parameters are 2.25 Bar 185 degree Celsius.

Solution                                                                                                                                     
Due to the steep drop in inlet pressure the volumetric expansion was almost three times the original condition. We had proposed to modify the Inlet valve of the turbine and the first stage nozzles to accommodate this expansion. Two bleed ports were closed and the injection would be taken from the third bleed port. Complete re-engineering of the turbine was undertaken to adopt the upgraded steam flow path.

Benefits                                                                                                                                                   By keeping the existing casing and civil foundation, customers benefited by lower expenditure and improved efficiency. This would enable the customer to get a faster Return on Investment (within 2 years) and enhanced life of the turbine.

Author: Arun Mote, Executive Director, Triveni Turbine Limited

Concrete

Cement Industry Backs Co-Processing to Tackle Global Waste

Industry bodies recently urged policy support for cement co-processing as waste solution

Published

on

By

Shares



Leading industry bodies, including the Global Cement and Concrete Association (GCCA), European Composites Industry Association, International Solid Waste Association – Africa, Mission Possible Partnership and the Global Waste-to-Energy Research and Technology Council, have issued a joint statement highlighting the cement industry’s potential role in addressing the growing global challenge of non-recyclable and non-reusable waste. The organisations have called for stronger policy support to unlock the full potential of cement industry co-processing as a safe, effective and sustainable waste management solution.
Co-processing enables both energy recovery and material recycling by using suitable waste to replace fossil fuels in cement kilns, while simultaneously recycling residual ash into the cement itself. This integrated approach delivers a zero-waste solution, reduces landfill dependence and complements conventional recycling by addressing waste streams that cannot be recycled or are contaminated.
Already recognised across regions including Europe, India, Latin America and North America, co-processing operates under strict regulatory and technical frameworks to ensure high standards of safety, emissions control and transparency.
Commenting on the initiative, Thomas Guillot, Chief Executive of the GCCA, said co-processing offers a circular, community-friendly waste solution but requires effective regulatory frameworks and supportive public policy to scale further. He noted that while some cement kilns already substitute over 90 per cent of their fuel with waste, many regions still lack established practices.
The joint statement urges governments and institutions to formally recognise co-processing within waste policy frameworks, support waste collection and pre-treatment, streamline permitting, count recycled material towards national recycling targets, and provide fiscal incentives that reflect environmental benefits. It also calls for stronger public–private partnerships and international knowledge sharing.
With global waste generation estimated at over 11 billion tonnes annually and uncontrolled municipal waste projected to rise sharply by 2050, the signatories believe co-processing represents a practical and scalable response. With appropriate policy backing, it can help divert waste from landfills, reduce fossil fuel use in cement manufacturing and transform waste into a valuable societal resource.    

Continue Reading

Concrete

Industry Bodies Call for Wider Use of Cement Co-Processing

Joint statement seeks policy support for sustainable waste management

Published

on

By

Shares



Leading industry organisations have called for stronger policy support to accelerate the adoption of cement industry co-processing as a sustainable solution for managing non-recyclable and non-reusable waste. In a joint statement, bodies including the Global Cement and Concrete Association, European Composites Industry Association, International Solid Waste Association – Africa, Mission Possible Partnership and the Global Waste-to-Energy Research and Technology Council highlighted the role co-processing can play in addressing the growing global waste challenge.
Co-processing enables the use of waste as an alternative to fossil fuels in cement kilns, while residual ash is incorporated into cementitious materials, resulting in a zero-waste process. The approach supports both energy recovery and material recycling, complements conventional recycling systems and reduces reliance on landfill infrastructure. It is primarily applied to waste streams that are contaminated or unsuitable for recycling.
The organisations noted that co-processing is already recognised in regions such as Europe, India, Latin America and North America, operating under regulated frameworks to ensure safety, emissions control and transparency. However, adoption remains uneven globally, with some plants achieving over 90 per cent fuel substitution while others lack enabling policies.
The statement urged governments and institutions to formally recognise co-processing in waste management frameworks, streamline environmental permitting, incentivise waste collection and pre-treatment, account for recycled material content in national targets, and support public-private partnerships. The call comes amid rising global waste volumes, which are estimated at over 11 billion tonnes annually, with unmanaged waste contributing to greenhouse gas emissions, pollution and health risks.

Continue Reading

Concrete

Why Cement Needs CCUS

Published

on

By

Shares



Cement’s deep decarbonisation cannot be achieved through efficiency and fuel switching alone, making CCUS essential to address unavoidable process emissions from calcination. ICR explores if with the right mix of policy support, shared infrastructure, and phased scale-up from pilots to clusters, CCUS can enable India’s cement industry to align growth with its net-zero ambitions.

Cement underpins modern development—from housing and transport to renewable energy infrastructure—but it is also one of the world’s most carbon-intensive materials, with global production of around 4 billion tonnes per year accounting for 7 to 8 per cent of global CO2 emissions, according to the GCCA. What makes cement uniquely hard to abate is that 60 to 65 per cent of its emissions arise from limestone calcination, a chemical process that releases CO2 irrespective of the energy source used; the IPCC Sixth Assessment Report (AR6) therefore classifies cement as a hard-to-abate sector, noting that even fully renewable-powered kilns would continue to emit significant process emissions. While the industry has achieved substantial reductions over the past two decades through energy efficiency, alternative fuels and clinker substitution using fly ash, slag, and calcined clays, studies including the IEA Net Zero Roadmap and GCCA decarbonisation pathways show these levers can deliver only 50 to 60 per cent emissions reduction before reaching technical and material limits, leaving Carbon Capture, Utilisation and Storage (CCUS) as the only scalable and durable option to address remaining calcination emissions—an intervention the IPCC estimates will deliver nearly two-thirds of cumulative cement-sector emission reductions globally by mid-century, making CCUS a central pillar of any credible net-zero cement pathway.

Process emissions vs energy emissions
Cement’s carbon footprint is distinct from many other industries because it stems from two sources: energy emissions and process emissions. Energy emissions arise from burning fuels to heat kilns to around 1,450°C and account for roughly 35 to 40 per cent of total cement CO2 emissions, according to the International Energy Agency (IEA). These can be progressively reduced through efficiency improvements, alternative fuels such as biomass and RDF, and electrification supported by renewable power. Over the past two decades, such measures have delivered measurable gains, with global average thermal energy intensity in cement production falling by nearly 20 per cent since 2000, as reported by the IEA and GCCA.
The larger and more intractable challenge lies in process emissions, which make up approximately 60 per cent to 65 per cent of cement’s total CO2 output. These emissions are released during calcination, when limestone (CaCO3) is converted into lime (CaO), inherently emitting CO2 regardless of fuel choice or energy efficiency—a reality underscored by the IPCC Sixth Assessment Report (AR6). Even aggressive clinker substitution using fly ash, slag, or calcined clays is constrained by material availability and performance requirements, typically delivering 20 to 40 per cent emissions reduction at best, as outlined in the GCCA–TERI India Cement Roadmap and IEA Net Zero Scenario. This structural split explains why cement is classified as a hard-to-abate sector and why incremental improvements alone are insufficient; as energy emissions decline, process emissions will dominate, making Carbon Capture, Utilisation and Storage (CCUS) a critical intervention to intercept residual CO2 and keep the sector’s net-zero ambitions within reach.

Where CCUS stands today
Globally, CCUS in cement is moving from concept to early industrial reality, led by Europe and North America, with the IEA noting that cement accounts for nearly 40 per cent of planned CCUS projects in heavy industry, reflecting limited alternatives for deep decarbonisation; a flagship example is Heidelberg Materials’ Brevik CCS project in Norway, commissioned in 2025, designed to capture about 400,000 tonnes of CO2 annually—nearly half the plant’s emissions—with permanent offshore storage via the Northern Lights infrastructure (Reuters, Heidelberg Materials), alongside progress at projects in the UK, Belgium, and the US such as Padeswood, Lixhe (LEILAC), and Ste. Genevieve, all enabled by strong policy support, public funding, and shared transport-and-storage infrastructure.
These experiences show that CCUS scales fastest when policy support, infrastructure availability, and risk-sharing mechanisms align, with Europe bridging the viability gap through EU ETS allowances, Innovation Fund grants, and CO2 hubs despite capture costs remaining high at US$ 80-150 per tonne of CO2 (IEA, GCCA); India, by contrast, is at an early readiness stage but gaining momentum through five cement-sector CCU testbeds launched by the Department of Science and Technology (DST) under academia–industry public–private partnerships involving IITs and producers such as JSW Cement, Dalmia Cement, and JK Cement, targeting 1-2 tonnes of CO2 per day to validate performance under Indian conditions (ETInfra, DST), with the GCCA–TERI India Roadmap identifying the current phase as a foundation-building decade essential for achieving net-zero by 2070.
Amit Banka, Founder and CEO, WeNaturalists, says “Carbon literacy means more than understanding that CO2 harms the climate. It means cement professionals grasping why their specific plant’s emissions profile matters, how different CCUS technologies trade off between energy consumption and capture rates, where utilisation opportunities align with their operational reality, and what governance frameworks ensure verified, permanent carbon sequestration. Cement manufacturing contributes approximately 8 per cent of global carbon emissions. Addressing this requires professionals who understand CCUS deeply enough to make capital decisions, troubleshoot implementation challenges, and convince boards to invest substantial capital.”

Technology pathways for cement
Cement CCUS encompasses a range of technologies, from conventional post-combustion solvent-based systems to process-integrated solutions that directly target calcination, each with different energy requirements, retrofit complexity, and cost profiles. The most mature option remains amine-based post-combustion capture, already deployed at industrial scale and favoured for early cement projects because it can be retrofitted to existing flue-gas streams; however, capture costs typically range from US$ 60-120 per tonne of CO2, depending on CO2 concentration, plant layout, and energy integration.
Lovish Ahuja, Chief Sustainability Officer, Dalmia Cement (Bharat), says, “CCUS in Indian cement can be viewed through two complementary lenses. If technological innovation, enabling policies, and societal acceptance fail to translate ambition into action, CCUS risks becoming a significant and unavoidable compliance cost for hard-to-abate sectors such as cement, steel, and aluminium. However, if global commitments under the Paris Agreement and national targets—most notably India’s Net Zero 2070 pledge—are implemented at scale through sustained policy and industry action, CCUS shifts from a future liability to a strategic opportunity. In that scenario, it becomes a platform for technological leadership, long-term competitiveness, and systemic decarbonisation rather than merely a regulatory burden.”
“Accelerating CCUS adoption cannot hinge on a single policy lever; it demands a coordinated ecosystem approach. This includes mission-mode governance, alignment across ministries, and a mix of enabling instruments such as viability gap funding, concessional and ESG-linked finance, tax incentives, and support for R&D, infrastructure, and access to geological storage. Importantly, while cement is largely a regional commodity with limited exportability due to its low value-to-weight ratio, CCUS innovation itself can become a globally competitive export. By developing, piloting, and scaling cost-effective CCUS solutions domestically, India can not only decarbonise its own cement industry but also position itself as a supplier of affordable CCUS technologies and services to cement markets worldwide,” he adds.
Process-centric approaches seek to reduce the energy penalty associated with solvent regeneration by altering where and how CO2 is separated. Technologies such as LEILAC/Calix, which uses indirect calcination to produce a high-purity CO2 stream, are scaling toward a ~100,000 tCO2 per year demonstrator (LEILAC-2) following successful pilots, while calcium looping leverages limestone chemistry to achieve theoretical capture efficiencies above 90 per cent, albeit still at pilot and demonstration stages requiring careful integration. Other emerging routes—including oxy-fuel combustion, membrane separation, solid sorbents, and cryogenic or hybrid systems—offer varying trade-offs between purity, energy use, and retrofit complexity; taken together, recent studies suggest that no single technology fits all plants, making a multi-technology, site-specific approach the most realistic pathway for scaling CCUS across the cement sector.
Yash Agarwal, Co-Founder, Carbonetics Carbon Capture, says, “We are fully focused on CCUS, and for us, a running plant is a profitable plant. What we have done is created digital twins that allow operators to simulate and resolve specific problems in record time. In a conventional setup, when an issue arises, plants often have to shut down operations and bring in expert consultants. What we offer instead is on-the-fly consulting. As soon as a problem is detected, the system automatically provides a set of potential solutions that can be tested on a running plant. This approach ensures that plant shutdowns are avoided and production is not impacted.”

The economics of CCUS
Carbon Capture, Utilisation and Storage (CCUS) remains one of the toughest economic hurdles in cement decarbonisation, with the IEA estimating capture costs of US$ 80-150 per tonne of CO2, and full-system costs raising cement production by US$ 30-60 per tonne, potentially increasing prices by 20 to 40 per cent without policy support—an untenable burden for a low-margin, price-sensitive industry like India’s.
Global experience shows CCUS advances beyond pilots only when the viability gap is bridged through strong policy mechanisms such as EU ETS allowances, Innovation Fund grants, and carbon Contracts for Difference (CfDs), yet even in Europe few projects have reached final investment decision (GCCA); India’s lack of a dedicated CCUS financing framework leaves projects reliant on R&D grants and balance sheets, reinforcing the IEA Net Zero Roadmap conclusion that carbon markets, green public procurement, and viability gap funding are essential to spread costs across producers, policymakers, and end users and prevent CCUS from remaining confined to demonstrations well into the 2030s.

Utilisation or storage
Carbon utilisation pathways are often the first entry point for CCUS in cement because they offer near-term revenue potential and lower infrastructure complexity. The International Energy Agency (IEA) estimates that current utilisation routes—such as concrete curing, mineralisation into aggregates, precipitated calcium carbonate (PCC), and limited chemical conversion—can realistically absorb only 5 per cent to 10 per cent of captured CO2 at a typical cement plant. In India, utilisation is particularly attractive for early pilots as it avoids the immediate need for pipelines, injection wells, and long-term liability frameworks. Accordingly, Department of Science and Technology (DST)–supported cement CCU testbeds are already demonstrating mineralisation and CO2-cured concrete applications at 1–2 tonnes of CO2 per day, validating performance, durability, and operability under Indian conditions.
However, utilisation faces hard limits of scale and permanence. India’s cement sector emits over 200 million tonnes of CO2 annually (GCCA), far exceeding the absorptive capacity of domestic utilisation markets, while many pathways—especially fuels and chemicals—are energy-intensive and dependent on costly renewable power and green hydrogen. The IPCC Sixth Assessment Report (AR6) cautions that most CCU routes do not guarantee permanent storage unless CO2 is mineralised or locked into long-lived materials, making geological storage indispensable for deep decarbonisation. India has credible storage potential in deep saline aquifers, depleted oil and gas fields, and basalt formations such as the Deccan Traps (NITI Aayog, IEA), and hub-based models—where multiple plants share transport and storage infrastructure—can reduce costs and improve bankability, as seen in Norway’s Northern Lights project. The pragmatic pathway for India is therefore a dual-track approach: utilise CO2 where it is economical and store it where permanence and scale are unavoidable, enabling early learning while building the backbone for net-zero cement.

Policy, infrastructure and clusters
Scaling CCUS in the cement sector hinges on policy certainty, shared infrastructure, and coordinated cluster development, rather than isolated plant-level action. The IEA notes that over 70 per cent of advanced industrial CCUS projects globally rely on strong government intervention—through carbon pricing, capital grants, tax credits, and long-term offtake guarantees—with Europe’s EU ETS, Innovation Fund, and carbon Contracts for Difference (CfDs) proving decisive in advancing projects like Brevik CCS. In contrast, India lacks a dedicated CCUS policy framework, rendering capture costs of USD 80–150 per tonne of CO2 economically prohibitive without state support (IEA, GCCA), a gap the GCCA–TERI India Cement Roadmap highlights can be bridged through carbon markets, viability gap funding, and green public procurement.
Milan R Trivedi, Vice President, Shree Digvijay Cement, says, “CCUS represents both an unavoidable near-term compliance cost and a long-term strategic opportunity for Indian cement producers. While current capture costs of US$ 100-150 per tonne of CO2 strain margins and necessitate upfront retrofit investments driven by emerging mandates and NDCs, effective policy support—particularly a robust, long-term carbon pricing mechanism with tradable credits under frameworks like India’s Carbon Credit Trading Scheme (CCTS)—can de-risk capital deployment and convert CCUS into a competitive advantage. With such enablers in place, CCUS can unlock 10 per cent to 20 per cent green price premiums, strengthen ESG positioning, and allow Indian cement to compete in global low-carbon markets under regimes such as the EU CBAM, North America’s buy-clean policies, and Middle Eastern green procurement, transforming compliance into export-led leadership.”
Equally critical is cluster-based CO2 transport and storage infrastructure, which can reduce unit costs by 30 to 50 per cent compared to standalone projects (IEA, Clean Energy Ministerial); recognising this, the DST has launched five CCU testbeds under academia–industry public–private partnerships, while NITI Aayog works toward a national CCUS mission focused on hubs and regional planning. Global precedents—from Norway’s Northern Lights to the UK’s HyNet and East Coast clusters—demonstrate that CCUS scales fastest when governments plan infrastructure at a regional level, making cluster-led development, backed by early public investment, the decisive enabler for India to move CCUS from isolated pilots to a scalable industrial solution.
Paul Baruya, Director of Strategy and Sustainability, FutureCoal, says, “Cement is a foundational material with a fundamental climate challenge: process emissions that cannot be eliminated through clean energy alone. The IPCC is clear that in the absence of a near-term replacement of Portland cement chemistry, CCS is essential to address the majority of clinker-related emissions. With global cement production at around 4 gigatonnes (Gt) and still growing, cement decarbonisation is not a niche undertaking, it is a large-scale industrial transition.”

From pilots to practice
Moving CCUS in cement from pilots to practice requires a sequenced roadmap aligning technology maturity, infrastructure development, and policy support: the IEA estimates that achieving net zero will require CCUS to scale from less than 1 Mt of CO2 captured today to over 1.2 Gt annually by 2050, while the GCCA Net Zero Roadmap projects CCUS contributing 30 per cent to 40 per cent of total cement-sector emissions reductions by mid-century, alongside efficiency, alternative fuels, and clinker substitution.
MM Rathi, Joint President – Power Plants, Shree Cement, says, “The Indian cement sector is currently at a pilot to early demonstration stage of CCUS readiness. A few companies have initiated small-scale pilots focused on capturing CO2 from kiln flue gases and exploring utilisation routes such as mineralisation and concrete curing. CCUS has not yet reached commercial integration due to high capture costs (US$ 80-150 per tonne of CO2), lack of transport and storage infrastructure, limited access to storage sites, and absence of long-term policy incentives. While Europe and North America have begun early commercial deployment, large-scale CCUS adoption in India is more realistically expected post-2035, subject to enabling infrastructure and policy frameworks.”
Early pilots—such as India’s DST-backed CCU testbeds and Europe’s first commercial-scale plants—serve as learning platforms to validate integration, costs, and operational reliability, but large-scale deployment will depend on cluster-based scale-up, as emphasised by the IPCC AR6, which highlights the need for early CO2 transport and storage planning to avoid long-term emissions lock-in. For India, the GCCA–TERI India Roadmap identifies CCUS as indispensable for achieving net-zero by 2070, following a pragmatic pathway: pilot today to build confidence, cluster in the 2030s to reduce costs, and institutionalise CCUS by mid-century so that low-carbon cement becomes the default, not a niche, in the country’s infrastructure growth.

Conclusion
Cement will remain indispensable to India’s development, but its long-term viability hinges on addressing its hardest emissions challenge—process CO2 from calcination—which efficiency gains, alternative fuels, and clinker substitution alone cannot eliminate; global evidence from the IPCC, IEA, and GCCA confirms that Carbon Capture, Utilisation and Storage (CCUS) is the only scalable pathway capable of delivering the depth of reduction required for net zero. With early commercial projects emerging in Europe and structured pilots underway in India, CCUS has moved beyond theory into a decisive decade where learning, localisation, and integration will shape outcomes; however, success will depend less on technology availability and more on collective execution, including coordinated policy frameworks, shared transport and storage infrastructure, robust carbon markets, and carbon-literate capabilities.
For India, a deliberate transition from pilots to practice—anchored in cluster-based deployment, supported by public–private partnerships, and aligned with national development and climate goals—can transform CCUS from a high-cost intervention into a mainstream industrial solution, enabling the cement sector to keep building the nation while sharply reducing its climate footprint.

– Kanika Mathur

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds