Connect with us

Technology

Importance of ACR in design of PJBH/RABH

Published

on

Shares

The single most important criteria of performance for a PJBH/RABH is its air- to- cloth ratio (ACR), writes Rajendra Yadav.

Cement manufacturing involves several processes where the raw materials like limestone, coal, gypsum, fly ash, slag and other materials are transported, ground, weighed, burnt and calcined. These processes use air for moving/burning the materials. After the purpose is accomplished, air is to be removed from the circuit. Several pieces of equipment like cyclones, multi-cyclones, electrostatic precipitators, ventury scrubbers, etc, are used for separating the process dust/ particulate from the gas/air. But one equipment that has caught the fancy of the plant owners for the separation of dust particles from air/fumes, is the bag house. Be it pulse jet or reverse air, a physical filtration device ensures almost one hundred per cent filtration efficiency without being affected by the input conditions.

The pulse jet bag house (PJBH) / reverse air bag house (RABH) are preferred equipment in a cement plant. Their installations have increased year after year and today more than a hundred units are installed in a modern cement plant. However, the awareness about the equipment and its usage has remained limited to a few people. A cement plant process/maintenance engineer is keener in learning the nuances of production equipment like the kiln, cooler, raw mill, cement mill, coal mill, and simply ignores the PJBH/RABH, depending on external agencies for its operation and maintenance.

Unavailability of pertinent literature has also contributed to this comparatively lower awareness. Today, the situation is improving and many cement plants are appointing separate environment engineers who are responsible for the running and upkeep of the equipment. With growing awareness about emission and its ill effects, and the commitment of cement industry to become a green industry with minimum discharge of harmful materials into the environment, the situation will be very different.

What is air- to -cloth ratio?
It is the ratio of gas volume/air flow to the filtration area provided in the PJBH/RABH.
ACR = Gas Volume / Filtration Area
Where,
ACR = m/min
Gas Volume = m3/min
Filtration Area = m2
Normally, it is the application engineer who is designing the PJBH/RABH who decides on what shall be the ACR for a particular PJBH/RABH. However, at several times, the plant owner´s consultant also specifies the ACR to be considered for designing the PJBH/RABH. Who decides what should be ACR is not an important issue here, how to decide ACR is of critical importance. ACR determines the size of the equipment. If you become too conservative then your equipment costs rise very high, whereas if you are too aggressive and design equipment with high ACR, there may be performance issues. Therefore, it is of critical importance that a proper balance is kept while choosing the ACR.

The various aspects to be considered for choosing the right ACR are as follows:

Criticality of application: Is the PJBH/RABH is going to be used as a production and/or product recovery equipment? If yes, then a sufficient design margin must be incorporated and a lot of information should be obtained before deciding the ACR. Operating temperature: The higher the operating temperature, the more critical the filtration. The media used for high temperature filtration are generally very expensive and therefore, sufficient margins must be considered.

Chemical composition of dust: If you are filtering a chemically active dust which is likely to react with any of the components of the flue gas or the filter material, a bigger size filter will help.

Chemical composition of flue gases: If the flue gases carrying the dust to be filtered are corrosive in nature, choosing a conservative ACR will enhance filter life and life of other components. Chemistry coupled with temperature makes it a very critical application.

Presence of moisture: If the flue gases contain water vapour or any other vapour, then having a little more filtration area will only help.

Particle size analysis: Most of the PJBH/RABH are used in industries. The processes generate different particle sizes of the dust. If more than 20 per cent of particles are between 1-5 microns, it is considered fine dust. Filtering fine dust is difficult.

Inlet dust load: If the dust load at inlet to PJBH/RABH is high (> 100 gm/NM3) then using a pre-collector is advisable.

Large particles: If the process is going to have a large part (more than 50 per cent) of the particles above 100 micron in size, then installing a pre-collector can be very useful. If a pre-collector is not installed, abrasion of the filters and casing/hopper is possible.

Cost of product collected: Cost of the product collected is of critical importance. Sometimes, a few days or months` operation can pay for the entire equipment. As a general rule of thumb, a conservative (low) ACR will give better collection efficiency. Therefore, if the bag filter is being installed to collect precious dust, then a lower ACR will pay back very quickly.

Location of the plant: The public awareness about emissions has gone up in recent years and every industry wants a good relationship with its neighbouring community. Therefore, if the plant is close to a city/village and any stoppage of the APC unit even for a few hours, is going to make a big impact on this relationship, then choose the ACR carefully. Equipment with lower ACRs have a tendency to give good life to filters and need fewer replacements.

PJBH/RABH designed using optimum ACR will give the following benefits: Less frequent cleaning: Filters requiring lesser clearing cycles last longer. Each cleaning cycle damages them.

Lower compressed air consumption: Compressors are low efficiency equipment. Usually, they have 30-50 per cent efficiency. PJBH uses compressed air for reverse cleaning of filter bags/cartridges. More cleaning cycles consume higher compressed air and operating costs go Up.

Lower operating pressure drop: PJBH/RABHs designed using optimum ACR yield lower operating pressure drop and thus saves on fan power without sacrificing the filtration efficiency or emission levels.

Useful filter life: It is observed that RABH/PJBH filters with conservative ACR results in long filter life and fewer change of filters over its useful life. This reduces the downtime of equipment, saves the associated parts which are damaged during filter changes and saves the expense on manpower for change of filters, too. I have witnessed more than ten years of filter life for RABH bags and more than six years of filter life for PJBH in process filters where a conservative ACR was used.

The air- to- cloth ratio plays a major role in the performance of PJBH/RABH and it is of utmost importance to specify the ACR you want for your PJBH/RABH. Often, the plants unnecessarily draw more air though the PJBH/RABH due to unavailability of devices for controlling the air flow. Be aware of the flow for which the RABH/PJBH is designed and control it to the designed value, to obtain best performance.

Power saving methods to keep ACR in control
Use on demand cleaning: Use a DP switch to measure the differential pressure drop across the PJBH/RABH and adjust your cleaning cycle accordingly. Maintaining operation within a close range of DP across the plant will lead to stable operating and lower cost of power as well as efficiency.

Use dryer for compressed air: The moisture present in atmospheric air condenses when the air is allowed to expand inside the bag filter. This may make the filter wet at the neck and up to a certain length which then reduces the useful filter area and increases ACR. Therefore, use a dryer for compressed air. The compressed air going into the filter must not have oil/moisture more than 10 ppm.

Use dampers at fan inlet: Process variations results in variation in vent volumes. If there are no dampers to control the flow, the centrifugal fan may draw excess air and push the ACR to very high levels. Dampers are used to create an artificial pressure drop and maintain flow within limits.

Use variable frequency drives: Use variable frequency drives if the process varies frequently. VFDs regulate fan speed and reduce air flow through the unit when it is not desirable to draw large gas volumes. They save energy as well as keeps the ACR within limits.

PJBH/RABHs are positive filtration devices and when designed properly, give you perfect solutions for product recovery/ air pollution control. By specifying or knowing the designed ACR for a particular unit and maintaining the same, you can reap great benefits and derive optimum performance from these units. Insist on knowing these values and have measuring devices in the plant so you can ensure that the operating ACR is as per design. This will help you assess if there are any problems in your process and can also help you save precious energy.

If you become too conservative then your equipment costs rise very high, whereas if you are too aggressive and design equipment with high ACR, there may be performance issues.

Rajendra Kumar Yadav,
Managing Director, Gulmohar Filtech.
rajendra.yadav@gulmohargroup.com

Technology

ARAPL Reports 175% EBITDA Growth, Expands Global Robotics Footprint

Affordable Robotic & Automation posts strong Q2 and H1 FY26 results driven by innovation and overseas orders

Published

on

By

Shares

Affordable Robotic & Automation Limited (ARAPL), India’s first listed robotics firm and a pioneer in industrial automation and smart robotic solutions, has reported robust financial results for the second quarter and half year ended September 30, 2025.
The company achieved a 175 per cent year-on-year rise in standalone EBITDA and strong revenue growth across its automation and robotics segments. The Board of Directors approved the unaudited financial results on October 10, 2025.

Key Highlights – Q2 FY2026
• Strong momentum across core automation and robotics divisions
• Secured the first order for the Atlas AC2000, an autonomous truck loading and unloading forklift, from a leading US logistics player
• Rebranded its RaaS product line as Humro (Human + Robot), symbolising collaborative automation between people and machines
• Expanded its Humro range in global warehouse automation markets
• Continued investment in deep-tech innovations, including AI-based route optimisation, autonomy kits, vehicle controllers, and digital twins
Global Milestone: First Atlas AC2000 Order in the US

ARAPL’s US-based subsidiary, ARAPL RaaS (Humro), received its first order for the next-generation Atlas AC2000 autonomous forklift from a leading logistics company. Following successful prototype trials, the client placed an order for two robots valued at Rs 36 million under a three-year lease. The project opens opportunities for scaling up to 15–16 robots per site across 15 US warehouses within two years.
The product addresses an untapped market of 10 million loading docks across 21,000 warehouses in the US, positioning ARAPL for exponential growth.

Financial Performance – Q2 FY2026 (Standalone)
Net Revenue: Rs 25.7587 million, up 37 per cent quarter-on-quarter
EBITDA: Rs 5.9632 million, up 396 per cent QoQ
Profit Before Tax: Rs 4.3808 million, compared to a Rs 360.46 lakh loss in Q1
Profit After Tax: Rs 4.1854 lakh, representing 216 per cent QoQ growth
On a half-year basis, ARAPL reported a 175 per cent rise in EBITDA and returned to profitability with Rs 58.08 lakh PAT, highlighting strong operational efficiency and improved contribution from core businesses.
Consolidated Performance – Q2 FY2026
Net Revenue: Rs 29.566 million, up 57% QoQ
EBITDA: Rs 6.2608 million, up 418 per cent QoQ
Profit After Tax: Rs 4.5672 million, marking a 224 per cent QoQ improvement

Milind Padole, Managing Director, ARAPL said, “Our Q2 results reflect the success of our innovation-led growth strategy and the growing global confidence in ARAPL’s technology. The Atlas AC2000 order marks a defining milestone that validates our engineering strength and accelerates our global expansion. With a healthy order book and continued investment in AI and autonomous systems, ARAPL is positioned to lead the next phase of intelligent industrial transformation.”
Founded in 2005 and headquartered in Pune, Affordable Robotic & Automation Ltd (ARAPL) delivers turnkey robotic and automation solutions across automotive, general manufacturing, and government sectors. Its offerings include robotic welding, automated inspection, assembly automation, automated parking systems, and autonomous driverless forklifts.
ARAPL operates five advanced plants in Pune spanning 350,000 sq ft, supported by over 400 engineers in India and seven team members in the US. The company also maintains facilities in North Carolina and California, and service centres in Faridabad, Mumbai, and San Francisco.

Continue Reading

Technology

M.E. Energy Bags Rs 490 Mn Order for Waste Heat Recovery Project

Second major EPC contract from Ferro Alloys sector strengthens company’s growth

Published

on

By

Shares

M.E. Energy Pvt Ltd, a wholly owned subsidiary of Kilburn Engineering Ltd and a leading Indian engineering company specialising in energy recovery and cost reduction, has secured its second consecutive major order worth Rs 490 million in the Ferro Alloys sector. The order covers the Engineering, Procurement and Construction (EPC) of a 12 MW Waste Heat Recovery Based Power Plant (WHRPP).

This repeat order underscores the Ferro Alloys industry’s confidence in M.E. Energy’s expertise in delivering efficient and sustainable energy solutions for high-temperature process industries. The project aims to enhance energy efficiency and reduce carbon emissions by converting waste heat into clean power.

“Securing another project in the Ferro Alloys segment reinforces our strong technical credibility. It’s a proud moment as we continue helping our clients achieve sustainability and cost efficiency through innovative waste heat recovery systems,” said K. Vijaysanker Kartha, Managing Director, M.E. Energy Pvt Ltd.

“M.E. Energy’s expansion into sectors such as cement and ferro alloys is yielding solid results. We remain confident of sustained success as we deepen our presence in steel and carbon black industries. These achievements reaffirm our focus on innovation, technology, and energy efficiency,” added Amritanshu Khaitan, Director, Kilburn Engineering Ltd

With this latest order, M.E. Energy has already surpassed its total external order bookings from the previous financial year, recording Rs 138 crore so far in FY26. The company anticipates further growth in the second half, supported by a robust project pipeline and the rising adoption of waste heat recovery technologies across industries.

The development marks continued momentum towards FY27, strengthening M.E. Energy’s position as a leading player in industrial energy optimisation.

Continue Reading

Technology

NTPC Green Energy Partners with Japan’s ENEOS for Green Fuel Exports

NGEL signs MoU with ENEOS to supply green methanol and hydrogen derivatives

Published

on

By

Shares

NTPC Green Energy Limited (NGEL), a subsidiary of NTPC Limited, has signed a Memorandum of Understanding (MoU) with Japan’s ENEOS Corporation to explore a potential agreement for the supply of green methanol and hydrogen derivative products.

The MoU was exchanged on 10 October 2025 during the World Expo 2025 in Osaka, Japan. It marks a major step towards global collaboration in clean energy and decarbonisation.
The partnership centres on NGEL’s upcoming Green Hydrogen Hub at Pudimadaka in Andhra Pradesh. Spread across 1,200 acres, the integrated facility is being developed for large-scale green chemical production and exports.

By aligning ENEOS’s demand for hydrogen derivatives with NGEL’s renewable energy initiatives, the collaboration aims to accelerate low-carbon energy transitions. It also supports NGEL’s target of achieving a 60 GW renewable energy portfolio by 2032, reinforcing its commitment to India’s green energy ambitions and the global net-zero agenda.

Continue Reading

Trending News