Connect with us

Environment

The per capita consumption of cement in India is less than 200 kg….

Published

on

"The per capita consumption of cement in India is less than 200 kg, while world average is around 500 kg …? so that is a very optimistic position"……And lot more. Stay on to know more as Pratap Padode and A Mohankumar speak to Anand K Jain, Technical Advisor, UltraTech Cement about the Indian cement industry.What role has technology played in environment-friendly packaging for the cement industry?Today environment – friendly packaging is the norm and technology has in this played a very important role. Cement is generally perceived by many as a polluting industry – mainly air pollution as it involves use of very fine material. Thus, it is necessary that such emissions are controlled during the production and packaging process. With new technologies, the emissions are reduced to the minimum, by installing automatic bag fillers, electrostatic precipitators, etc. Now to a reasonable extent, they are able to to have very clean air within and outside the cement plant. The International Standards for particulate emission have also come down from 150 mg normal per cubic metre to 50 mg per normal cubic metre. The Indian cement industry has geared up and is well equipped to comply with this standard – particularly the new plants have been following these norms The cement industry is poised to play a big role in improving the environment by utilising industrial wastes like fly ash, slag and municipal waste as a fuel in the kiln, even agriculture waste like rice husk and many other industrial wastes.What about comparisons with China?India is better than China as far as the quality, fuel and power consumption are concerned. It is only in terms of volume that China is ahead of India. For example, China last year consumed approximately 1,200 mt, whereas India’s consumption was around 220 mt. This is basically because they are investing large funds on infrastructure development – in housing and scale of growth is much higher in China. Their GDP is the second largest in the world, and has already crossed $5 trillion. India is only 1?? of their economy. Therefore their cement consumption is more. But as far as the technology parameter and quality is concerned, we are not lagging behind China.There is huge cost pressure from inputs – power, coal are now expensive. What is the scenario that is most likely to emerge in the near future?
It is true that input costs are going up. In terms of essentials, coal prices are now very high. In the recent past majority of the cement plants have set up their own captive power generation. Cement production is a continuous process and depending on grid power does not prove to be cost-effective as well as a very viable option. The second issue is availability of coal. Coal is one area which is definitely a matter of concern because on an average nearly 180-200 kg of coal is consumed to produce one tonne of clinker. The government is opening up coal blocks for private ownership and some of the companies are considering having their own colliery in India and abroad. Imported coal is also an options. Cement companies have to transport coal from eastern India to different locations. Pet coke can be used as an alternate fuel for the cement industry. Pet coke is a petroleum refinery by-product and it is used in the cement kiln for the burning process in lieu of coal. It also has high calorific value compared to coal. The refinery in Jamnagar in western India produces pet coke, which is being used by some.There is a trend to set up plant close to the primary source?Yes, it is a necessity. Clinker has to be produced where the limestone is available – it is known as the parent plant. So you should have your parent plant in an area where limestone is available. And once clinker is available, it can be transported to a thermal power plant where fly ash is available. Then the flyash and clinker can be grinded to drive the final product. From there, cement can be finally supplied to the market. This is an emerging trend.Coming to the grading of cement, now 53 grades is the standard for Bureau of Indian Standards, should a higher grade be brought in?In fact the 53 grade cement can produce a very high strength concrete. If you have to go for a higher grade of cement, then you need high grade limestone which is not available in many locations in India. So this is a major constraint. At the moment we do not think that a grade higher than 53 is really needed. Rather what is required is appropriate mix proportions to produce good quality of concrete, to optimise the use of not only the cement, but also of other cementitious material like fly ash, silica fume and slag. If these materials are blended in proper combination and added with a super plasticiser, a high quality and durable concrete can be produced without unnecessarily opting for a very high grade of cement.Your take on the future of ready mix concreteReady mix concrete has a bright future. There is no doubt because it has opened up a new vista in construction. People now have confidence in ready mix concrete even for very high grades like M50, M60. Hence it has opened up a new field for construction to use higher grades concrete. You can have any shape, any height, any span because good quality concrete from the ready mix plant, would be available to the end consumer. Unfortunately, people still compare ready mix concrete with site mix concrete. But the two products are different – the quality assurance and the characteristics of the concrete – what is produced at site and what is produced at the ready mix concrete plant are two different products. So if you pay little more money for ready mix concrete, it is value for money. Slowly people have started realising that if they want quality then they cannot compromise on the quality of concrete because the durability of the structure today mainly depends on the concrete. Ready mix concrete has seen phenomenal growth and when people realise that it is a vital component which enhances durability and the life of the structure, the price position will definitely improve.Do taxes pose a big challenge?
Yes they do, but still the main constraint is the availability of land within the urban area. If you take land on lease or you buy it, the cost is very high and that adds up to the input cost. Secondly, our towns and cities are very congested and the movement is very slow therefore the throughput of a transit mixer is very less and the transportation cost becomes very high. These are basically the main reasons. Lastly tax is definately a problem. Ready mix concrete has to pay the value added tax (VAT) while if you make at the job site there is no tax. So these factors increase the cost. Actually ready mix concrete is seen as an extension of the cement business and value addition; it is also helpful in many ways because ready mix concrete has been able to provide solutions for mega infra projects. Indirectly, due to availability of ready mix concrete, the cement consumption in the country has gone up.So what is the business like for ready mix concrete (RMC), when compared with the rest?Today, ready mix concrete commercial plants produce around 25 million cubic metre of concrete in India. Twenty five million cubic metre consumes around 8-10 mt of cement which is still very low. If we are producing around 200 million tonne of cement then only about 5 per cent goes into commercial ready mix concrete. In many of the developed countries this figure is around 50-55 per cent. So as you can see, in India this industry still has huge potential to grow. Further, the environmental norms have become stricter, size of the projects have increased, and individual houses are less favoured, particularly in metros and tier 2 cities because people are opting for flats. Now, the size of the projects have increased and the conventional methods of making concrete at the site has lost relevance. Even in tier 2 and tier 3 cities like Kolhapur, Ludhiana, Nashik, Vishakhapatnam, Vijayawada, Mysore, etc all these places are responding positively to the ready mix concrete. Ready mix concrete indeed has a bright future.What about the pricing factor, it seems to be on the higher side?Ready mix concrete is a very fragmented type of industry because the entry barriers are low and anybody can set up a ready mix concrete plant. Basically price positioning is not evident because there are too many players in the unorganised sector and the statutory compliance is almost negligible. These unorganised players offer products to end consumers at discounted prices or at a lower price. I am sure, as the industry grows and construction booms, people will realise that quality is more important than price alone.With 70 per cent of demand coming from the housing market which has been growing 25-30 per cent – last year it was 15 per cent – how do you see the demand from this segment? Will it be the driving force? What will be the share of infrastructure?Housing will for sometime be the demand driver for cement. But infrastructure projects are also coming up in a big way, whether it is power or transport, or irrigation, dedicated corridors or urban infrastructure in metros. I think the share of the infrastructure projects will go up and housing may come down. I believe it has already come down to about 55 per cent. There is scope for it to reduce even further.And what about infrastructure?The investment in infrastructure is continuously increasing, Infrastructure has a wide spectrum as you know. If you consider an infrastructure project, you can also take in rural areas like the water supply, connectivity, PM Gramin Sadak Yojana and sanitation. Then there are small irrigation and medium size irrigation projects. If we take into account all these investments in infrastructure projects, demand for cement will grow substantially, maybe upto 30-35 per cent.Could you tell us more about the new technologies in this sector? Do price or lack of awareness hinders use of new technology?There is lot of emphasis to reduce the input cost and to increase productivity as well as to optimise transportation cost. So the cost reduction should be in terms of power consumption, fuel consumption, the heat recovery and the transportation cost. Being a bulky material, the transportation cost of cement is very high, sometimes even 30 per cent of the total delivered cost. So if you have the main unit that produces clinker and bulk clinker can be transported to the other place by doing so, the cost of transportation would be comparatively low as transportation cost of clinker is lower compared to cement. Then if you add up fly ash where it is available, the cost will still come down. These efforts would reduce the ultimate cost of cement. Transportation is one area, distribution is another. Instead of storing cement in warehouses it should go directly to the end consumer, so that it reduces cost of storage and inventory cost and there is no need to hold it for longer periods and fresh cement can be made available to the consumers. There are other areas also. Major consumption centres of cement are metros like Mumbai, Delhi, Hyderabad, Bengaluru, Chennai and Kolkata. In metros, you can set-up bulk terminals and bring cement from the parent plant as loose cement in specially designed wagons and pack it and supply. The transportation cost can be reduced and availability can also increase. These are some of the areas, where cement industry is already taking the right steps.Is there adequate availability of machinery or do we have to rely on imports?Cement plants are largely indigenised. Only some critical components and electronic controlled systems, are still imported. All the fabrication works and many components are produced in India. In total, almost 70-75 per cent is totally indigenous.How do you see the relationship between demand and supply of cement?The supply may be higher for a short duration but the demand and supply of cement will shortly match. Thirty million tonne of production capacity is expected this year. Cement industry like any other major commodity business is cyclic in nature When the capacity increases, it overtakes the demand, and when the demand increases, over takes the supply. During that period, more plants are set up.This has always happened and there is nothing new. But still, the per capita consumption of cement in India is less than 200 kg, while the world average is around 500 kg, therefore we are far behind. In case of China, it is over 1,000 kg per head, – that is a very optimistic position in for cement. Fortunately there is no alternate product to replace cement since it is still the cheapest and best material, that serves as a binder.What are the changes you expect in the coming budget?The cement industry keeps on presenting their demands for reducing taxes to the government. The taxes should be reduced on cement. The excise duty on steel is 4 per cent but for cement it is still around 10-12 per cent. We expect that cement should be in the same category as steel. At least if the excise duty is brought at par with steel, it will give a lot of relief to the end consumer.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

Stud technology has proven to be a boon for the industry

Published

on

By

Ashok Kumar Dembla, President and Managing Director, KHD Humboldt Wedag India, discusses the advancements in grinding solutions that focus on low energy consumption, dust free circuits and low maintenance.

Tell us about the role of your grinding solutions in the cement industry?
We all know that grinding constitutes about 65-70 per cent of electrical energy consumption of cement manufacturing. Any saving in grinding energy can be good for operating cost reduction. Also, energy cost is increasing with time, therefore cement manufacturing companies are looking for new technologies for low electrical energy consumption. In the past few years, KHD has worked extensively in the field of grinding to reduce electrical energy consumption in the cement industry, which also helps in reduction in carbon footprints. We at KHD provide all kinds of grinding solutions be it raw material grinding, cement grinding or slag grinding.

How do you customise your grinding solutions to fit the requirements of distinct cement plants?
Based on the cement manufacturers requirement, we offer customised solutions for various grinding circuits. Every cement plant has specific requirements. Like some focus on low-cost solutions, some focus on energy efficiency whereas some focus on operational excellence. The input material hardness, moisture, abrasively, feed size and product requirement decide what solution is to be offered for achieving a cost effective and energy efficient solution. We have various sizes of roller presses, various types of roller surfaces, types of rollers and arrangement of roller presses in the circuit like roller press in semi-finish mode, roller press in finish mode, size of ball mill in semi-finish mode, location of static separator in process circuit, etc. So, based on all the factors, we decide what is to be offered.

How do your grinding solutions help cement plants achieve energy efficiency?
Latest developments related to raw material grinding in finish grinding in roller press have paid dividends even for soft and medium to hard material. Hard raw materials are giving higher bonus factor in finish grinding roller press systems and cement manufacturers are getting 2-4 Kwh/t saving in electrical energy in raw material grinding itself by using this technology as compared to vertical mill technology. Typical circuit offered by KHD for raw materials grinding in ComFlex Grinding circuit has advantages to process raw materials with high moistures with incorporation of V-Separator below the roller press and use of hot gases to dry the raw materials.
With the focus of the industry towards WHR systems, roller press grinding has further received acceptance as it uses no water for bed stabilisation and uses minimum hot gases as compared to other contemporary technologies.
In case of cement grinding, two technologies are being accepted, either vertical roller mill or roller press in semi-finish or finish grinding. Roller press in finish grinding has the advantage of further saving of 3-4 Kwh/t as compared to semi-finish grinding and vertical mill technology. With more acceptance of blended cements like PPC, PSC and composite cements, roller press in finish grinding is accepted as advanced technology in cement grinding. Typical finish and semi-finish grinding circuits offered by KHD are very popular in the cement industry. which includes use of roller press alone or in combination of roller press and ball mill respectively.
In the case of slag grinding, acceptance of roller press in finish grinding is well recognised. It offers a distinct advantage of saving of about 6-7 Kwh/t as compared to the vertical roller mill at 4200 Blaine. The advantage comes due to the hardness of slag and pressure grinding in roller press instead of attrition and low pressure in vertical roller press. Moisture issue is also tackled with the problem of coating by incorporating a V-separator below the roller press.

Tell us about the role of separators in the grinding process? How do they help achieve cost efficiency?
The basic role of a separator is to separate the feed material entering into it after grinding into two products i.e., coarse and fine. While fine is normally the final product in case of dynamic separator and is intermediate product in case of V-Separator. Dynamic separators have also gone through various technological developments, and we are offering 4th generation high efficiency separators now-a-days. These separators offer sharp cut point and minimum bypass (particle below 3 microns). This leads to less recirculation of fines thus improving the availability of the system and in turn efficiency of the system. V-separator is an excellent pre-separator cum dryer (in case of wet material) which is used for pre-separating the roller press throughput before the second separation in a dynamic separator. Two stage separation in the roller press circuit makes it energy efficient and ensures proper product quality.

Materials used for the manufacturing of cement are evolving every day. How does your machinery adapt to this change at the cement plants?
With the trends more on low clinker to cement ratio, today the Indian cement industry is moving very fast toward this aspect. PSC, PPC, composite cements are going up the curve. The cement industry is well versed with the utilisation and manufacturing of blended cement. KHD is one of the key suppliers for providing energy efficient technologies viz roller press grinding for the production of blended cement.
It is estimated that decreasing the clinker ratio in production of cement contributes to nearly 37 per cent of targeted CO2 reduction. By promoting PPC and PSC cement in India, more than 85 per cent cement is produced as blended cement or composite cement (which has come into existence during the last 3-5 years). PPC allows 35 per cent fly-ash usage at present, whereas PSC allows 55 per cent to 65 per cent granulated slag in clinker. Increase of Pozzolana (fly-ash) usage in PPC, up to 45 per cent can reduce the carbon footprint further which has a permissible limit of up to 55 per cent in some European countries. Our roller presses are well versed to take care of all these materials smoothly.

What role does technology play in designing and executing your grinding circuit at the cement plants?
It’s mainly the technology that has promoted the roller press circuits for grinding over VRM technology. Our technology takes into consideration the lowest energy consumption, dust free circuits, nil water consumption, lower maintenance and more in terms of availability and reliability. So, all the systems are based on technology to address all these points. For example, roller press surface plays an important role regarding maintenance requirements. Stud surface of roller press can provide continuous availability of roller press for 4-5 years without any welding requirement. Welded surfaces also have less than half the requirement of welding as compared to VRM, which has the attrition principle of grinding in addition to pressure grinding.

What are the major challenges in curating and executing grinding solutions?
Over the years we have done intensive work in the field of grinding solutions. We don’t foresee any major challenge now as we have already achieved lower power consumption, dust free circuits, more reliability, environmentally friendly grinding. However, we are on the track of continuous improvements to even achieve better because we believe that nothing is impossible, and we are always bound to reach new heights. With use of blended cements and LC3 Cement in coming future in India we are expecting higher blain requirement in final product which may see some technological advances in secondary grinding i.e., ball mills may be replaced by special mills however roller press shall continue in semi-finish and finish grinding applications.

Tell us about the innovations by your organisation in the near future that the cement industry can look forward to.
At present, the focus is to use roller press in finish grinding to get maximum energy advantage as compared to ball mill grinding especially for blended cement. Apart from electrical energy, the focus is also on roller press surfaces, which has minimum wear and offers trouble and maintenance free operation. Stud technology has proven to be a boon for the industry. Tungsten Carbide Studs are fixed on the roller surface by pressing in pre-drilled rollers, which offers autogenous grinding and minimum wear. Life expected out of these roller surfaces varies from 25,000-40,000 hours of operations without any surface maintenance.
Apart from this, developments are focussed on optimising the process circuit for energy efficient and pollution free operation. Developments in actuated dosing gate for feeding material to roller press and online monitoring of roller press surface are also worth noticing. There shall also be developments related to use of digital technology to monitor the performance of these grinding systems, which can contribute towards optimised production and increased availability due to timely signals regarding maintenance requirements.

-Kanika Mathur

Continue Reading

Concrete

Waste Glass as Pozzolana

Published

on

By

Dr SB Hegde, Professor, Jain University and Visiting Professor, Pennsylvania State University, United States of America, gives a detailed account of the use of waste glass as Pozzolana, a sustainable solution for cement production, in a two-part article.

The increasing demand for cement, coupled with growing environmental concerns, has led to a search for alternative materials that can reduce the carbon footprint of cement production. Waste glass, a significant environmental concern itself, has emerged as a promising alternative due to its pozzolanic properties.
This paper delves into the concept of utilising waste glass as a pozzolanic material in cement production, highlighting its benefits, challenges and potential for sustainable development based on the research and development work carried out by the author. This is part one of the study; part two will be featured in the consecutive issue of the magazine.

Generation and Availability of Waste Glass
On a global scale, this only amounts to a recycling rate of less than 35 per cent. Worldwide, around 130 million tonnes (Mta) of glass are currently produced annually.
India alone produces three million tonnes of glass waste annually, of which only 35 per cent is recovered, and the rest often ends up in landfills or down cycled into construction material aggregates. Glass is found in municipal solid waste (MSW), primarily in the form of containers such as beer and soft drink bottles; wine and liquor bottles; and bottles and jars for food, cosmetics and other products. India is one of the largest consumers of glass in the world, and as a result, it also generates a significant amount of waste glass. Waste glass, also known as cullet, can come from various sources such as bottles, jars, containers, windows and other glass products.
The availability and generation of waste glass in India depend on several factors, including population, consumption patterns, recycling infrastructure and waste management practices. Glass waste can be generated from residential households, commercial establishments and industries as well as construction and demolition activities. In recent years, there has been growing awareness about the importance of recycling glass waste in India. Recycling glass has several environmental benefits, such as reducing the consumption of raw materials, saving energy and reducing landfill waste.

Infrastructural requirement
To effectively use waste glass as a pozzolanic material in a cement plant, certain facilities and processes can be implemented. Here are some key facilities that can be created:

  1. Glass Sorting and Preprocessing: A facility for sorting and preprocessing waste glass is essential to segregate glass by colour and removing contaminants such as paper, plastics and metals. Crushing or grinding equipment can be used to reduce the glass to a suitable particle size.
  2. Glass Storage and Handling: Adequate storage facilities should be established to store the sorted and processed glass. It is important to protect the glass from moisture and other environmental factors that can affect its quality.
  3. Glass Dosing System: A dosing system should be set up to accurately measure and control the amount of waste glass being added to the cement production process. This can involve automated feeders or other equipment to ensure a consistent and controlled addition of glass.
  4. Glass Grinding or Milling Equipment: Depending on the desired fineness of the waste glass, a grinding or milling unit may be required to further reduce the particle size. This equipment can include ball mills, vertical roller mills, or specialised glass grinding mills.
  5. Blending and Mixing Facilities: Cement plants typically have blending and mixing facilities where various supplementary cementitious materials, including waste glass, can be combined with other raw materials. This ensures homogeneity and uniformity in the cement production process.
  6. Quality Control and Testing: Facilities for quality control and testing should be in place to assess the chemical and physical properties of the waste glass, as well as the performance of the cementitious mixtures incorporating the glass. This can include laboratory testing equipment and personnel trained in relevant testing methods.
    It’s important to note that the specific facilities required may vary depending on the scale of the cement plant and the volume of waste glass being processed. Detailed engineering studies and consultations in cement production and waste management can help determine the optimal design and layout of these facilities within a cement plant. Additionally, it is advisable to comply with relevant environmental regulations and obtain any necessary permits or approvals from statutory bodies in that particular country for handling and using waste glass within the cement plant.

The Fineness of Waste Glass
When waste glass is used as a supplementary cementitious material in cement production, it is important to consider the fineness or particle size distribution of the glass. The fineness of waste glass affects its reactivity and compatibility with
cement, which can impact the performance of the cementitious mixture.
The specific fineness requirements for waste glass can vary depending on the specific application, the type of cement being used, and the desired properties of the final concrete or mortar. However, in general, the waste glass particles should be finely ground to ensure effective pozzolanic or latent hydraulic reactions with the cement.
Here are some common guidelines for the fineness of waste glass used in cement:
Particle Size Distribution: The waste glass particles should have a range of sizes to ensure good packing and fill the voids between cement particles. A typical particle size distribution for waste glass in cement applications is similar to that of cement, with a majority of particles passing through a 325 mesh (45 microns) sieve.
Blaine Fineness: The Blaine fineness test is often used to measure the specific surface area of cementitious materials. The waste glass should generally have a Blaine fineness similar to or higher than that of cement. Typical values can range from 300 to 500 m²/kg or higher, depending on the application.
Grinding or Milling: Waste glass may require grinding or milling processes to achieve the desired fineness. The grinding method can vary depending on the available equipment and the specific glass composition. Ball mills, vertical roller mills or specialised glass grinding equipment can be used.
Gradation Control: It is important to control the gradation of waste glass during the grinding process. A well-controlled gradation can improve the flowability and workability of the cementitious mixture.
It is worth noting that the precise fineness requirements may vary depending on the specific standards, specifications, or guidelines established by statutory bodies of the particular country.

Attributes of Waste Glass as Pozzolana
Based on research and development investigations the following avenues are investigated for utilisation of waste glass.
Pozzolanic Properties of Waste Glass: Pozzolanic materials, when combined with calcium hydroxide in the presence of water, react to form cementitious compounds. Waste glass, rich in amorphous silica, exhibits excellent pozzolanic properties. Through a process called pozzolanic reaction, waste glass can contribute to the strength, durability, and chemical resistance of cementitious materials.
Environmental Benefits: Incorporating waste glass as a pozzolanic material in cement production offers significant environmental advantages. Firstly, it reduces the need for virgin raw materials such as limestone, thus conserving natural resources. Additionally, it mitigates the environmental impact associated with glass waste disposal, diverting it from landfills or incineration.
Improved Concrete Performance: The use of waste glass as a pozzolanic material enhances the performance of concrete. Due to its pozzolanic activity, waste glass reacts with calcium hydroxide in the cement matrix, resulting in denser and more durable concrete. This leads to improved mechanical strength, reduced permeability, and increased resistance to chemical attack.
Supplementary Cementitious Material: Waste glass can be used as a supplementary cementitious material (SCM) in cement production. When properly ground and processed, waste glass can replace a portion of cement without compromising the desired concrete properties. This substitution not only reduces cement consumption but also lowers the carbon dioxide emissions associated with cement production.
Sustainable Development and Circular Economy: Utilising waste glass as a pozzolanic material aligns with the principles of sustainable development and the circular economy. It promotes resource efficiency, reduces waste generation, and contributes to a more sustainable construction industry. The integration of waste glass into cement production presents opportunities for collaboration between cement manufacturers, waste management companies, and regulatory bodies to develop innovative and eco-friendly solutions.

References

  1. Utilisation of Waste Glass Powder in Concrete by P. Manoj Kumar,
    K. Sreenivasulu, and M. Srinivasulu Reddy, International Journal of Innovative Research in Science, Engineering and Technology, 2013.
  2. Recycling of Waste Glass as a Partial Replacement for Fine Aggregate in Concrete Mix by W. A. Rahman, M. A. S. Al-gahtani,
    and M. A. K. El-Kourd, Journal of King Saud University – Engineering Sciences, 2010.
  3. Mechanical and Durability Properties of Concrete Containing Glass Powder as Partial Replacement of Cement by A. Shayan and R. Xu, Construction and Building Materials, 2004.
  4. Properties of Glass Concrete Containing Fine and Coarse Glass Aggregates by Z. Feng, S. Xie, and Y. Zhou, Journal of Materials in Civil Engineering, 2011.

ABOUT THE AUTHOR
Dr SB Hegde, Professor, Jain University and Visiting Professor, Pennsylvania State University, United States of America.

Continue Reading

Environment

Teijin’s initiatives towards carbon neutrality

Published

on

By

Teijin Group provides innovative solutions for enhanced quality of life

As climate change has a large impact on the global society and economy, industry, governments and academia are making efforts to reduce environmental impact including greenhouse gas (GHG) emissions through energy conservation, green energy and lifecycle assessment (LCA).

As a people-focused company, the Teijin Group provides innovative solutions for enhanced quality of life and works to minimise any negative impact on the environment or society through its business activities. Teijin considers environmental management to refer to management that reduces the environmental impact over the entire product life cycle, including all processes from material procurement to production, product use and disposal.

With raised targets for reducing CO2 emissions, Teijin’s long-term environmental targets have been adapted to an ambitious level of 30% reduction. With a further target of reducing the portion of emissions that accounts for over two-thirds of the overall supply chain emissions by 15%. Establishing achievable targets while also being ambitious has been key for us in leading the way to a carbon-neutral future. The Teijin Group’s targets for GHG emissions are now officially validated as Science Based Targets (SBT) as the first Japanese chemical manufacturer. The objective of SBT is to help achieve the Paris Agreement’s goal of limiting global temperature rise to well below two degrees Celsius above pre-Industrial Revolution levels, which is expected to significantly reduce the risks and impacts of climate change.

Teijin established a method for calculating CO2 emissions during the manufacture of Tenax carbon fibres, which has made it possible to conduct Life Cycle Assessment (LCA) of all carbon fibres offered by Teijin. By doing so, Teijin became the first company in the industry to be able to achieve this. Not only calculates its own manufacturing processes, but Teijin also evaluates the carbon footprint of its customers’ manufacturing process with this method.

Teijin Aramid, a core aramid business of the Teijin Group headquartered in the Netherlands, has improved the carbon footprint of its para-aramid product called Twaron by 28% compared to 2014 according to the applicable ISO standards 14040 and 14044. The benefit of using Twaron can be calculated economically and environmentally by the Customer Benefit Model (CBM) developed by Teijin Aramid.

Teijin is also at the cutting edge of what is possible to exceed demands in our ever-changing world. Providing solutions to help reduce vehicle weight, which in turn helps reduce gas emissions and improves overall fuel performance, means we are impacting countless journeys around the world. Teijin Automotive Technologies’ has one of these solutions called TCA Ultra Lite, a 1.2 specific gravity ultra lightweight sheet moulding compound formulation that uses glass fibre reinforced plastic (GFRP). Carbon fibre reinforced thermoplastic (CFRTP) Sereebo is another example. Conventional carbon fibre-reinforced plastic (CFRP) that utilises thermosetting resins requires several minutes to several hours to mould, making it unfit for components used in mass-produced automobiles. However, by making use of thermoplastic resins, we have been able to significantly reduce these moulding times. This has allowed Teijin to establish the world’s first mass-production technology that is able to mould CFRP in only one minute.

In addition to this, the Teijin Group’s fibres and products converting company Teijin Frontier offers apparel manufacturers numerous products that help reduce CO2 emissions, including ECOPET, a recycled polyester fibre that utilises used PET bottles and fibre scraps as raw materials, and SOLOTEX, which uses plant-derived ingredients for a portion of its polymers.

Teijin Frontier has also developed a system to calculate CO2 emissions within the polyester fibre manufacturing process, thereby enabling the implementation of LCA. It will gradually expand the scope of its operations to cover more textiles, including those used for weaving and dyeing, while working with its partner companies to evaluate the entire life cycle of polyester fibre products.

Continue Reading

Trending News

© COPYRIGHT 2021 ASAPP Info Global Services Pvt. Ltd. All Right Reserved.

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds