Connect with us

Concrete

Smart Motion Systems Power Cement Plants

Published

on

Shares

ICR explores how advanced gears, drives, and motors are transforming cement manufacturing by enhancing reliability, reducing energy use, and enabling predictive maintenance. With digitalisation, electrification, and sustainability at the forefront, motion systems now play a strategic role in driving operational excellence and Net Zero goals.

Gears are the unsung workhorses of cement plants, critical to the operation of equipment ranging from crushers and conveyors to milling units and kilns. Built to endure heavy-duty conditions—dust, heat, shock and continuous load—they are often made from carburised, electro-welded steel, precision-ground to withstand high torque and ensure longevity. The failure of a single girth gear or pinion can halt an entire production line, emphasising the importance of quality-focused design and maintenance.
In grinding applications, such as those involving ball mills and vertical roller mills (VRMs), gearboxes play a pivotal role in power transmission. For instance, ring gears and planetary gear systems manage loads up to 8?MW, balancing efficiency with structural resilience. While planetary drives may add a 5 per cent –15 per cent premium over conventional girth-drive systems, their improved lifecycle, reduced maintenance and enhanced control often justify the higher upfront cost.
Gears also facilitate the precise rotation of kilns. Dual-drive systems, each powering pinions on opposite sides of the kiln, ensure balanced torque delivery and smooth operation. This configuration reduces shell distortion, mechanical stress, and vibration, extending component life and reducing unplanned downtime. Regular maintenance, alignment checks and vibration monitoring underpin the reliability of these high-capacity systems.
Innovation continues to advance gear performance. Companies like MAAG Gear and others have embraced high-strength materials, optimised tooth profiles and modular gearbox architectures to improve serviceability and energy efficiency. The coexistence of traditional weld-and-grind gearboxes and modern planetary or gearless drives reflects the balance between proven reliability and future readiness in cement plant design.

Lifecycle costs and return on investment
In capital-intensive industries like cement, the upfront cost of gears, motors and drives is only one piece of the financial puzzle. What truly matters over time is the total cost of ownership (TCO)—including maintenance, energy use, downtime losses and equipment lifespan. High-efficiency gearboxes or premium VFDs may appear costlier initially, but they often deliver far superior ROI through reduced power consumption and longer operational life. For example, using a high-efficiency IE4 motor can save up to 30 per cent in energy costs over a decade compared to IE1-rated models.
Modern procurement is increasingly driven by this lifecycle approach. Maintenance teams, once focused on price, now calculate costs over a 10–15-year horizon. A planetary gearbox with precision-machined gears and sealed lubrication may offer double the life of a conventional pinion system, with 40 per cent fewer breakdowns. When downtime in a cement plant can cost lakhs per hour, these savings become significant. The ability to track and predict maintenance intervals using sensor-based diagnostics only improves financial predictability.
Pradip Kalra, CEO, Stotz Gears, says, “Kiln shells, like other critical cement plant components, are manufactured in accordance with international quality standards. These standards are set by OEMs and well-known across the cement industry. I believe the foundation of delivering high-quality products lies in honesty—honesty towards quality standards, material procurement, and the will to achieve excellence. Personally, I have always repeated to myself: I must achieve it, I must achieve it. That self-motivation and conviction have taken me a long way. Every kiln shell we produce reflects that commitment. We source certified raw materials, maintain stringent manufacturing controls, and ensure precision across every stage. The final product not only meets OEM specifications but also earns the long-term trust of our clients.”
Additionally, energy audits and drive optimisation programs have become key tools in ROI evaluation. By measuring baseline power usage and simulating post-retrofit performance, plant heads can make data-backed investment decisions. For instance, the ROI period for installing VFDs on ID fans or mill motors has dropped from 3 years to under 18 months in many Indian plants, thanks to energy savings and extended motor life.
Some cement companies are also entering into performance-based contracts with OEMs—where vendors guarantee uptime, energy efficiency, or availability, with penalties and bonuses linked to performance. This shifts the focus from product cost to value delivered, and aligns all stakeholders toward plant profitability. Lifecycle thinking is no longer optional—it’s a strategic lens for both capital budgeting and operational optimisation.

Drives and motors: Energy efficiency and control
Electric motors and drives constitute one of the largest operational cost centres in cement manufacturing—accounting for as much as 75 per cent of electrical energy usage. Motors power crushers, grinders, fans, pumps and conveyors. Without precise speed control, these systems operate inefficiently, especially under partial load conditions. As the industry strives to reduce energy intensity—currently averaging 4.69?GJ/t of clinker with a 0.69?GJ/t potential improvement—the role of drives is critical.
Variable Frequency Drives (VFDs) or Variable Speed Drives (VSDs) optimise motor operation by adjusting speed to load. Since power consumption follows a cubic relationship with speed, even a 10 per cent reduction in fan speed can yield up to 27 per cent energy savings. ABB estimates VSD adoption can cut fan energy use by up to 60 per cent, and similar savings apply to pumps and conveyors. Additionally, soft-start capabilities reduce mechanical wear and electricity demand.
Medium-voltage drives are increasingly favoured in kilns and mills, offering efficient and controlled propulsion for large motors (>375?kW). These include design variants like scalar, vector and direct torque control, each enhancing process stability and reliability. Smart motor-control centres and digital monitoring add predictive maintenance capabilities, lowering downtime and protecting components from damage.
Digitalisation helps further boosts efficiency. Sensors track vibration, temperature and torque, sending alerts when anomalies appear—allowing proactive intervention. Coupled with cloud-enabled dashboards, these systems give plant managers real-time operational visuals. Emerging strategies include motor-driven kilns, optimised compressor control and regenerative braking in conveyors—all promising integrated energy savings and system longevity.

Maintenance and digital condition monitoring
Robust gear and motor performance depends as much on diligent maintenance as on quality hardware. Cement plants operate in abrasive environments, where dust ingress and heat accelerate wear on gearboxes and bearings. Traditional preventive schedules are being enhanced with condition-based monitoring (CBM), employing vibration, oil quality and thermal sensors to detect anomalies before breakdowns occur.
“The products we manufacture are primarily made from 42CrMo4 alloy steel, which is well-known for its strength and durability. This type of steel is highly resistant to corrosion and mechanical stress, which is essential in an environment like a cement plant. We also advise our customers to use protective covers while the machines are operating to further reduce environmental wear and tear. As for material performance, the tensile strength of the steel we use is around 900 N/mm². In comparison, many competitor products fail at around 600 N/mm². This shows that we never compromise on material quality, even if it means our costs are higher. Our philosophy is to prioritise long-term durability over short-term price reductions, and this approach has helped us build a strong reputation for reliability,” says Dheepan Ramalingam, Managing Director, Ringfeder Power Transmission (I).
CBM-enabled gearboxes report early signs of wear—uneven vibration, tooth damage, or gearbox play—well in advance of delays. Remote monitoring allows engineers to schedule maintenance during planned shutdowns, reducing unplanned downtime. This approach is especially valuable for critical components like kiln pinions or mill drives, where failures can stall production lines for hours or
even days.
For motors, performance data such as current fluctuations, temperature rise, and RPM deviations are tracked. Alerts flag performance drift or impending failure, triggering targeted maintenance and preventing catastrophic breakdowns. Coupled with operator training, these data-driven tools build a maintenance culture that extends asset longevity and optimises operational costs.
As plants scale in complexity, digital twins are gaining traction. By simulating gear stresses and motor behaviours under load scenarios, engineers can anticipate and resolve potential issues. Predictive analytics, powered by AI, further enhance reliability, enabling asset care programs that are cost-effective and aligned with safety and sustainability objectives.

Safety, reliability and compliance standards
In heavy industries like cement, safety and compliance are non-negotiable—and the gear and drive systems play a central role in risk prevention. Gear failures can result in catastrophic downtime or physical hazards such as shattered components or oil fires. Similarly, motor overheating, shaft misalignment, or electrical surges can pose serious threats to personnel and equipment. Therefore, selecting systems that comply with international standards like ISO 9001, IEC 60034, ISO 6336, or OSHA guidelines is critical.
Many high-performance drives now come equipped with built-in safety features: torque limiting, electronic braking, soft-start functions, thermal overload protection, and arc-flash prevention systems. These features not only protect the drive system itself but also safeguard connected equipment and operators. For example, a kiln drive motor with real-time torque monitoring can alert operators before any mechanical over-torque incident occurs, reducing the risk of accidents or
gear damage.
Regulatory compliance is another layer cement manufacturers cannot afford to overlook. Indian plants, especially those supplying to government or infrastructure projects, are now required to submit compliance records for emissions, energy consumption, and equipment safety. Components like drives and motors are increasingly scrutinised for CE marking, RoHS conformity, and BIS certification. This has elevated the importance of sourcing from certified vendors who can provide full documentation and after-sales support.
Training is also part of the safety ecosystem. OEMs and drive manufacturers now offer onsite and digital certification programs for plant technicians, enabling them to detect faults, align motors and gearboxes correctly, and safely shut down systems when needed. The result is not just improved compliance—but also a more resilient and skilled maintenance workforce, better equipped to manage evolving plant demands.

Sustainability impact and energy savings
Driven by climate targets and energy cost pressures, the cement industry is elevating energy efficiency as a sustainability imperative. Cement plants are working to reduce their energy-intensity—both in electricity (e) and thermal—through advanced drives, efficient gears, and digital controls. They aim to reduce electrical use toward 4?GJ/t and overall energy consumption below global best-practice levels.
The switch to VSD-equipped fans, pumps, and kilns reduces CO2 emissions and energy expenses. For example, a kiln fan retrofitted with VFDs at a Chinese plant lowered annual energy consumption by 10 per cent, saving US?$124,000. In India,
embracing dry-process technology and VSDs has helped most plants meet or outperform PAT-II efficiency benchmarks.
Gear innovations also contribute to sustainability. High-efficiency planetary and helical gear systems reduce friction losses and require less frequent oil changes and part replacements. Gearboxes designed with optimised tooth profiles and high-strength alloys, such as carburised steel, cut mechanical drag and electrical demand. Brands are also exploring low-lubricant and sealed gearbox systems to reduce environmental contamination.
Energy savings compound when drives and gears are integrated with alternative energy sources. Waste Heat Recovery (WHR) systems supply power to drives, reducing grid load. Solar/battery systems and kinetic energy recovery (e.g., regenerative braking) help close the efficiency loop. Together, these measures support the industry’s decarbonisation ambition toward Net Zero by 2070.

Smart factories, electrification trends
As Industry 4.0 gains momentum, gears, motors, and drives are no longer just mechanical components—they are becoming intelligent nodes in the cement plant’s digital nervous system. The integration of sensors, IoT-enabled monitoring and cloud-based analytics is turning static assets into dynamic, responsive systems.
Today, predictive maintenance dashboards allow engineers to visualise gearbox temperature trends, motor vibration or torque fluctuations in real time—enabling proactive interventions and optimising asset life.
Ramalingam exemplifies, “One of the most exciting developments is the integration of electronic feedback systems into our product lines. This represents a step toward smart technology, where products can provide real-time performance data. We are currently working on embedding sensors and feedback modules into our systems, which can give users predictive insights and maintenance alerts.”
One major trend is the emergence of digital twins—virtual replicas of physical systems that simulate their behaviour under real-world conditions. In cement applications, digital twins can model gearbox loads, monitor motor efficiency curves, and forecast failure modes. Paired with machine learning algorithms, they enable optimisation of process parameters, drive tuning, and asset scheduling without physical trials—cutting downtime and testing costs.
Another exciting development is the shift toward fully electrified drive systems, especially in rotary kilns and large vertical mills. While traditional hydraulic or mechanical drive systems still dominate in many plants, high-torque electric drives are gaining adoption due to their precision, lower maintenance, and ability to integrate with control systems. These drives also support energy recovery strategies—such as regenerative braking—enabling significant reductions in net power consumption.
Looking ahead, innovations like sensorless motor control, self-healing gear coatings, and edge AI processors for real-time condition assessment will redefine how cement plants view motion systems. These advancements won’t just boost uptime—they will provide the agility, traceability, and efficiency required for the future-ready, low-carbon smart
cement plant.

Conclusion
In cement manufacturing, gears, drives and motors serve as the backbone of plant operations—ensuring continuous, controlled motion across critical processes like crushing, grinding, kiln rotation and material handling. Today, these systems are evolving rapidly, with high-efficiency gearboxes, VFD-integrated motors and digital condition monitoring helping plants improve uptime, reduce energy use and extend equipment life.
Keeping up with the changing needs of the cement sector is mandatory for component providers. Kalra states, “Challenges are constant, especially in engineering and manufacturing. One of the biggest challenges is the increasing demand for precision and reliability from cement plants. Every year, the expectations rise. Clients demand tighter tolerances, better materials and longer-lasting components—even if the products we supplied years ago are still running without a single complaint.”
As India’s cement industry scales up capacity while pushing for sustainability and operational excellence, investing in reliable, customisable, and digitally enabled motion systems is no longer optional—it’s strategic. Whether it’s through localised innovation, safety compliance, or predictive maintenance, the performance of gears, drives, and motors will remain central to meeting future efficiency and Net
Zero goals.

– Kanika Mathur

Concrete

Adani’s Strategic Emergence in India’s Cement Landscape

Published

on

By

Shares

Milind Khangan, Marketing Head, Vertex Market Research, sheds light on Adani’s rapid cement consolidation under its ‘One Business, One Company’ strategy while positioning it to rival UltraTech, and thus, shaping a potential duopoly in India’s booming cement market.

India is the second-largest cement-producing country in the world, following China. This expansion is being driven by tremendous public investment in the housing and infrastructure sectors. The industry is accelerating, with a boost from schemes such as PM Gati Shakti, Bharatmala, and the Vande Bharat corridors. An upsurge in affordable housing under the Pradhan Mantri Awas Yojana (PMAY) further supports this expansion. In May 2025, local cement production increased about 9 per cent from last year to about 40 million metric tonnes for the month. The combined cement capacity in India was recorded at 670 million metric tonnes in the 2025 fiscal year, according to the Cement Manufacturers’ Association (CMA). For the financial year 2026, this is set to grow by another 9 per cent.
In spite of the growing demand, the Indian cement industry is highly competitive. UltraTech Cement (Aditya Birla Group) is still the market leader with domestic installed capacity of more than 186 MTPA as on 2025. It is targeted to achieve 200 MTPA. Adani Cement recently became a major player and is now India’s second-largest cement company. It did this through aggressive consolidation, operational synergies, and scale efficiencies. Indian players in the cement industry are increasingly valuing operational efficiency and sustainability. Some of the strategies with high impact are alternative fuels and materials (AFR) adoption, green cement expansion, and digital technology investments to offset changing regulatory pressure and increasing energy prices.

Building Adani Cement brand
Vertex Market Research explains that the Adani Group is executing a comprehensive reorganisation and consolidation of its cement business under the ‘One Business, One Company’ strategy. The plan is to integrate its diversified holdings into one consolidated corporate entity named Adani Cement. The focus is on operating integration, governance streamlining, and cost reduction in its expanding cement business.
Integration roadmap and key milestones:

  • September 2022: The consolidation process started with the $6.4 billion buyout of Holcim’s majority stakes in Ambuja Cements and ACC, with Ambuja becoming the focal point of the consolidation.
  • December 2023: Bought Sanghi Industries to strengthen the firm’s presence in western India.
  • August 2024: Added Penna Cement to the portfolio, improving penetration of the southern market of India.
  • April 2025: Further holding addition in Orient Cement to 46.66 per cent by purchasing the same from CK Birla Group, becoming the promoter with control.
  • Ambuja Cements amalgamated with Adani Cement: This was sanctioned by the NCLT on 18th July 2025 with effect from April 1, 2024. This amalgamation brings in limestone reserves and fresh assets into Ambuja.
  • Subject to Sanghi and Penna merger with Ambuja: Board approvals in December 2024 with the aim to finish between September to December 2025.
  • Ambuja-ACC future integration: The latter is being contemplated as the final step towards consolidation.
  • Orient Cement: It would serve as a principal manufacturing facility following the merger.

Scale, capacity expansion and market position
In financial year-2025, Adani Cement, including Ambuja, surpassed 100 MTPA. This makes it one of the world’s top ten cement companies. Along with ACC’s operations, it is now firmly placed as India’s second-largest cement company. In FY25, the Adani group’s sales volume per annum clocked 65 million metric tonnes. Adani Group claims that it now supplies close to 30 per cent of the cement consumed in India’s homes and infrastructure as of June 2025.
The organisation is pursuing aggressive brownfield expansion:

  • By FY 2026: Reach 118 MTPA
  • By FY 2028: Target 140 MTPA

These goals will be driven by commissioning new clinker and grinding units at key sites, with civil and mechanical works underway.
As of 2024, Adani Cement had its market share pegged at around 14 to 15 per cent, with an ambition to scale this up to 20 per cent by FY?2028, emerging as a potent competitor to UltraTech’s 192?MTPA capacity (186 domestic and overseas).

Strategic advantages and competitive benefits
The consolidation simplifies decision-making by reducing legal entities, centralising oversight, and removing redundant functions. This drives compliance efficiency and transparent reporting. Using procurement power for raw materials and energy lowers costs per ton. Integrated logistics with Adani Ports and freight infrastructure has resulted in an estimated 6 per cent savings in logistics. The group aims for additional savings of INR 500 to 550 per tonne by FY 2028 by integrating green energy, using alternative fuel resources, and improving sourcing methods.

Market coverage and brand consistency
Brand integration under one strategy will provide uniform product quality and easier distribution networks. Integration with Orient Cement’s dealer base, 60 per cent of which already distributes Ambuja/ACC products, enhances outreach and responsiveness.
By having captive limestone reserves at Lakhpat (approximately 275 million tonnes) and proposed new manufacturing facilities in Raigad, Maharashtra, Adani Cement derives cost advantage, raw material security, and long-term operational robustness.

Strategic implications and risks
Consolidation at Adani Cement makes it not just a capacity leader but also an operationally agile competitor with the ability to reap digital and sustainability benefits. Its vertically integrated platform enables cost leadership, market responsiveness, and scalability.

Challenges potentially include:

  • Integration challenges across systems, corporate cultures, and plant operations
  • Regulatory sanctions for pending mergers and new capacity additions
  • Environmental clearances in environmentally sensitive areas and debt management with input price volatility

When materialised, this revolution would create a formidable Adani–UltraTech duopoly, redefining Indian cement on the basis of scale, innovation, and sustainability. India’s leading four cement players such as Adani (ACC and Ambuja), Dalmia Cement, Shree Cement, and UltraTech are expected to dominate the cement market.

Conclusion
Adani’s aggressive consolidation under the ‘One Business, One Company’ strategy signals a decisive shift in the Indian cement industry, positioning the group as a formidable challenger to UltraTech and setting the stage for a potential duopoly that could dominate the sector for years to come. By unifying operations, leveraging economies of scale, and securing vertical integration—from raw material reserves to distribution networks—Adani Cement is building both capacity and resilience, with clear advantages in cost efficiency, market reach, and sustainability. While integration complexities, regulatory hurdles, and environmental approvals remain key challenges, the scale and strategic alignment of this consolidation promise to redefine competition, pricing dynamics, and operational benchmarks in one of the world’s fastest-growing cement markets.

About the author:
Milind Khangan is the Marketing Head at Vertex Market Research and comes with over five years of experience in market research, lead generation and team management.

Continue Reading

Concrete

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Published

on

By

Shares

PowerBuild’s flagship Series M, C, F, and K geared motors deliver robust, efficient, and versatile power transmission solutions for industries worldwide.

Products – M, C, F, K: At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. PowerBuild answers this need with its flagship geared motor series: M, C, F, and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.
Series M – Helical Inline Geared Motors: Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.
Series C – Right Angled Heli-Worm Geared Motors: Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.
Series F – Parallel Shaft Mounted Geared Motors: Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes, and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.
Series K – Right Angle Helical Bevel Geared Motors: For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining, and material handling. Its flexibility in mounting and broad motor options offer engineers’ freedom in design and reliability in execution.
Together, these four series reflect PowerBuild’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design, and field-tested reliability. Whether the requirement is speed control, torque multiplication, or space efficiency, Radicon’s Series M, C, F, and K stand as trusted powerhouses for global industries.

Continue Reading

Concrete

Driving Measurable Gains

Published

on

By

Shares

Klüber Lubrication India’s Klübersynth GEM 4-320 N upgrades synthetic gear oil for energy efficiency.

Klüber Lubrication India has introduced a strategic upgrade for the tyre manufacturing industry by retrofitting its high-performance synthetic gear oil, Klübersynth GEM 4-320 N, into Barrel Cold Feed Extruder gearboxes. This smart substitution, requiring no hardware changes, delivered energy savings of 4-6 per cent, as validated by an internationally recognised energy audit firm under IPMVP – Option B protocols, aligned with
ISO 50015 standards.

Beyond energy efficiency, the retrofit significantly improved operational parameters:

  • Lower thermal stress on equipment
  • Extended lubricant drain intervals
  • Reduction in CO2 emissions and operational costs

These benefits position Klübersynth GEM 4-320 N as a powerful enabler of sustainability goals in line with India’s Business Responsibility and Sustainability Reporting (BRSR) guidelines and global Net Zero commitments.

Verified sustainability, zero compromise
This retrofit case illustrates that meaningful environmental impact doesn’t always require capital-intensive overhauls. Klübersynth GEM 4-320 N demonstrated high performance in demanding operating environments, offering:

  • Enhanced component protection
  • Extended oil life under high loads
  • Stable performance across fluctuating temperatures

By enabling quick wins in efficiency and sustainability without disrupting operations, Klüber reinforces its role as a trusted partner in India’s evolving industrial landscape.

Klüber wins EcoVadis Gold again
Further affirming its global leadership in responsible business practices, Klüber Lubrication has been awarded the EcoVadis Gold certification for the fourth consecutive year in 2025. This recognition places it in the top three per cent
of over 150,000 companies worldwide evaluated for environmental, ethical and sustainable procurement practices.
Klüber’s ongoing investments in R&D and product innovation reflect its commitment to providing data-backed, application-specific lubrication solutions that exceed industry expectations and support long-term sustainability goals.

A trusted industrial ally
Backed by 90+ years of tribology expertise and a global support network, Klüber Lubrication is helping customers transition toward a greener tomorrow. With Klübersynth GEM 4-320 N, tyre manufacturers can take measurable, low-risk steps to boost energy efficiency and regulatory alignment—proving that even the smallest change can spark a significant transformation.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds