Connect with us

Product development

Shhh! Robots are here!

Published

on

Shares

Automation and robotics are not new to the Indian industry, but judicious use of human beings along with automation is the call of the day. thyssenkrupp shares its experience about laboratory automation.

Silently, the people working in modern Indian cement plants have started welcoming their new colleague – a robot that works 24 hours consistently without any break. In spite of constant whizzing around, the new employee is not complaining or even sweating. It is ensuring that the produced cement meets their customer’s expectation again and again.

In a way, they ensure the survival of their company by assuring that their clients would be delighted with the quality and consistency of their cement. Most of these (robotic laboratory automation systems) have been commissioned in the last decade. But between the manual laboratories from the past and the state-of-the-art robotic laboratories, do the cement producers have choices? Can they choose a fully automated solution without a robot? Can the existing plants justify investment in a new laboratory automation system? Let’s look at some answers. But first, a quick status check!

History
As per CMA India, after the decontrol in 1982, the cement industry grew manifolds to 61.74 MT in just six years. According to www.cmaindia.org, it took eight decades to reach the first 100 MTPA, while the next hundred took 11 years and the third hundred was added in just three years. And, buoyed by the country’s high GDP growth, by 2014, India became number two, after China.

Nevertheless, with an estimated 400 MT of annual capacity, about 10 per cent cement is produced by plants that use automated laboratories (AL). Though we have 100+ years of history, most of the ALs have come up in the last 10 years. During this period, the cement industry demonstrated that it can imbibe new technologies and perform better than international counterparts. Clearly, this attracted many international players.

Trends driving automation in quality
As the discerning buyers increase their focus on consistency in quality of cement, they have started installing their own small laboratories. This, in turn, has made the cement producers look for parameters that correlate better to the client’s requirement – soundness, initial and final strengths, workability, water demand, etc. For example, focusing on the ratio of clinker phases C3S and C2S to achieve 3-day or 28-day strength will ensure that we save on grinding costs later.

This focus led to producers investing in XRD analysers. Further, as the equipment sizes or throughput increased, it became important for them to sample at regular and frequent intervals. This meant – one hourly sample representing 400 to 600 tonnes of material. And then, the use of alternative fuels clearly impacts cement production. For example, the sulphur in pet coke could result in higher grindability of clinker, unless it is managed. Also, the missing ash-bearing content will lead to lesser production due to no or reduced ash. It is, hence, imperative that such new tech?nologies are used to keep quality on a tight leash.

The new normal
Traditionally, we use screw samplers u motorised or hand-operated – to collect material from the process. It is, then, hand-carried to the laboratory by a sample boy. The laboratory operator uses a manual pulverising mill to grind it in a tungsten carbide or often steel, bowl to a fine powder. Then, he removes the heavy bowl and puts some of it into a pellet-making press, after adding a measured quantity of grinding aid-cum-binder.

The prepared pellet is (Figure 1) then, analysed by an X-ray analyser. The results of the analysis are used to change the raw material mix. The ratio of this mix is determined from the set targets of plant moduli, like LSF (lime saturation factor), AM (Alumina Modulus) and SM (Silica Modulus), or an oxide, like MgO. Similarly, control can be performed on the ratio of materials being fed into the clinker grinding mill.

Parallelly, a part of the original sample is used for particle sizing or permeability analysis. Another part is sent for building composite sample over the day. But, these procedures are from the era, where the main focus of quality control was only elemental or related to just chemistry. Currently, the world over, there is significant interest in analysing both major and minor mineral phases or mineralogy, using time-consuming and skill-dependent electron microscopy or the much faster and well-correlated diffractometer, supplemented with quantitative Rietveld analysis.

Figure 1

This helps them achieve the cement performance they promised and even identify minor phases that can reduce the production or even force a stoppage. The days of using the free lime channel in the existing XRF or using stand alone XRD analyser are over. This leaves out the bulk mineralogy of the sample.

And then, they also want their material to be sampled at the right time and brought to the laboratory as quickly as possible, at about 10 m/s. If the sample boys did this, they would possibly compete with Usain Bolt! That is, if they were not checking their smart phones during the manual sample transport.

Also, the separate milling and pressing machines are remnants of the past, when only chemistry and Bogue’s calculations were the order of the day. Today, latest low-energy combined mill-cum-press machines provide far more accurate dosing, grinding and pellet making, giving high repeatability in sample analysis. This is because of reduced human intervention. To recapitulate, in this section, we reviewed how we collected and processed samples since ages and what the current level of automation has to offer for consistency in quality. Let us now look at different levels of automation in a cement plant laboratory.

Levels of laboratory automation
Level 1:
Semi-Automatic sampling & Automatic Sample Preparation
Here, the material is sampled using a semi-automatic sampler. The sample remains in an attached air-tight sample collecting device till it is collected by a sample boy, who takes it to the central laboratory. At the laboratory, the sample is prepared in a fully automatic mill-cum-press. Thereafter, it is manually placed in an X-ray equipment for analysis. The results are read by an optional quality control software and then, it issues fresh set-points for weigh-feeders to control the mix of various materials. One could also use a belt conveyor to automatically move the sample pellet between the X-ray equipment and sample preparation equipment. Please refer Figure 2, POLAB 1 option.

Level 2: Automation of Sample Transportation & Automatic Sample Preparation
In this level, an automatic sampler and sending station collect material from the process over a defined period of time. Then, a statistically representative portion of it is sealed in a capsule and sent pneumatically to the central laboratory, where it is manually removed. After opening the sample carrier, part of it is fed into a combined mill-cum-press, which automatically returns a pellet. As in the previous case, another variation in this level is that the prepared pellet can be automatically sent to an X-ray equipment on a conveyor belt. After the analysis, the pellet is returned for breaking and cleaning the steel ring for reuse. Similar to level 1, the optional software reads the analysis data and sends fresh set points to the plant control system to modify the material feed rates based on set quality targets. Ref. Fig. 2 POLAB 2 option. Level 3: Automation of sample collection, tra?n?sport, preparation, sample handling at the laboratory

This level is the most advanced and complete sampling, sample transport, sample receipt and dosing, sample handling, sample preparation, particle sizing and composite sample formation is done untouched by human hand. Compared to level 2, the sample carrier is received by an automatic sample receiving system, which doses the sample for different purposes. A mandatory software manages all tasks and prioritises them apart from the mix control. It also has a repository of communication drivers to several analytical equipment. It can be implemented in several ways:

Robot-free: To keep the system simple, this version does not use a robot. Instead, it relies on a compact and interlaced design that suits a single integrated line or a clinker grinding facility. Though small in footprint, it packs formidable accuracy and speed of sample handling and preparation. With one automatic receiving station, one mill-cum-press, one composite store and an optional particle size analyser in a compact enclosure, it needs no supervision to automatically collect, prepare, analyse, a sample and send corrective set-points. Upto 8 samples per hour.

Robot-Single: Using a central robot, housed in an enclosure, the sample is deftly handled. The sample dosed by the automatic receiving system is promptly delivered to either a mill-cum-press, a composite sample container or the particle size analyser. Multiple sample preparation equipment and sample receivers can be implemented in a single system.Upto 24 samples per hour.

Robot-multiple & mobile: This is an innovative concept that allows the robots and humans to share a common workspace. With multiple low kinetic energy mobile robots, the system is flexible and can grow as the new lines are added. The receiving stations, sample preparation equipment, sample stores, analytical equipment, etc., can be laid out in different ways, providing flexibility to modify the arrangement later as the plant capacity gets augmented. This design is particularly suited to plants where multiple lines are envisaged over a few years. Ref. Fig. 2 POLAB 3 option.

Choosing the right levels of automation
While securing budget is important, one can decide the type or level of a system based on several factors, influencing the decision are listed below:
Size: As the throughput of the plant increases, the investment in and automation gets more justified. That is, every sample now represents many more tonnes of material. Therefore, timely correction of mix and a highly auto?mated system becomes imperative.

Integrated plant or a grinding unit: While a complete line entails the need of an automated system, some new clinker grinding units are showing an inclination towards the robotic options.

Know-how and skills: Modern cement plants rely on mineralogy as well as chemistry for quality control. However, a few plants still use a high-end XRD machine to just measure free lime, often due to lack of knowledge in mineralogy and its correlation to cement quality. Moreover, skills required or available in the plant to maintain laboratory automation must be evaluated and the suitable solution must be opted for.

Alternative fuels and special clinkers: Use of pet coke to optimise energy cost results will cause other issues like reduced production due to the reduced ash-bearing content. Or, the sulphur content causes higher C2S content, which in turn increases clinker grindability. On the other hand, making mineralised clinker demands advanced quality control to verify the increased rate of C3S formation at lower temperatures.

Plants opting for the semi-automatic system can upgrade them later. This means their investment can be spread over few years. But, how do we justify the capex?

Economic benefits of lab automation
While many believe investments in laboratory automation cannot be justified, ThyssenKrupp has published several papers[2] describing a financial model that translates the quality parameters into financial benefits. While a detailed review is beyond the purview of this article, a brief description is provided for the sake of brevity.

The following areas provide scope for reduction of costs:
The cost of raw mix:
Good quality control ensures smaller standard deviation of quality parameters. This, in turn, leads to less usage of expensive third-party additives/materials. To elucidate, higher standard deviation of LSF would mean more off-spec material. In order to offset this, costly high-grade limestone needs to be added. This increases the raw mix costs and on the other hand, LSF higher than targeted could result in more free lime. To correct this, one would then need to burn more fuel.

The cost of clinker: This depends on the cost of kiln feed fuel and electricity costs. A tight control will result in stable kiln operation, higher clinker volume and consequently lower cost of production per unit of clinker produced. While a complete line entails the need for an automated system, some clinker grinding units are inclined towards a robotic solution.

The cost of cement produced: Cement plants use advanced quality control to reduce clinker factor but increase the percentage of supplementary cementitious materials like fly ash or slag. For example, if the plant is able to keep the clinker reactive enough, a higher amount of fly ash could be added.

Kiln stoppages and cyclone blockages: Haeseli[1] used a POLAB? hot meal sampler to collect hot meal samples and analyse them for mineralogical composition. He discovered a correlation between clogging in the cyclones and concentration of spurrite and Ca-langbeinite in the hot meal. Maintaining their concentrations at safe levels, he achieved minimum clogging tendency and improved the kiln performance by quantitative XRD analysis.

To summarise, laboratory automation is the new standard and hence, let’s be ready to welcome a robot as your new colleague – a never-tiring robot! Different levels of complexity can be implemented, depending on the plant conditions and skills. Nevertheless, each level has a potential to reduce the cost of production and assure consistency. Therefore, careful selection of a system from a choice of semi-automatic to fully automatic or robot-free to multiple robots, based on plant need and availability of skills, is important. The selection can be justified by calculating the potential savings for years to come. Nevertheless, the Indian cement industry is in omnia paratus and the robots are here to stay!

(This article has been authored by Sudeep Sar, Associate Vice President, Laboratory Automation, thyssenkrupp Industries India).

References:
[1] Haeseli, U. (2010): Step by step application of phase analysis for process optimisation. – AXSCEM 2010, Karlsruhe
[2] Enders, M.; Sar, S. (2015): ROI of Lab Automation: Can we quantify economic effects of investment in quality? – NCB Seminar, 2015, New Delhi

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Economy & Market

Impactful Branding

Published

on

By

Shares

Advertising or branding is never about driving sales. It’s about creating brand awareness and recall. It’s about conveying the core values of your brand to your consumers. In this context, why is branding important for cement companies? As far as the customers are concerned cement is simply cement. It is precisely for this reason that branding, marketing and advertising of cement becomes crucial. Since the customer is unable to differentiate between the shades of grey, the onus of creating this awareness is carried by the brands. That explains the heavy marketing budgets, celebrity-centric commercials, emotion-invoking taglines and campaigns enunciating the many benefits of their offerings.
Marketing strategies of cement companies have undergone gradual transformation owing to the change in consumer behaviour. While TV commercials are high on humour and emotions to establish a fast connect with the customer, social media campaigns are focussed more on capturing the consumer’s attention in an over-crowded virtual world. Branding for cement companies has become a holistic growth strategy with quantifiable results. This has made brands opt for a mix package of traditional and new-age tools, such as social media. However, the hero of every marketing communication is the message, which encapsulates the unique selling points of the product. That after all is crux of the matter here.
While cement companies are effectively using marketing tools to reach out to the consumers, they need to strengthen the four Cs of the branding process – Consumer, Cost, Communication and Convenience. Putting up the right message, at the right time and at the right place for the right kind of customer demographic is of utmost importance in the long run. It is precisely for this reason that regional players are likely to have an upper hand as they rely on local language and cultural references to drive home the point. But modern marketing and branding domain is exponentially growing and it would be an interesting exercise to tabulate and analyse its impact on branding for cement.

Continue Reading

Concrete

Indian cement industry is well known for its energy and natural resource efficiency

Published

on

By

Shares

Dr Hitesh Sukhwal, Deputy General Manager – Environment, Udaipur Cement Works Limited (UCWL) takes us through the multifaceted efforts that the company has undertaken to keep emissions in check with the use of alternative sources of energy and carbon capture technology.

Tell us about the policies of your organisation for the betterment of the environment.
Caring for people is one of the core values of our JK Lakshmi Cement Limited. We strongly believe that we all together can make a difference. In all our units, we have taken measures to reduce carbon footprint, emissions and minimise the use of natural resources. Climate change and sustainable development are major global concerns. As a responsible corporate, we are committed with and doing consistent effort small or big to preserve and enrich the environment in and around our area of operations.
As far as environmental policies are concerned, we are committed to comply with all applicable laws, standards and regulations of regulatory bodies pertaining to the environment. We are consistently making efforts to integrate the environmental concerns into the mainstream of the operations. We are giving thrust upon natural resource conservation like limestone, gypsum, water and energy. We are utilising different kinds of alternative fuels and raw materials. Awareness among the employees and local people on environmental concerns is an integral part of our company. We are adopting best environmental practices aligned with sustainable development goals.
Udaipur Cement Works Limited is a subsidiary of the JK Lakshmi Cement Limited. Since its inception, the company is committed towards boosting sustainability through adopting the latest art of technology designs, resource efficient equipment and various in-house innovations. We are giving thrust upon renewable and clean energy sources for our cement manufacturing. Solar Power and Waste Heat Recovery based power are our key ingredients for total power mix.

What impact does cement production have on the environment? Elaborate the major areas affected.
The major environmental concern areas during cement production are air emissions through point and nonpoint sources due to plant operation and emissions from mining operation, from material transport, carbon emissions through process, transit, noise pollution, vibration during mining, natural resource depletion, loss of biodiversity and change in landscape.
India is the second largest cement producer in the world. The Indian cement industry is well known for its energy and natural resource efficiency worldwide. The Indian cement industry is a frontrunner for implementing significant technology measures to ensure a greener future.
The cement industry is an energy intensive and significant contributor to climate change. Cement production contributes greenhouse gases directly and indirectly into the atmosphere through calcination and use of fossil fuels in an energy form. The industry believes in a circular economy by utilising alternative fuels for making cement. Cement companies are focusing on major areas of energy efficiency by adoption of technology measures, clinker substitution by alternative raw material for cement making, alternative fuels and green and clean energy resources. These all efforts are being done towards environment protection and sustainable future.
Nowadays, almost all cement units have a dry manufacturing process for cement production, only a few exceptions where wet manufacturing processes are in operation. In the dry manufacturing process, water is used only for the purpose of machinery cooling, which is recirculated in a closed loop, thus, no polluted water is generated during the dry manufacturing process.
We should also accept the fact that modern life is impossible without cement. However, through state-of-the-art technology and innovations, it is possible to mitigate all kinds of pollution without harm to the environment and human beings.

Tell us about the impact blended cement creates on the environment and emission rate.
Our country started cement production in 1914. However, it was introduced in the year 1904 at a small scale, earlier. Initially, the manufacturing of cement was only for Ordinary Portland Cement (OPC). In the 1980s, the production of blended cement was introduced by replacing fly ash and blast furnace slag. The production of blended cement increased in the growth period and crossed the 50 per cent in the year 2004.
The manufacturing of blended cement results in substantial savings in the thermal and electrical energy consumption as well as saving of natural resources. The overall consumption of raw materials, fossil fuel such as coal, efficient burning and state-of-the-art technology in cement plants have resulted in the gradual reduction of emission of carbon dioxide (CO2). Later, the production of blended cement was increased in manifolds.
If we think about the growth of blended cement in the past few decades, we can understand how much quantity of , (fly ash and slag) consumed and saved natural resources like limestone and fossil fuel, which were anyhow disposed of and harmed the environment. This is the reason it is called green cement. Reduction in the clinker to cement ratio has the second highest emission reduction potential i.e., 37 per cent. The low carbon roadmap for cement industries can be achieved from blended cement. Portland Pozzolana Cement (PPC), Portland Slag Cement (PSC) and Composite Cement are already approved by the National Agency BIS.
As far as kilogram CO2 per ton of cement emission concerns, Portland Slag Cement (PSC) has a larger potential, other than PPC, Composite Cement etc. for carbon emission reduction. BIS approved 60 per cent slag and 35 per cent clinker in composition of PSC. Thus, clinker per centage is quite less in PSC composition compared to other blended cement. The manufacturing of blended cement directly reduces thermal and process emissions, which contribute high in overall emissions from the cement industry, and this cannot be addressed through adoption of energy efficiency measures.
In the coming times, the cement industry must relook for other blended cement options to achieve a low carbon emissions road map. In near future, availability of fly ash and slag in terms of quality and quantity will be reduced due to various government schemes for low carbon initiatives viz. enhance renewable energy sources, waste to energy plants etc.
Further, it is required to increase awareness among consumers, like individual home builders or large infrastructure projects, to adopt greener alternatives viz. PPC and PSC for more sustainable
resource utilisation.

What are the decarbonising efforts taken by your organisation?
India is the world’s second largest cement producer. Rapid growth of big infrastructure, low-cost housing (Pradhan Mantri Awas Yojna), smart cities project and urbanisation will create cement demand in future. Being an energy intensive industry, we are also focusing upon alternative and renewable energy sources for long-term sustainable business growth for cement production.
Presently, our focus is to improve efficiency of zero carbon electricity generation technology such as waste heat recovery power through process optimisation and by adopting technological innovations in WHR power systems. We are also increasing our capacity for WHR based power and solar power in the near future. Right now, we are sourcing about 50 per cent of our power requirement from clean and renewable energy sources i.e., zero carbon electricity generation technology. Usage of alternative fuel during co-processing in the cement manufacturing process is a viable and sustainable option. In our unit, we are utilising alternative raw material and fuel for reducing carbon emissions. We are also looking forward to green logistics for our product transport in nearby areas.
By reducing clinker – cement ratio, increasing production of PPC and PSC cement, utilisation of alternative raw materials like synthetic gypsum/chemical gypsum, Jarosite generated from other process industries, we can reduce carbon emissions from cement manufacturing process. Further, we are looking forward to generating onsite fossil free electricity generation facilities by increasing the capacity of WHR based power and ground mounted solar energy plants.
We can say energy is the prime requirement of the cement industry and renewable energy is one of the major sources, which provides an opportunity to make a clean, safe and infinite source of power which is affordable for the cement industry.

What are the current programmes run by your organisation for re-building the environment and reducing pollution?
We are working in different ways for environmental aspects. As I said, we strongly believe that we all together can make a difference. We focus on every environmental aspect directly / indirectly related to our operation and surroundings.
If we talk about air pollution in operation, every section of the operational unit is well equipped with state-of-the-art technology-based air pollution control equipment (BagHouse and ESP) to mitigate the dust pollution beyond the compliance standard. We use high class standard PTFE glass fibre filter bags in our bag houses. UCWL has installed the DeNOx system (SNCR) for abatement of NOx pollution within norms. The company has installed a 6 MW capacity Waste Heat Recovery based power plant that utilises waste heat of kiln i.e., green and clean energy source. Also, installed a 14.6 MW capacity solar power system in the form of a renewable energy source.
All material transfer points are equipped with a dust extraction system. Material is stored under a covered shed to avoid secondary fugitive dust emission sources. Finished product is stored in silos. Water spraying system are mounted with material handling point. Road vacuum sweeping machine deployed for housekeeping of paved area.
In mining, have deployed wet drill machine for drilling bore holes. Controlled blasting is carried out with optimum charge using Air Decking Technique with wooden spacers and non-electric detonator (NONEL) for control of noise, fly rock, vibration, and dust emission. No secondary blasting is being done. The boulders are broken by hydraulic rock breaker. Moreover, instead of road transport, we installed Overland Belt Conveying system for crushed limestone transport from mine lease area to cement plant. Thus omit an insignificant amount of greenhouse gas emissions due to material transport, which is otherwise emitted from combustion of fossil fuel in the transport system. All point emission sources (stacks) are well equipped with online continuous emission monitoring system (OCEMS) for measuring parameters like PM, SO2 and NOx for 24×7. OCEMS data are interfaced with SPCB and CPCB servers.
The company has done considerable work upon water conservation and certified at 2.76 times water positive. We installed a digital water flow metre for each abstraction point and digital ground water level recorder for measuring ground water level 24×7. All digital metres and level recorders are monitored by an in-house designed IoT based dashboard. Through this live dashboard, we can assess the impact of rainwater harvesting (RWH) and ground water monitoring.
All points of domestic sewage are well connected with Sewage Treatment Plant (STP) and treated water is being utilised in industrial cooling purposes, green belt development and in dust suppression. Effluent Treatment Plant (ETP) installed for mine’s workshop. Treated water is reused in washing activity. The unit maintains Zero Liquid Discharge (ZLD).
Our unit has done extensive plantations of native and pollution tolerant species in industrial premises and mine lease areas. Moreover, we are not confined to our industrial boundary for plantation. We organised seedling distribution camps in our surrounding areas. We involve our stakeholders, too, for our plantation drive. UCWL has also extended its services under Corporate Social Responsibility for betterment of the environment in its surrounding. We conduct awareness programs for employees and stakeholders. We have banned Single Use Plastic (SUP) in our premises. In our industrial township, we have implemented a solid waste management system for our all households, guest house and bachelor hostel. A complete process of segregated waste (dry and wet) door to door collection systems is well established.

Tell us about the efforts taken by your organisation to better the environment in and around the manufacturing unit.
UCWL has invested capital in various environmental management and protection projects like installed DeNOx (SNCR) system, strengthening green belt development in and out of industrial premises, installed high class pollution control equipment, ground-mounted solar power plant etc.
The company has taken up various energy conservation projects like, installed VFD to reduce power consumption, improve efficiency of WHR power generation by installing additional economiser tubes and AI-based process optimisation systems. Further, we are going to increase WHR power generation capacity under our upcoming expansion project. UCWL promotes rainwater harvesting for augmentation of the ground water resource. Various scientifically based WHR structures are installed in plant premises and mine lease areas. About 80 per cent of present water requirement is being fulfilled by harvested rainwater sourced from Mine’s Pit. We are also looking forward towards green transport (CNG/LNG based), which will drastically reduce carbon footprint.
We are proud to say that JK Lakshmi Cement Limited has a strong leadership and vision for developing an eco-conscious and sustainable role model of our cement business. The company was a pioneer among cement industries of India, which had installed the DeNOx (SNCR) system in its cement plant.

Continue Reading

Concrete

NTPC selects Carbon Clean and Green Power for carbon capture facility

Published

on

By

Shares

Carbon Clean and Green Power International Pvt. Ltd has been chosen by NTPC Energy Technology Research Alliance (NETRA) to establish the carbon capture facility at NTPC Vindhyachal. This facility, which will use a modified tertiary amine to absorb CO2 from the power plant’s flue gas, is intended to capture 20 tonnes of CO2) per day. A catalytic hydrogenation method will eventually be used to mix the CO2 with hydrogen to create 10 tonnes of methanol each day. For NTPC, capturing CO2 from coal-fired power plant flue gas and turning it into methanol is a key area that has the potential to open up new business prospects and revenue streams.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds