Connect with us

Economy & Market

A step into the future, today

Published

on

Shares

Interaction withPramesh Arya, Executive Director, Marketing, Dalmia Cement Bharat Ltd.

The lockdown announced by the Government to respond to the threat of a pandemic was a once in lifetime experience for India as a country. The Cement industry, taking cautious steps, responded to it using new age digital technologies. Here is a real story from Dalmia Cement, through an interview with Pramesh Arya, Executive Director- Marketing.

Vikas: When you restarted operations in April after the first phase of lockdown, what were the challenges you had to overcome and how did you manage?
Pramesh:
On the manufacturing front, as you can imagine, there was an issue of getting manpower because like many other industries, we work with a significant number of contractual workers, who had started migrating by then. That became one challenge to start full scale operations.

Another challenge was on the logistics side. The underlying reasons are all the same but manifested differently in different areas. The trucks were available but drivers weren’t around. Then, while our transportation partners were willing to work with us, there was the issue of inter-state movement of materials. In certain areas, local people were trying to deny entry to everyone, not just trucks carrying cement but everyone who was an outsider. There was this apprehension, that we don’t want any risk of infection even if it is with good intent of ensuring our world keeps running. Similarly, in our warehousing and Godown operations, there were manpower issues.

Fortunately, our close relationship with our vendors and contractors helped us get priority treatment from them within the limitations that existed. It’s at times like these, when your relationship with your vendors and suppliers and contractors gets tested. It’s heartening to say we, together with our entire network of partners, were able to resolve most, if not all challenges that came our way on a day to day basis.

For our sales and Technical Services teams, movement in the market was obviously restricted. We quickly moved to a virtual connect program right from the beginning of the lockdown, and it is still in action today. Wherever a little bit of on-ground connect is possible locally – within the markets that were in green zones, our teams are in the field to work with our dealers while taking all precautions – masks, social distancing etc.

Vikas: – Were you able to foresee these issues, during February-March, or did they come as a shock?
Pramesh:
– From the end of February but surely early March onwards, the signs were there- there were news reports from across the globe, on the way it has evolved in most countries. Everybody had this hope that India will escape mostly unscathed, like we did during H1N1. At the same time, there was always this likelihood we may have the same kind of scaling up of infections like in most countries. As a company, we wanted to ensure our business continuity plans were in place, and we started activating them at appropriate intervals.

Fortunately, Dalmia Cement has been on a major digital transformation journey across the company for the past few years – in many cases, before our industry itself started moving in this direction. During the lockdown, this preparation over the years helped tremendously.

Vikas: – How did you take care of the dealers because there must have been materials stuck either en route, or at your plants in silos or maybe in your warehouses? How was it taken care of, to protect everybody’s interests? Payments and cash flow must have become issues as well. So, how was this situation being handled?
Pramesh: –
On stock movement, we followed government guidelines, and for the first few days, our network quietened down. As and when local conditions changed, we took actions that met both business and safety needs. On the stock in the market, given the fast movement of cement across the network, dealers in this industry keep limited stocks in terms of inventory. In rural areas, beyond the first few days, as it was clear that Covid19 wasn’t present, markets picked up even as the lockdown was in effect, with construction work resuming. In May, even government projects resumed work- they had to complete certain jobs before the monsoons, including important local municipal projects etc. So whatever stock the dealers were holding got liquidated quickly, and we had fresh demand from dealers. How we overcame this was that we did most of our sales and supplies directly to the sites. We switched more or less to 100 percent direct delivery. Even the dealer community appreciated that being done from the company’s side. For challenges such as these, our strong technology and logistics backbone helped.

On the collection side, yes, there was a challenge. As a company, we practice healthy fiscal practices, keeping both our and dealers’ interest in mind, and there isn’t a lot of credit floating in the market at any time. During the lockdown, unique challenges emerged. Dealers in small towns wanted to make payments, but there was no one to collect the cheque. In smaller towns, it’s still not all digital, and we worked on logistics on how to get the cheque sent to the bank. Again, as a company we have worked hard on ensuring digital payment adoption is at a high level, so these challenges were far and few between.

Vikas: – We have been hearing a lot about the social responsibility work executed by Dalmia Bharat Group in such kinds of situations and particularly, taking care of your stakeholders. Will you be able to say something on that? Pramesh: – The Dalmia Bharat Group has always been into nation building. We actively partner towards such issues at the national to the grassroots levels. As an organization, we contributed Rs. 25 crores to the PM-CARES Fund. Our employees also generously raised over Rs. 1.6 crores through one-day salary donations. Separately, in many different states, we contributed to CM funds; and donations to selected non-government organisations which were working at the grassroots were also enabled.

While we supported governments, it was important our stakeholders could rely on us for help. Our technical services teams quickly moved to identify groups or communities of labour who were stranded, because the lockdown came suddenly. Across the country, we put together supply chains to help them with rations and other needed items. Where construction was still on, we worked on matching available manpower with active sites. This was done at a micro level, matching projects and labours at say, the taluka level in every state we are present in. And almost every single officer has such wonderful stories to tell.

We quickly moved to engage the contractors’ community on Do’s and Don’ts at construction sites through Whatsapp. We organized webinars with doctors from chosen local hospitals so they could ask all that question about Covid19, including for dealers and their families.

For our dealers, we launched a program called ‘Dalmia Cares: Stay Home Stay Safe’ – we rolled out over 20 different activities over the course of the lockdown. Every other day, we had different activities to keep them engaged and entertained, to keep them in a positive spirit, including their family members.

Vikas: So, this was done digitally?
Pramesh:
Wherever it was possible, fully digitally. For dealers, we run a platform called Dalmia Delight, which is used for loyalty and recognition programs. For all our other communities, our teams were in touch using Phone, Whatsapp and on ground help as it was required, keeping social distancing norms in mind.

Vikas: We will now come to the brand. When we talk of Dalmia, the mother brand- how do you look at building Dalmia as a brand and what are the attributes of the brand you feel people would like to remember it for?

Pramesh: As a brand, we have a legacy of 80 years. People around the country have placed their trust in us over generations. Last year, we built on this legacy, and launched a new brand positioning and identity, which positions the mother brand as Dalmia Cement ‘Future Today’.

As a brand, we are innovators and pioneers while being focussed on sustainability. Throughout the history of our organisation, we have been first to market with multiple products – we were the first company to launch oil well cement, railway sleeper cement and fast setting air strip cement.

As a company, our roots in sustainability are very deep. The CBP recognizes us as the world’s greenest cement company. Our CEO and MD, Mr. Mahendra Singhi, is a strong advocate of sustainability. He has represented India and our company on various global forums, including WEF, the global climate summit among others. And all this R&D, product launches have been possible only through technology.

As a brand, we want consumers to remember us for building next generation cement products; offering best in class, technology led service experience, and being able to choose the ‘greenest’ cement they can buy to build a home for life.

Vikas: – When we talk about the brand, even the packaging of cement becomes very important. The industry has been launching new packaging constantly. What’s your take on that?
Pramesh:
Packaging has a functional role and a branding role. We launched BOPP packaging for our premium product, Dalmia DSP, many years ago, which is moisture resistant, tear resistant and improves the performance of the product because it keeps cement fresh for longer.

I think the important part in packaging, talking about going beyond, is the performance of packaging. So there what matters is the consistency of quality, your entire vendor network, the flexibility and stability of supplies. So that’s another strength we have, we are able to ensure that all the plants get the right amount of packaging with the right quality all the time. Because as a brand, you get tested with every bag in the market, if a bag tears, the brand takes the damage. So, it’s important to sustain that quality day after day, batch after batch and in every location.

We are always on the lookout for modern packaging techniques and engage with packaging companies around the world to find best in class alternatives for consumers.

Vikas: In the retail market in fact packaging becomes very important- it should appeal to a buyer otherwise cement as such is a mundane and routine product.

Pramesh: – While cement has traditionally been a low involvement product, today, not just in cement but across all categories in that context, it’s an opportunity. If we go back to the narrative we are presenting with Dalmia Cement Future Today, we have given a completely new identity to the bag with the same thinking – in this category, the bag is your first manifestation of the brand identity and a big one.

Our new bags are very vibrant looking, with standard colour codes and a focus on enticing the customer. When our bag is displayed at the dealers’ counter, we want it to inspire confidence in the consumer from the get-go.

Vikas: What can be done to improve the per capita consumption of cement in the country? If you compare to other countries, we’re at very, very lowest stage, ~250 kgs per capita?
Pramesh: Cement consumption is governed by two things, the housing sector and infrastructure. Being a rapidly developing country, we have a long way to go on both. Across the country in our villages, there is a lot of conversion happening from kuccha to pukka houses. We are also seeing increases in the average size of the dwellings and basic penetration of housing itself. The government is doing a lot with the PM Awaas Yojana among other programs. At the same time, at the upper end, in terms of multi-story apartment complexes, it is a long way to go. The main challenges we need to resolve are access to adequate land banks, further roll out of affordable housing, and a sustainable real estate industry based on global norms.

Vikas: Like other cement companies, Dalmia Cement has been associated with cricket. For every major event in the cricketing world, many cement companies associate with them for promotions. In what way does it really help in brand building?
Pramesh: –
As a brand, we want to be present in meaningful ways where our consumers are. It’s a good medium for us to reach the consumer in a format which they enjoy. And secondly, it allows for high reach, high frequency, and high engagement – all goals we solve for while planning our media strategy.

In our case, we don’t simply buy airtime – we create properties and partnerships. In the last few years, we have associated with major ICC tournaments and Team India’s away tours. Each of these associations, we have created a full-fledged property – on ground presence, dealer campaigns and tours and digital promotions.

Vikas: – Any other message from your side to the audience and readers?
Pramesh:
There are two things I’d like to express. One, strong, strategic investments in digitisation across all parts of the business, and an increases focus on digital marketing. In general, it is true for any industry that digital is here to stay and with Covid19, it’s only getting stronger.

During the lockdown, we have already worked out a virtual PJP, which is a virtual market visit and contact program for our Sales and Technical Services teams. So, they are connecting with trade and contractors and other stakeholders virtually – not just a phone call, but a systematic program to ensure tracking, conversions and customer delight. In a short span of time, we were able to shift the frontline teams from physical in-market movement to a robust virtual way of continuing business operations.

Secondly, with the launch of Future Today, we are turning to digital marketing as an integral part of our ‘go to market’ as a brand. From the moment the customer searches for cement, to the time he is ready to go to the cement dealership, we are investing in all parts of his journey using the digital medium.

In the past year, we’ve done an innovation with Alexa, where the home builder can ask Alexa questions about construction and get professional responses from Dalmia Cement. All customers need to do is say, "Alexa, Ask Dalmia" and it will answer their construction queries with resources from Dalmia Technical Experts.

Vikas: Very innovative!

Pramesh: Absolutely! We’ve just made a beginning – this will of course get richer and deeper as we progress. We are investing in building digital properties across the board. As an industry, we are laggards when it comes to digital adoption. Dalmia Cement wants to lead this journey, and bring consumers the future, today!

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Why Cement Needs CCUS

Published

on

By

Shares

Cement’s deep decarbonisation cannot be achieved through efficiency and fuel switching alone, making CCUS essential to address unavoidable process emissions from calcination. ICR explores if with the right mix of policy support, shared infrastructure, and phased scale-up from pilots to clusters, CCUS can enable India’s cement industry to align growth with its net-zero ambitions.

Cement underpins modern development—from housing and transport to renewable energy infrastructure—but it is also one of the world’s most carbon-intensive materials, with global production of around 4 billion tonnes per year accounting for 7 to 8 per cent of global CO2 emissions, according to the GCCA. What makes cement uniquely hard to abate is that 60 to 65 per cent of its emissions arise from limestone calcination, a chemical process that releases CO2 irrespective of the energy source used; the IPCC Sixth Assessment Report (AR6) therefore classifies cement as a hard-to-abate sector, noting that even fully renewable-powered kilns would continue to emit significant process emissions. While the industry has achieved substantial reductions over the past two decades through energy efficiency, alternative fuels and clinker substitution using fly ash, slag, and calcined clays, studies including the IEA Net Zero Roadmap and GCCA decarbonisation pathways show these levers can deliver only 50 to 60 per cent emissions reduction before reaching technical and material limits, leaving Carbon Capture, Utilisation and Storage (CCUS) as the only scalable and durable option to address remaining calcination emissions—an intervention the IPCC estimates will deliver nearly two-thirds of cumulative cement-sector emission reductions globally by mid-century, making CCUS a central pillar of any credible net-zero cement pathway.

Process emissions vs energy emissions
Cement’s carbon footprint is distinct from many other industries because it stems from two sources: energy emissions and process emissions. Energy emissions arise from burning fuels to heat kilns to around 1,450°C and account for roughly 35 to 40 per cent of total cement CO2 emissions, according to the International Energy Agency (IEA). These can be progressively reduced through efficiency improvements, alternative fuels such as biomass and RDF, and electrification supported by renewable power. Over the past two decades, such measures have delivered measurable gains, with global average thermal energy intensity in cement production falling by nearly 20 per cent since 2000, as reported by the IEA and GCCA.
The larger and more intractable challenge lies in process emissions, which make up approximately 60 per cent to 65 per cent of cement’s total CO2 output. These emissions are released during calcination, when limestone (CaCO3) is converted into lime (CaO), inherently emitting CO2 regardless of fuel choice or energy efficiency—a reality underscored by the IPCC Sixth Assessment Report (AR6). Even aggressive clinker substitution using fly ash, slag, or calcined clays is constrained by material availability and performance requirements, typically delivering 20 to 40 per cent emissions reduction at best, as outlined in the GCCA–TERI India Cement Roadmap and IEA Net Zero Scenario. This structural split explains why cement is classified as a hard-to-abate sector and why incremental improvements alone are insufficient; as energy emissions decline, process emissions will dominate, making Carbon Capture, Utilisation and Storage (CCUS) a critical intervention to intercept residual CO2 and keep the sector’s net-zero ambitions within reach.

Where CCUS stands today
Globally, CCUS in cement is moving from concept to early industrial reality, led by Europe and North America, with the IEA noting that cement accounts for nearly 40 per cent of planned CCUS projects in heavy industry, reflecting limited alternatives for deep decarbonisation; a flagship example is Heidelberg Materials’ Brevik CCS project in Norway, commissioned in 2025, designed to capture about 400,000 tonnes of CO2 annually—nearly half the plant’s emissions—with permanent offshore storage via the Northern Lights infrastructure (Reuters, Heidelberg Materials), alongside progress at projects in the UK, Belgium, and the US such as Padeswood, Lixhe (LEILAC), and Ste. Genevieve, all enabled by strong policy support, public funding, and shared transport-and-storage infrastructure.
These experiences show that CCUS scales fastest when policy support, infrastructure availability, and risk-sharing mechanisms align, with Europe bridging the viability gap through EU ETS allowances, Innovation Fund grants, and CO2 hubs despite capture costs remaining high at US$ 80-150 per tonne of CO2 (IEA, GCCA); India, by contrast, is at an early readiness stage but gaining momentum through five cement-sector CCU testbeds launched by the Department of Science and Technology (DST) under academia–industry public–private partnerships involving IITs and producers such as JSW Cement, Dalmia Cement, and JK Cement, targeting 1-2 tonnes of CO2 per day to validate performance under Indian conditions (ETInfra, DST), with the GCCA–TERI India Roadmap identifying the current phase as a foundation-building decade essential for achieving net-zero by 2070.
Amit Banka, Founder and CEO, WeNaturalists, says “Carbon literacy means more than understanding that CO2 harms the climate. It means cement professionals grasping why their specific plant’s emissions profile matters, how different CCUS technologies trade off between energy consumption and capture rates, where utilisation opportunities align with their operational reality, and what governance frameworks ensure verified, permanent carbon sequestration. Cement manufacturing contributes approximately 8 per cent of global carbon emissions. Addressing this requires professionals who understand CCUS deeply enough to make capital decisions, troubleshoot implementation challenges, and convince boards to invest substantial capital.”

Technology pathways for cement
Cement CCUS encompasses a range of technologies, from conventional post-combustion solvent-based systems to process-integrated solutions that directly target calcination, each with different energy requirements, retrofit complexity, and cost profiles. The most mature option remains amine-based post-combustion capture, already deployed at industrial scale and favoured for early cement projects because it can be retrofitted to existing flue-gas streams; however, capture costs typically range from US$ 60-120 per tonne of CO2, depending on CO2 concentration, plant layout, and energy integration.
Lovish Ahuja, Chief Sustainability Officer, Dalmia Cement (Bharat), says, “CCUS in Indian cement can be viewed through two complementary lenses. If technological innovation, enabling policies, and societal acceptance fail to translate ambition into action, CCUS risks becoming a significant and unavoidable compliance cost for hard-to-abate sectors such as cement, steel, and aluminium. However, if global commitments under the Paris Agreement and national targets—most notably India’s Net Zero 2070 pledge—are implemented at scale through sustained policy and industry action, CCUS shifts from a future liability to a strategic opportunity. In that scenario, it becomes a platform for technological leadership, long-term competitiveness, and systemic decarbonisation rather than merely a regulatory burden.”
“Accelerating CCUS adoption cannot hinge on a single policy lever; it demands a coordinated ecosystem approach. This includes mission-mode governance, alignment across ministries, and a mix of enabling instruments such as viability gap funding, concessional and ESG-linked finance, tax incentives, and support for R&D, infrastructure, and access to geological storage. Importantly, while cement is largely a regional commodity with limited exportability due to its low value-to-weight ratio, CCUS innovation itself can become a globally competitive export. By developing, piloting, and scaling cost-effective CCUS solutions domestically, India can not only decarbonise its own cement industry but also position itself as a supplier of affordable CCUS technologies and services to cement markets worldwide,” he adds.
Process-centric approaches seek to reduce the energy penalty associated with solvent regeneration by altering where and how CO2 is separated. Technologies such as LEILAC/Calix, which uses indirect calcination to produce a high-purity CO2 stream, are scaling toward a ~100,000 tCO2 per year demonstrator (LEILAC-2) following successful pilots, while calcium looping leverages limestone chemistry to achieve theoretical capture efficiencies above 90 per cent, albeit still at pilot and demonstration stages requiring careful integration. Other emerging routes—including oxy-fuel combustion, membrane separation, solid sorbents, and cryogenic or hybrid systems—offer varying trade-offs between purity, energy use, and retrofit complexity; taken together, recent studies suggest that no single technology fits all plants, making a multi-technology, site-specific approach the most realistic pathway for scaling CCUS across the cement sector.
Yash Agarwal, Co-Founder, Carbonetics Carbon Capture, says, “We are fully focused on CCUS, and for us, a running plant is a profitable plant. What we have done is created digital twins that allow operators to simulate and resolve specific problems in record time. In a conventional setup, when an issue arises, plants often have to shut down operations and bring in expert consultants. What we offer instead is on-the-fly consulting. As soon as a problem is detected, the system automatically provides a set of potential solutions that can be tested on a running plant. This approach ensures that plant shutdowns are avoided and production is not impacted.”

The economics of CCUS
Carbon Capture, Utilisation and Storage (CCUS) remains one of the toughest economic hurdles in cement decarbonisation, with the IEA estimating capture costs of US$ 80-150 per tonne of CO2, and full-system costs raising cement production by US$ 30-60 per tonne, potentially increasing prices by 20 to 40 per cent without policy support—an untenable burden for a low-margin, price-sensitive industry like India’s.
Global experience shows CCUS advances beyond pilots only when the viability gap is bridged through strong policy mechanisms such as EU ETS allowances, Innovation Fund grants, and carbon Contracts for Difference (CfDs), yet even in Europe few projects have reached final investment decision (GCCA); India’s lack of a dedicated CCUS financing framework leaves projects reliant on R&D grants and balance sheets, reinforcing the IEA Net Zero Roadmap conclusion that carbon markets, green public procurement, and viability gap funding are essential to spread costs across producers, policymakers, and end users and prevent CCUS from remaining confined to demonstrations well into the 2030s.

Utilisation or storage
Carbon utilisation pathways are often the first entry point for CCUS in cement because they offer near-term revenue potential and lower infrastructure complexity. The International Energy Agency (IEA) estimates that current utilisation routes—such as concrete curing, mineralisation into aggregates, precipitated calcium carbonate (PCC), and limited chemical conversion—can realistically absorb only 5 per cent to 10 per cent of captured CO2 at a typical cement plant. In India, utilisation is particularly attractive for early pilots as it avoids the immediate need for pipelines, injection wells, and long-term liability frameworks. Accordingly, Department of Science and Technology (DST)–supported cement CCU testbeds are already demonstrating mineralisation and CO2-cured concrete applications at 1–2 tonnes of CO2 per day, validating performance, durability, and operability under Indian conditions.
However, utilisation faces hard limits of scale and permanence. India’s cement sector emits over 200 million tonnes of CO2 annually (GCCA), far exceeding the absorptive capacity of domestic utilisation markets, while many pathways—especially fuels and chemicals—are energy-intensive and dependent on costly renewable power and green hydrogen. The IPCC Sixth Assessment Report (AR6) cautions that most CCU routes do not guarantee permanent storage unless CO2 is mineralised or locked into long-lived materials, making geological storage indispensable for deep decarbonisation. India has credible storage potential in deep saline aquifers, depleted oil and gas fields, and basalt formations such as the Deccan Traps (NITI Aayog, IEA), and hub-based models—where multiple plants share transport and storage infrastructure—can reduce costs and improve bankability, as seen in Norway’s Northern Lights project. The pragmatic pathway for India is therefore a dual-track approach: utilise CO2 where it is economical and store it where permanence and scale are unavoidable, enabling early learning while building the backbone for net-zero cement.

Policy, infrastructure and clusters
Scaling CCUS in the cement sector hinges on policy certainty, shared infrastructure, and coordinated cluster development, rather than isolated plant-level action. The IEA notes that over 70 per cent of advanced industrial CCUS projects globally rely on strong government intervention—through carbon pricing, capital grants, tax credits, and long-term offtake guarantees—with Europe’s EU ETS, Innovation Fund, and carbon Contracts for Difference (CfDs) proving decisive in advancing projects like Brevik CCS. In contrast, India lacks a dedicated CCUS policy framework, rendering capture costs of USD 80–150 per tonne of CO2 economically prohibitive without state support (IEA, GCCA), a gap the GCCA–TERI India Cement Roadmap highlights can be bridged through carbon markets, viability gap funding, and green public procurement.
Milan R Trivedi, Vice President, Shree Digvijay Cement, says, “CCUS represents both an unavoidable near-term compliance cost and a long-term strategic opportunity for Indian cement producers. While current capture costs of US$ 100-150 per tonne of CO2 strain margins and necessitate upfront retrofit investments driven by emerging mandates and NDCs, effective policy support—particularly a robust, long-term carbon pricing mechanism with tradable credits under frameworks like India’s Carbon Credit Trading Scheme (CCTS)—can de-risk capital deployment and convert CCUS into a competitive advantage. With such enablers in place, CCUS can unlock 10 per cent to 20 per cent green price premiums, strengthen ESG positioning, and allow Indian cement to compete in global low-carbon markets under regimes such as the EU CBAM, North America’s buy-clean policies, and Middle Eastern green procurement, transforming compliance into export-led leadership.”
Equally critical is cluster-based CO2 transport and storage infrastructure, which can reduce unit costs by 30 to 50 per cent compared to standalone projects (IEA, Clean Energy Ministerial); recognising this, the DST has launched five CCU testbeds under academia–industry public–private partnerships, while NITI Aayog works toward a national CCUS mission focused on hubs and regional planning. Global precedents—from Norway’s Northern Lights to the UK’s HyNet and East Coast clusters—demonstrate that CCUS scales fastest when governments plan infrastructure at a regional level, making cluster-led development, backed by early public investment, the decisive enabler for India to move CCUS from isolated pilots to a scalable industrial solution.
Paul Baruya, Director of Strategy and Sustainability, FutureCoal, says, “Cement is a foundational material with a fundamental climate challenge: process emissions that cannot be eliminated through clean energy alone. The IPCC is clear that in the absence of a near-term replacement of Portland cement chemistry, CCS is essential to address the majority of clinker-related emissions. With global cement production at around 4 gigatonnes (Gt) and still growing, cement decarbonisation is not a niche undertaking, it is a large-scale industrial transition.”

From pilots to practice
Moving CCUS in cement from pilots to practice requires a sequenced roadmap aligning technology maturity, infrastructure development, and policy support: the IEA estimates that achieving net zero will require CCUS to scale from less than 1 Mt of CO2 captured today to over 1.2 Gt annually by 2050, while the GCCA Net Zero Roadmap projects CCUS contributing 30 per cent to 40 per cent of total cement-sector emissions reductions by mid-century, alongside efficiency, alternative fuels, and clinker substitution.
MM Rathi, Joint President – Power Plants, Shree Cement, says, “The Indian cement sector is currently at a pilot to early demonstration stage of CCUS readiness. A few companies have initiated small-scale pilots focused on capturing CO2 from kiln flue gases and exploring utilisation routes such as mineralisation and concrete curing. CCUS has not yet reached commercial integration due to high capture costs (US$ 80-150 per tonne of CO2), lack of transport and storage infrastructure, limited access to storage sites, and absence of long-term policy incentives. While Europe and North America have begun early commercial deployment, large-scale CCUS adoption in India is more realistically expected post-2035, subject to enabling infrastructure and policy frameworks.”
Early pilots—such as India’s DST-backed CCU testbeds and Europe’s first commercial-scale plants—serve as learning platforms to validate integration, costs, and operational reliability, but large-scale deployment will depend on cluster-based scale-up, as emphasised by the IPCC AR6, which highlights the need for early CO2 transport and storage planning to avoid long-term emissions lock-in. For India, the GCCA–TERI India Roadmap identifies CCUS as indispensable for achieving net-zero by 2070, following a pragmatic pathway: pilot today to build confidence, cluster in the 2030s to reduce costs, and institutionalise CCUS by mid-century so that low-carbon cement becomes the default, not a niche, in the country’s infrastructure growth.

Conclusion
Cement will remain indispensable to India’s development, but its long-term viability hinges on addressing its hardest emissions challenge—process CO2 from calcination—which efficiency gains, alternative fuels, and clinker substitution alone cannot eliminate; global evidence from the IPCC, IEA, and GCCA confirms that Carbon Capture, Utilisation and Storage (CCUS) is the only scalable pathway capable of delivering the depth of reduction required for net zero. With early commercial projects emerging in Europe and structured pilots underway in India, CCUS has moved beyond theory into a decisive decade where learning, localisation, and integration will shape outcomes; however, success will depend less on technology availability and more on collective execution, including coordinated policy frameworks, shared transport and storage infrastructure, robust carbon markets, and carbon-literate capabilities.
For India, a deliberate transition from pilots to practice—anchored in cluster-based deployment, supported by public–private partnerships, and aligned with national development and climate goals—can transform CCUS from a high-cost intervention into a mainstream industrial solution, enabling the cement sector to keep building the nation while sharply reducing its climate footprint.

– Kanika Mathur

Continue Reading

Concrete

CCUS has not yet reached commercial integration

Published

on

By

Shares

MM Rathi, Joint President – Power Plants, Shree Cement, suggests CCUS is the indispensable final lever for cement decarbonisation in India, moving from pilot-stage today to a policy-driven necessity.

In this interview, MM Rathi, Joint President – Power Plants, Shree Cement, offers a candid view on India’s CCUS readiness, the economic and technical challenges of integration, and why policy support and cluster-based infrastructure will be decisive in taking CCUS from pilot stage to commercial reality.

How critical is CCUS to achieving deep decarbonisation in cement compared to other levers?
CCUS is critical and ultimately indispensable for deep decarbonisation in cement. Around 60 per cent to 65 per cent of cement emissions arise from limestone calcination, an inherent chemical process that cannot be addressed through energy efficiency, renewables, or alternative fuels. Clinker substitution using fly ash, slag, and calcined clay can reduce emissions by 20 per cent to 40 per cent, while energy transition measures can abate 30 per cent to 40 per cent of fuel-related emissions. These are cost-effective, scalable, and form the foundation of decarbonisation efforts.
However, these levers alone cannot deliver reductions beyond 60 per cent. Once they reach technical and regional limits, CCUS becomes the only viable pathway to address residual
process emissions. In that sense, CCUS is not an alternative but the final, non-negotiable step toward net-zero cement.

What stage of CCUS readiness is the Indian cement sector currently at?
The Indian cement sector is currently at a pilot to early demonstration stage of CCUS readiness. A few companies have initiated small-scale pilots focused on capturing CO2 from kiln flue gases and exploring utilisation routes such as mineralisation and concrete curing. CCUS has not yet reached commercial integration due to high capture costs (US$ 80–150 per tonne of CO2), lack of transport and storage infrastructure, limited access to storage sites, and absence of long-term policy incentives.
While Europe and North America have begun early commercial deployment, large-scale CCUS adoption in India is more realistically expected post-2035, subject to enabling infrastructure and policy frameworks.

What are the biggest technical challenges of integrating CCUS into existing Indian kilns?
Retrofitting CCUS into existing Indian cement plants presents multiple challenges. Many plants have compact layouts with limited space for capture units, compressors, and CO2 handling systems, requiring modular and carefully phased integration.
Kiln flue gases contain high CO2 concentrations along with dust and impurities, increasing risks of fouling and corrosion and necessitating robust gas pre-treatment. Amine-based capture systems also require significant thermal energy, and improper heat integration can affect clinker output, making waste heat recovery critical.
Additional challenges include higher power and water demand, pressure drops in the gas path, and maintaining kiln stability and product quality. Without careful design, CCUS can impact productivity and reliability.

How does the high cost of CCUS impact cement pricing, and who bears the cost?
At capture costs of US$ 80-150 per tonne of CO2, CCUS can increase cement production costs by US$ 30-60 per tonne, potentially raising cement prices by 20 to 40 per cent. Initially, producers absorb the capital and operating costs, which can compress margins. Over time, without policy support, these costs are likely to be passed on to consumers, affecting affordability in a highly price-sensitive market like India. Policy mechanisms such as subsidies, tax credits, carbon markets, and green finance can significantly reduce this burden and enable cost-sharing across producers, policymakers, and end users.

What role can carbon utilisation play versus geological storage in India?
Carbon utilisation can play a supportive and transitional role, particularly in early CCUS deployment. Applications such as concrete curing and mineralisation can reuse 5 to 10 per cent of captured CO2 while improving material performance. Fuels and chemicals offer niche opportunities but depend on access to low-cost renewable energy. However, utilisation pathways are limited in scale and often involve temporary carbon storage. With India’s cement sector emitting over 200 million tonnes of CO2 annually, utilisation alone cannot deliver deep decarbonisation.
Long-term geological storage offers permanent sequestration at scale. India has significant potential in deep saline aquifers and depleted oil and gas fields, which will be essential for achieving net-zero cement production.

How important is government policy support for CCUS viability?
Government policy support is central to making CCUS commercially viable in India. Without intervention, CCUS costs remain prohibitive and adoption will remain limited to pilots.
Carbon markets can provide recurring revenue streams, while capital subsidies, tax incentives, and concessional financing can reduce upfront risk. Regulatory mandates and green public procurement can further accelerate adoption by creating predictable demand for low-carbon cement. CCUS will not scale through market forces alone; policy design will determine its pace and extent of deployment.

Can CCUS be scaled across mid-sized and older plants?
In the near term, CCUS is most viable for large, modern integrated plants due to economies of scale, better layout flexibility, and access to waste heat recovery. Mid-sized plants may adopt CCUS selectively over time through modular systems and shared CO2 infrastructure, though retrofit costs can be 30 to 50 per cent higher. For older plants nearing the end of their operational life, CCUS retrofitting is generally not economical, and decarbonisation efforts are better focused on efficiency, fuels, and clinker substitution.

Will CCUS become a competitive advantage or a regulatory necessity?
Over the next decade, CCUS is expected to shift from a competitive advantage to a regulatory necessity. In the short term, early adopters can access green finance, premium procurement opportunities, and sustainability leadership positioning. Beyond 2035, as emissions regulations tighten, CCUS will become essential for addressing process emissions. By 2050, it is likely to be a mandatory component of the cement sector’s net-zero pathway rather than a strategic choice.

– Kanika Mathur

Continue Reading

Concrete

Cement Additives for Improved Grinding Efficiency

Published

on

By

Shares

In a two-part series, Consultant and Advisor Shreesh A Khadilkar, discusses how advanced additive formulations allow for customised, high-performance and niche cements.

Cement additives are chemicals (inorganic and organic) added in small amounts (0.01 per cent to 0.2 per cent by weight) during cement grinding. Their main job? Reduce agglomeration, prevent pack-set, and keep the mill running smoother. Thus, these additions primarily improve, mill thru-puts, achieve lower clinker factor in blended cements PPC/PSC/PCC. Additionally, these additives improve concrete performance of cements or even for specific special premium cements with special USPs like lower setting times or for reduced water permeability in the resultant cement mortars and concrete (water repellent /permeation resistant cements), corrosion resistance etc
The Cement additives are materials which could be further differentiated as:

Grinding aids

  • Bottlenecks in cement grinding capacity, such materials can enhance throughputs
  • Low specific electrical energy consumption during cement grinding
  • Reduce “Pack set” problem and improve powder flowability

Quality improvers

  • Opportunity for further clinker factor reduction
  • Solution for delayed cement setting or strength development issues at early or later ages.
  • Others: Materials which are used for specific special cements with niche properties as discussed in the subsequent pages.

When cement additives are used as grinding aids or quality improvers, in general the additives reduce the inter-particle forces; reduce coating over grinding media and mill internals. Due to creation of like charges on cement particles, there is decreased agglomeration, much improved flowability, higher generation of fines better dispersion of particles in separator feed and reduction of mill filling level (decrease of residence time). However, in VRM grinding; actions need to be taken to have stable bed formation on the table.
It has been reported in literature and also substantiated by a number of detailed evaluations of different cement additive formulations in market, that the cement additive formulations are a combination of different chemical compounds, composed of:
1. Accelerator/s for the hydration reaction of cements which are dependent on the acceleration effect desired in mortar compressive strengths at early or later ages, the choice of the materials is also dependent on clinker quality and blending components (flyash / slag) or a mix of both.
2. Water reducer / workability / wet-ability enhancer, which would show impact on the resultant cement mortars and concrete. Some of the compounds (retarders) like polysaccharide derivatives, gluconates etc., show an initial retarding action towards hydration which result in reducing the water requirements for the cements thus act as water reducers, or it could be some appropriate polymeric molecules which show improved wet-ability and reduce water demand. These are selected based on the mineral component and type of Cements (PPC/PSC /PCC).
3. Grinding aids: Compounds that work as Grinding Aid i.e. which would enhance Mill thru-put on one hand as well as would increase the early strengths due to the higher fines generation/ or activation of cement components. These compounds could be like alkanol-amines such as TIPA, DEIPA, TEA etc. or could be compounds like glycols and other poly-ols, depending on whether it is OPC or PPC or PSC or PCC manufacture.

Mechanism of action
1. Reduce Agglomeration ; Cement particles get electrostatically charged during grinding; stick together ; form “flocs” ; block mill efficiency ; waste energy. Grinding aid molecules adsorb onto particle surfaces ; neutralise charge ; prevent re-agglomeration.
2. Improve Powder Flowability; Adsorbed molecules create a lubricating layer; particles slide past each other easier ; better mill throughput ; less “dead zone” buildup.
;Also reduces caking on mill liners, diaphragms, and separator screens ; less downtime for cleaning.
3. Enhance Grinding Efficiency (Finer Product Faster) ; By preventing agglomeration, particles stay dispersed ; more surface area exposed to grinding media ? finer grind achieved with same energy input ; Or: same fineness achieved with less energy ; huge savings.

Example:

  • Without aid ? 3500 cm²/g Blaine needs 40 kWh/ton
  • With use of optimum grinding aid ? same fineness at 32 kWh/ton ? 20 per cent energy savings

4. Reduce Pack Set and Silo Caking, Grinding aids (GA) inhibit hydration of free lime (CaO) during storage ,  prevents premature hardening or “pack set” in silos. , especially critical in humid climates or with high free lime clinker.

It may be stated here that overdosing of GA , can cause: – Foaming in mill (especially with glycols) ? reduces grinding efficiency, retardation of cement setting (especially with amines/acids), odor issues (in indoor mills) – Corrosion of mill components (if acidic aids used improperly)
The best practice to optimise use of GA is , Start with 0.02 per cent to 0.05 per cent dosage , test fineness, flow, and set time , adjust up/down. Due to static charge of particles, the sample may stick to the sides of sampler pipe and so sampling need to be properly done.
Depending on type of Cements i.e. OPC, PPC, PSC, PCC, the grinding aids combinations need to be optimised, a typical Poly carboxylate ether also could be a part of the combo grinding aids

Cement additives for niche properties of the Cement in Concrete.
The cement additives can also be tailor made to create specific niche properties in Cements, OPC, PPC, PSC and PCC to create premium or special brands. The special niche properties of the cement being its additional USP of such cement products, and are useful for customers to build a durable concrete structure with increased service life.
Such properties could be:

  • Additives for improved Concrete performance of Cements, High early strength in PPC/PSC/PCC, much reduced water demand in cement, cements with improved slump retentivity in concrete, self-compacting, self levelling in concrete, cements with improved adhesion property of the cement mortar
  • Water repellence / water proofing, permeability resistance in Mortars and Concrete.
  • Biocidal cement
  • Photo catalytic cements
  • Cements with negligible ASR reactions etc.

Additives for cements for improved concrete performance
High early strengths: Use of Accelerators. These are chemical compounds which enhance the degree of hydration of cement. These can include setting or hardening accelerators depending on whether their action occurs in the plastic or hardened state respectively. Thus, the setting accelerators reduce the setting time, whereas the hardening accelerators increase the early age strengths. The setting accelerators act during the initial minutes of the cement hydration, whereas the hardening accelerators act mainly during the initial days of hydration.
Chloride salts are the best in class. However, use of chloride salts as hardening accelerators are strongly discouraged for their action in promoting the corrosion of rebar, thus, chloride-free accelerators are preferred. The hardening accelerators could be combinations of compounds like nitrate, nitrite and thiocyanate salts of alkali or alkaline earth metals or thiosulphate, formate, and alkanol amines depending on the cement types.
However, especially in blended Cements (PPC/PSC/PCC the increased early strengths invariably decrease the 28 Day Strengths. These aspects lead to creating combo additives along with organic polymers to achieve improved early strengths as well as either same or marginally improved 28 Days strengths with reduced clinker factor in the blended cement, special OPC with reduced admixture requirements. With use of appropriate combination of inorganic and organic additives we could create an OPC with substantially reduced water demand or improved slump retentivity. Use of such an OPC would show exceptional concrete performance in high grade concretes as it would exhibit lower admixture requirements in High Grade Concretes.
PPC with OPC like Properties: With the above concept we could have a PPC, having higher percentage flyash, with a combo cement additive which would have with concrete performance similar to OPC in say M40/M50 concrete. Such a PPC would produce a high-strength PPC concrete (= 60 MPa @ 28d) + Improved Workability, Durability and Sustainability.
Another interesting aspect could also be of using Ultrafine fine flyash /ultrafine slags as additions in OPC/PPC/PSC for achieving lower clinker factor as well as to achieve improved later age strengths with or without a combo cement additive.
The initial adhesion property at sites of especially PPC/PSC/PCC based mortars can be improved through use of appropriate organic polymers addition during the manufacture of these cements. Such Cements would have a better adhesion property for plastering/brick bonding etc., as it has much lower rebound loss of their Mortars in such applications.
It is needless to mention here that with use of additives, we could also have cement with viscosity modifying cement additives, for self-compaction and self-leveling concrete performance.
Use of Phosphogypsum retards the setting time of cements, we can use additive different additive combos to overcome retardation and improve the 1 day strengths of the cements and concretes.

The concluding part of this article will appear in the next issue of ICR.

About the author:
Shreesh Khadilkar, Consultant & Advisor, Former Director Quality & Product Development, ACC, a seasoned consultant and advisor, brings over 37 years of experience in cement manufacturing, having held leadership roles in R&D and product development at ACC Ltd. With deep expertise in innovative cement concepts, he is dedicated to sharing his knowledge and improving the performance of cement plants globally.

Continue Reading

Trending News