Connect with us

Technology

Challenges while utilising hazardous industrial waste

Published

on

Shares

Cement industry in the existing scenario can play an important role in processing of hazardous waste in its kiln when no other cost effective option is available. Milind Murumkar takes a stock of the situation.

Waste management is a growing concern for India. The Government of India is attempting to tackle this challenge through a number of initiatives, including the Clean India Mission. Cement industry can certainly play a key role in promoting better waste management practices & create a win-win situation by working with urban local bodies on waste segregation and management of municipal solid waste. Substantial fractions of industrial, commercial, domestic and other wastes contain materials that have the potential for use as an alternative raw material or as a supplementary fuel for energy recovery in cement kilns.

Co-processing is a proven sustainable development concept that reduces dependency on natural resources, reduces pollution and landfill space, thus contributing to reducing the environmental footprint. Co-processing is also based on the principles of industrial ecology, which considers the best features of the flow of information, materials, and energy of biological ecosystems, with the aim of improving the exchange of these essential resources in the industrial world.

This will be possible only when there will be appropriate will and proper facility in cement plants to process the non-homogeneous waste material into uniform quality AFR whether it is segregated municipal solid waste, waste from industrial sectors like-machinery parts making industry, forging industry, paint industry, FMCG, petrochemical, pharma industries, etc.

Cement industry in view of high temperature profiles that are available in their kiln system offers an excellent co-processing facility that can be utilised for management of any kind of waste. The best benefit of co-processing of different type of waste in the kiln system is a preferred option that helps in utilisation many waste materials without leaving any foot print on the environment and also on the product quality. There have been dramatic improvements in regulatory frame work and Pollution Control Authorities are also mandating for higher utilisation of waste in cement kilns. The waste generator are also satisfied with the facilities created by cement Plants for disposal of their waste in scientific and sustainable manner.

The concept of hand holding by the manufactures, waste generators and the authorities have greatly improved the waste utilisation in cement plants. Movement of waste from one state to other state, giving long term consents, authorising the transporters, etc. are some of the positive steps taken in this direction.On the other hand, the waste generators as well as the plant users are also gearing up by upgrading their facilities for improving the usage. All these steps will certainly help in avoiding land filling and shift to resource recovery in next two to three years through co-processing route.

The dream of the cement manufacturers is to raise their thermal substitution rate from present level of around 4 per cent to a level of 20 per cent in 2025, which is a very ambitious and the above initiatives can certainly help the industry. In order to have a step jump in utilisation the support of bodies like CII, CMA, etc. can boost the awareness and understanding in the waste generators and the community.In co-processing, the cement kiln in the cement manufacturing process has features that are suited for co-processing. These include:

Different feed points for AFR introduction in the cement process. Feed points can be via the main burner, secondary burners, pre-calciner burners, kiln inlet.

Alkaline conditions and intensive mixing in the kiln favours the absorption of volatile components from the gas phase. This results in low emissions of sulphur dioxide, hydrochloric acid (HCl) and most heavy metals.

The clinker reaction temperature at 1,450 degree Centigrade allows incorporation of ashes, in particular, the chemical binding of metals to the clinker

Cement kiln operates under negative pressure or draught, thus preventing the generation of fugitive emission.

With the large mass of clinker processed inside the cement kiln, there is a presence of a huge thermal inertia thereby eliminating the possibility of rapid swings in temperature

Carbon dioxide (CO2) emissions from cement manufacturing are generated by two mechanisms.

1.Combustion of fuels to generate process energy which releases good quantities of CO2.

2.Substantial quantities of CO2 are also generated through calcining of limestone or other calcareous material. This calcining process thermally decomposes CaCO3 to CaO and CO2

Emissions of metal compounds from cement grouped into three general classes: volatile metals, including mercury (Hg) and thallium (Tl); semi-volatile metals, including antimony (Sb), cadmium (Cd), lead (Pb), selenium (Se), zinc (Zn), potassium (K), and sodium (Na); and refractory or non-volatile metals, including barium (Ba),chromium (Cr), arsenic (As), nickel (Ni), vanadium (V), manganese (Mn), copper (Cu), and silver (Ag).

Although the partitioning of these metal groups is affected by kiln operating conditions, the refractory metals tend to concentrate in the clinker, while the volatile and semi-volatile metals tend to be discharged through the primary exhaust stack and the bypass stack, respectively.

Requirements for undertaking co-processing are: Best available technology for air pollution prevention and control with continuous emission monitoring

Exit gas conditioning/cooling and temperature less than 200 degree Celsius, in control devices to prevent dioxin formation.
Adequate emergency and safety equipment and Procedure and regular training.
Safe and sound receiving, storage, processing and feeding of hazardous wastes.

The operator of the co-processing plant should develop a waste evaluation procedure to assess health and safety of workers and public, plant emissions, operations and market dynamics.

Market information on waste availability is key for our service selling business. If parameters are not clearly defined, market surveys can be too vague.

The objective of a market survey is to:

  • Gather, collect, and document information from an identified waste stream
  • Compile knowledge of a waste stream
  • Quantify opportunities of a selected waste stream
  • Help in the AFR Marketing and Business Planning process
  • Assess current disposal routes and disposal practices of wastes, including perception of present customers. An effective AFR market survey requires resources for implementation. For a focused market survey, a general knowledge of the waste market is needed. survey. The process needs to be clearly defined by the AFR manager before the start of the market research.Waste market survey (Rough qualification)

For cement kiln usage the following industrial segments have high-priority:

  • Automotive industry
  • Chemical industry
  • Electronic and photographic industry
  • Food industry
  • Paints and related industries
  • Petroleum industry
  • Pharmaceuticals and cosmetics industry
  • Plastics industry
  • Tires industry

The following industries may be important, depending on their area of activity

  • Agricultural industry
  • Leather products
  • Mining, construction, quarrying
  • Wood and related industry

Moreover the following issues are looked at before selecting a waste stream,

  • Material profile and availability
  • Generating process
  • The regulatory situation
  • The competition and treatment alternatives
  • The issues the cement plant could have with the stream

Waste generators should provide information on characteristics, generating process, geographic availability, regulatory/legislative disposition, specific producers, volumes, prices, disposal alternative method and impacts/fits with the cement process per each waste type. Furthermore it should capture competitive information, the basic industry economics and the trends and events impacting the waste industry.

The waste generators requires a cement plant that can offer a Total service strategy (TSS) which means understanding the waste customer’s problem and offering all required services to solve this problem, either through internal activities or in coordination with third-party-services (e.g. transport, chemical analysis, cleaning, etc.).

AFR quality control in a cement plant plays a vital role. The cement plant needs to address if it…

  • Is aligned with the local legal framework.
  • Is suitable for the Health and Safety of all personnel (including employees, contractors,Sub-contractors and visitors)
  • Fits the process requirements of the cement production process.
  • Fits the commercial agreements.

India is primarily a cement producer. Manufacturing of cement requires stable inputs of raw material of a certain composition to reach stable output qualities.Only certain waste types can be accepted and the timing of inputs must be aligned. An AFR Quality Control Scheme is absolutely necessary to minimise and control all possible risks associated with AFRs. The AFR Quality Control Scheme applies to waste materials prior to delivery, at time of delivery, during handling & storage phases and even through to feeding into the kiln.

As cement and AFR are very different, very different key success factors are present, too.These factors are industry specific, i.e. the cement industry as newcomer in the waste business needs to adapt to these key success factors.

The main success factors are:

  • Customer orientation
  • Specialised service portfolio
  • Constantly adapted product / service portfolio
  • Brand image and recognised corporate image
  • Lobbying and relationship management

It is necessary to recognise that a waste generator is a customer (we are selling a service to the waste generator) and not a supplier is sometimes a hard learned lesson for a cement plant. But experience has shown that not paying attention to the above, business success factors will slow down or stop the AFR progress.

ABOUT THE AUTHOR:
Milind Murumkar is an Advisor & Consultant for AFR. He has been associated with Dalmia Group, Vicat Group, Orient Cement, Shree Digvijay Cement, Toshaly Cement Companies as an advisor and consultant. He can be contacted at: +919100960039 | +919004476333 or Email: milind.murumkar@gmail.com.

One needs to describe the waste, its form, characteristics, contaminants, legal status, additional storing and handling equipment, etc…. like

  • Is this material available in different forms from different generators?
  • Is this material susceptible to self-ignition?
  • Is this material explosive and if so then in what conditions?
  • At what temperature does this material melt/freeze?
  • Does this waste agglomerate?
  • What is the general character of the material i.e. is it wet, dry, sticky, dusty, lumpy, etc?
  • What is the viscosity of the material? Is it solid, semi solid or liquid?
  • What is the flash point?
  • What is the pH of the material?
  • What is the angle of repose?
  • What is the granulometry or particle size?
  • What is the approximate percentage of the major oxides for cement manufacture?
  • What is the heavy metal content?
  • What is the content of titanium, zinc and manganese?
  • What is the chlorine/halogen content of this material?
  • What is the sulfur content of this material?
  • What is the moisture content?
  • What is the loss on ignition?
  • What is the heat content in BTUs per pound?
  • What is the ash content?
  • Is this material a solid waste?
  • Is the material a hazardous waste? If so, how did it become so classified?
  • Is the material considered a municipal waste?
  • Is the material a regulated biohazard?
  • Are there other regulations covering the management of this waste?
  • Does it require a placard for transportation?
  • Is MSDS available?
  • What PPE would be required?

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Economy & Market

From Vision to Action: Fornnax Global Growth Strategy for 2026

Published

on

By

Shares

Jignesh Kundaria, Director & CEO, Fornnax Recycling Technology

As 2026 begins, Fornnax is accelerating its global growth through strategic expansion, large-scale export-led installations, and technology-driven innovation across multiple recycling streams. Backed by manufacturing scale-up and a strong people-first culture, the company aims to lead sustainable, high-capacity recycling solutions worldwide.

As 2026 begins, Fornnax stands at a pivotal stage in its growth journey. Over the past few years, the company has built a strong foundation rooted in engineering excellence, innovation, and a firm commitment to sustainable recycling. The focus ahead is clear: to grow faster, stronger, and on a truly global scale.

“Our 2026 strategy is driven by four key priorities,” explains Mr. Jignesh Kundaria, Director & CEO of Fornnax.

First, Global Expansion

We will strengthen our presence in major markets such as Europe, Australia, and the GCC, while continuing to grow across our existing regions. By aligning with local regulations and customer requirements, we aim to establish ourselves as a trusted global partner for advanced recycling solutions.

A major milestone in this journey will be export-led global installations. In 2026, we will commission Europe’s highest-capacity shredding line, reinforcing our leadership in high-capacity recycling solutions.

Second, Product Innovation and Technology Leadership

Innovation remains at the heart of our vision to become a global leader in recycling technology by 2030. Our focus is on developing solutions that are state-of-the-art, economical, efficient, reliable, and environmentally responsible.

Building on a decade-long legacy in tyre recycling, we have expanded our portfolio into new recycling applications, including municipal solid waste (MSW), e-waste, cable, and aluminium recycling. This diversification has already created strong momentum across the industry, marked by key milestones scheduled to become operational this year, such as:

  • Installation of India’s largest e-waste and cable recycling line.
  • Commissioning of a high-capacity MSW RDF recycling line.

“Sustainable growth must be scalable and profitable,” emphasizes Mr. Kundaria. In 2026, Fornnax will complete Phase One of our capacity expansion by establishing the world’s largest shredding equipment manufacturing facility. This 23-acre manufacturing unit, scheduled for completion in July 2026, will significantly enhance our production capability and global delivery capacity.

Alongside this, we will continue to improve efficiency across manufacturing, supply chain, and service operations, while strengthening our service network across India, Australia, and Europe to ensure faster and more reliable customer support.

Finally: People and Culture

“People remain the foundation of Fornnax’s success. We will continue to invest in talent, leadership development, and a culture built on ownership, collaboration, and continuous improvement,” states Mr. Kundaria.

With a strong commitment to sustainability in everything we do, our ambition is not only to grow our business, but also to actively support the circular economy and contribute to a cleaner, more sustainable future.

Guided by a shared vision and disciplined execution, 2026 is set to be a defining year for us, driven by innovation across diverse recycling applications, large-scale global installations, and manufacturing excellence.

Continue Reading

Concrete

Technology plays a critical role in achieving our goals

Published

on

By

Shares

Arasu Shanmugam, Director and CEO-India, IFGL, discusses the diversification of the refractory sector into the cement industry with sustainable and innovative solutions, including green refractories and advanced technologies like shotcrete.

Tell us about your company, it being India’s first refractory all Indian MNC.
IFGL Refractories has traditionally focused on the steel industry. However, as part of our diversification strategy, we decided to expand into the cement sector a year ago, offering a comprehensive range of solutions. These solutions cover the entire process, from the preheater stage to the cooler. On the product side, we provide a full range, including alumina bricks, monolithics, castables, and basic refractories.
In a remarkably short span of time, we have built the capability to offer complete solutions to the cement industry using our own products. Although the cement segment is new for IFGL, the team handling this business vertical has 30 years of experience in the cement industry. This expertise has been instrumental in establishing a brand-new greenfield project for alumina bricks, which is now operational. Since production began in May, we are fully booked for the next six months, with orders extending until May 2025. This demonstrates the credibility we have quickly established, driven by our team’s experience and the company’s agility, which has been a core strength for us in the steel industry and will now benefit our cement initiatives.
As a 100 per cent Indian-owned multinational company, IFGL stands out in the refractory sector, where most leading players providing cement solutions are foreign-owned. We are listed on the stock exchange and have a global footprint, including plants in the United Kingdom, where we are the largest refractory producer, thanks to our operations with Sheffield Refractories and Monocon. Additionally, we have a plant in the United States that produces state-of-the-art black refractories for critical steel applications, a plant in Germany providing filtering solutions for the foundry sector, and a base in China, ensuring secure access to high-quality raw materials.
China, as a major source of pure raw materials for refractories, is critical to the global supply chain. We have strategically developed our own base there, ensuring both raw material security and technological advancements. For instance, Sheffield Refractories is a leader in cutting-edge shotcreting technology, which is particularly relevant to the cement industry. Since downtime in cement plants incurs costs far greater than refractory expenses, this technology, which enables rapid repairs and quicker return to production, is a game-changer. Leading cement manufacturers in the country have already expressed significant interest in this service, which we plan to launch in March 2025.
With this strong foundation, we are entering the cement industry with confidence and a commitment to delivering innovative and efficient solutions.
Could you share any differences you’ve observed in business operations between regions like Europe, India, and China? How do their functionalities and approaches vary?
When it comes to business functionality, Europe is unfortunately a shrinking market. There is a noticeable lack of enthusiasm, and companies there often face challenges in forming partnerships with vendors. In contrast, India presents an evolving scenario where close partnerships with vendors have become a key trend. About 15 years ago, refractory suppliers were viewed merely as vendors supplying commodities. Today, however, they are integral to the customer’s value creation chain.
We now have a deep understanding of our customers’ process variations and advancements. This integration allows us to align our refractory solutions with their evolving processes, strengthening our role as a value chain partner. This collaborative approach is a major differentiator, and I don’t see it happening anywhere else on the same scale. Additionally, India is the only region globally experiencing significant growth. As a result, international players are increasingly looking at India as a potential market for expansion. Given this, we take pride in being an Indian company for over four decades and aim to contribute to making Aatma Nirbhar Bharat (self-reliant India) a reality.
Moving on to the net-zero mission, it’s crucial to discuss our contributions to sustainability in the cement industry. Traditionally, we focused on providing burnt bricks, which require significant fuel consumption during firing and result in higher greenhouse gas emissions, particularly CO2. With the introduction of Sheffield Refractories’ green technology, we are now promoting the use of green refractories in cement production. Increasing the share of green refractories naturally reduces CO2 emissions per ton of clinker produced.
Our honourable Prime Minister has set the goal of achieving net-zero emissions by 2070. We are committed to being key enablers of this vision by expanding the use of green refractories and providing sustainable solutions to the cement industry, reducing reliance on burnt refractories.

Technology is advancing rapidly. What role does it play in helping you achieve your targets and support the cement industry?
Technology plays a critical role in achieving our goals and supporting the cement industry. As I mentioned earlier, the reduction in specific refractory consumption is driven by two key factors: refining customer processes and enhancing refractory quality. By working closely as partners with our customers, we gain a deeper understanding of their evolving needs, enabling us to continuously innovate. For example, in November 2022, we established a state-of-the-art research centre in India for IFGL, something we didn’t have before.
The primary objective of this centre is to leverage in-house technology to enhance the utilisation of recycled materials in manufacturing our products. By increasing the proportion of recycled materials, we reduce the depletion of natural resources and greenhouse gas emissions. In essence, our focus is on developing sustainable, green refractories while promoting circularity in our business processes. This multi-faceted approach ensures we contribute to environmental sustainability while meeting the industry’s demands.

Of course, this all sounds promising, but there must be challenges you’re facing along the way. Could you elaborate on those?
One challenge we face is related to India’s mineral resources. For instance, there are oxide deposits in the Saurashtra region of Gujarat, but unfortunately, they contain a higher percentage of impurities. On the magnesite side, India has deposits in three regions: Salem in Tamil Nadu, Almora in Uttarakhand, and Jammu. However, these magnesite deposits also have impurities. We believe the government should take up research and development initiatives to beneficiate these minerals, which are abundantly available in India, and make them suitable for producing high-end refractories. This task is beyond the capacity of an individual refractories company and requires focused policy intervention. While the government is undertaking several initiatives, beneficiation of minerals like Indian magnesite and Indian oxide needs to become a key area of focus.
Another crucial policy support we require is recognising the importance of refractories in industrial production. The reality is that without refractories, not even a single kilogram of steel or cement can be produced. Despite this, refractories are not included in the list of core industries. We urge the government to designate refractories as a core industry, which would ensure dedicated focus, including R&D allocations for initiatives like raw material beneficiation. At IFGL, we are taking proactive steps to address some of these challenges. For instance, we own Sheffield Refractories, a global leader in shotcrete technology. We are bringing this technology to India, with implementation planned from March onwards. Additionally, our partnership with Marvel Refractories in China enables us to leverage their expertise in providing high-quality refractories for steel and cement industries worldwide.
While we are making significant efforts at our level, policy support from the government—such as recognising refractories as a core industry and fostering research for local raw material beneficiation—would accelerate progress. This combined effort would greatly enhance India’s capability to produce high-end refractories and meet the growing demands of critical industries.

Could you share your opinion on the journey toward achieving net-zero emissions? How do you envision this journey unfolding?
The journey toward net zero is progressing steadily. For instance, even at this conference, we can observe the commitment as a country toward this goal. Achieving net zero involves having a clear starting point, a defined objective, and a pace to progress. I believe we are already moving at an impressive speed toward realising this goal. One example is the significant reduction in energy consumption per ton of clinker, which has halved over the past 7–8 years—a remarkable achievement.
Another critical aspect is the emphasis on circularity in the cement industry. The use of gypsum, which is a byproduct of the fertiliser and chemical industries, as well as fly ash generated by the power industry, has been effectively incorporated into cement production. Additionally, a recent advancement involves the use of calcined clay as an active component in cement. I am particularly encouraged by discussions around incorporating 12 per cent to 15 per cent limestone into the mix without the need for burning, which does not compromise the quality of the final product. These strategies demonstrate the cement industry’s constructive and innovative approach toward achieving net-zero emissions. The pace at which these advancements are being adopted is highly encouraging, and I believe we are on a fast track to reaching this critical milestone.

– Kanika Mathur

Continue Reading

Technology

ARAPL Reports 175% EBITDA Growth, Expands Global Robotics Footprint

Affordable Robotic & Automation posts strong Q2 and H1 FY26 results driven by innovation and overseas orders

Published

on

By

Shares

Affordable Robotic & Automation Limited (ARAPL), India’s first listed robotics firm and a pioneer in industrial automation and smart robotic solutions, has reported robust financial results for the second quarter and half year ended September 30, 2025.
The company achieved a 175 per cent year-on-year rise in standalone EBITDA and strong revenue growth across its automation and robotics segments. The Board of Directors approved the unaudited financial results on October 10, 2025.

Key Highlights – Q2 FY2026
• Strong momentum across core automation and robotics divisions
• Secured the first order for the Atlas AC2000, an autonomous truck loading and unloading forklift, from a leading US logistics player
• Rebranded its RaaS product line as Humro (Human + Robot), symbolising collaborative automation between people and machines
• Expanded its Humro range in global warehouse automation markets
• Continued investment in deep-tech innovations, including AI-based route optimisation, autonomy kits, vehicle controllers, and digital twins
Global Milestone: First Atlas AC2000 Order in the US

ARAPL’s US-based subsidiary, ARAPL RaaS (Humro), received its first order for the next-generation Atlas AC2000 autonomous forklift from a leading logistics company. Following successful prototype trials, the client placed an order for two robots valued at Rs 36 million under a three-year lease. The project opens opportunities for scaling up to 15–16 robots per site across 15 US warehouses within two years.
The product addresses an untapped market of 10 million loading docks across 21,000 warehouses in the US, positioning ARAPL for exponential growth.

Financial Performance – Q2 FY2026 (Standalone)
Net Revenue: Rs 25.7587 million, up 37 per cent quarter-on-quarter
EBITDA: Rs 5.9632 million, up 396 per cent QoQ
Profit Before Tax: Rs 4.3808 million, compared to a Rs 360.46 lakh loss in Q1
Profit After Tax: Rs 4.1854 lakh, representing 216 per cent QoQ growth
On a half-year basis, ARAPL reported a 175 per cent rise in EBITDA and returned to profitability with Rs 58.08 lakh PAT, highlighting strong operational efficiency and improved contribution from core businesses.
Consolidated Performance – Q2 FY2026
Net Revenue: Rs 29.566 million, up 57% QoQ
EBITDA: Rs 6.2608 million, up 418 per cent QoQ
Profit After Tax: Rs 4.5672 million, marking a 224 per cent QoQ improvement

Milind Padole, Managing Director, ARAPL said, “Our Q2 results reflect the success of our innovation-led growth strategy and the growing global confidence in ARAPL’s technology. The Atlas AC2000 order marks a defining milestone that validates our engineering strength and accelerates our global expansion. With a healthy order book and continued investment in AI and autonomous systems, ARAPL is positioned to lead the next phase of intelligent industrial transformation.”
Founded in 2005 and headquartered in Pune, Affordable Robotic & Automation Ltd (ARAPL) delivers turnkey robotic and automation solutions across automotive, general manufacturing, and government sectors. Its offerings include robotic welding, automated inspection, assembly automation, automated parking systems, and autonomous driverless forklifts.
ARAPL operates five advanced plants in Pune spanning 350,000 sq ft, supported by over 400 engineers in India and seven team members in the US. The company also maintains facilities in North Carolina and California, and service centres in Faridabad, Mumbai, and San Francisco.

Continue Reading

Trending News