Connect with us

Concrete

Smart Motion Systems Power Cement Plants

Published

on

Shares

ICR explores how advanced gears, drives, and motors are transforming cement manufacturing by enhancing reliability, reducing energy use, and enabling predictive maintenance. With digitalisation, electrification, and sustainability at the forefront, motion systems now play a strategic role in driving operational excellence and Net Zero goals.

Gears are the unsung workhorses of cement plants, critical to the operation of equipment ranging from crushers and conveyors to milling units and kilns. Built to endure heavy-duty conditions—dust, heat, shock and continuous load—they are often made from carburised, electro-welded steel, precision-ground to withstand high torque and ensure longevity. The failure of a single girth gear or pinion can halt an entire production line, emphasising the importance of quality-focused design and maintenance.
In grinding applications, such as those involving ball mills and vertical roller mills (VRMs), gearboxes play a pivotal role in power transmission. For instance, ring gears and planetary gear systems manage loads up to 8?MW, balancing efficiency with structural resilience. While planetary drives may add a 5 per cent –15 per cent premium over conventional girth-drive systems, their improved lifecycle, reduced maintenance and enhanced control often justify the higher upfront cost.
Gears also facilitate the precise rotation of kilns. Dual-drive systems, each powering pinions on opposite sides of the kiln, ensure balanced torque delivery and smooth operation. This configuration reduces shell distortion, mechanical stress, and vibration, extending component life and reducing unplanned downtime. Regular maintenance, alignment checks and vibration monitoring underpin the reliability of these high-capacity systems.
Innovation continues to advance gear performance. Companies like MAAG Gear and others have embraced high-strength materials, optimised tooth profiles and modular gearbox architectures to improve serviceability and energy efficiency. The coexistence of traditional weld-and-grind gearboxes and modern planetary or gearless drives reflects the balance between proven reliability and future readiness in cement plant design.

Lifecycle costs and return on investment
In capital-intensive industries like cement, the upfront cost of gears, motors and drives is only one piece of the financial puzzle. What truly matters over time is the total cost of ownership (TCO)—including maintenance, energy use, downtime losses and equipment lifespan. High-efficiency gearboxes or premium VFDs may appear costlier initially, but they often deliver far superior ROI through reduced power consumption and longer operational life. For example, using a high-efficiency IE4 motor can save up to 30 per cent in energy costs over a decade compared to IE1-rated models.
Modern procurement is increasingly driven by this lifecycle approach. Maintenance teams, once focused on price, now calculate costs over a 10–15-year horizon. A planetary gearbox with precision-machined gears and sealed lubrication may offer double the life of a conventional pinion system, with 40 per cent fewer breakdowns. When downtime in a cement plant can cost lakhs per hour, these savings become significant. The ability to track and predict maintenance intervals using sensor-based diagnostics only improves financial predictability.
Pradip Kalra, CEO, Stotz Gears, says, “Kiln shells, like other critical cement plant components, are manufactured in accordance with international quality standards. These standards are set by OEMs and well-known across the cement industry. I believe the foundation of delivering high-quality products lies in honesty—honesty towards quality standards, material procurement, and the will to achieve excellence. Personally, I have always repeated to myself: I must achieve it, I must achieve it. That self-motivation and conviction have taken me a long way. Every kiln shell we produce reflects that commitment. We source certified raw materials, maintain stringent manufacturing controls, and ensure precision across every stage. The final product not only meets OEM specifications but also earns the long-term trust of our clients.”
Additionally, energy audits and drive optimisation programs have become key tools in ROI evaluation. By measuring baseline power usage and simulating post-retrofit performance, plant heads can make data-backed investment decisions. For instance, the ROI period for installing VFDs on ID fans or mill motors has dropped from 3 years to under 18 months in many Indian plants, thanks to energy savings and extended motor life.
Some cement companies are also entering into performance-based contracts with OEMs—where vendors guarantee uptime, energy efficiency, or availability, with penalties and bonuses linked to performance. This shifts the focus from product cost to value delivered, and aligns all stakeholders toward plant profitability. Lifecycle thinking is no longer optional—it’s a strategic lens for both capital budgeting and operational optimisation.

Drives and motors: Energy efficiency and control
Electric motors and drives constitute one of the largest operational cost centres in cement manufacturing—accounting for as much as 75 per cent of electrical energy usage. Motors power crushers, grinders, fans, pumps and conveyors. Without precise speed control, these systems operate inefficiently, especially under partial load conditions. As the industry strives to reduce energy intensity—currently averaging 4.69?GJ/t of clinker with a 0.69?GJ/t potential improvement—the role of drives is critical.
Variable Frequency Drives (VFDs) or Variable Speed Drives (VSDs) optimise motor operation by adjusting speed to load. Since power consumption follows a cubic relationship with speed, even a 10 per cent reduction in fan speed can yield up to 27 per cent energy savings. ABB estimates VSD adoption can cut fan energy use by up to 60 per cent, and similar savings apply to pumps and conveyors. Additionally, soft-start capabilities reduce mechanical wear and electricity demand.
Medium-voltage drives are increasingly favoured in kilns and mills, offering efficient and controlled propulsion for large motors (>375?kW). These include design variants like scalar, vector and direct torque control, each enhancing process stability and reliability. Smart motor-control centres and digital monitoring add predictive maintenance capabilities, lowering downtime and protecting components from damage.
Digitalisation helps further boosts efficiency. Sensors track vibration, temperature and torque, sending alerts when anomalies appear—allowing proactive intervention. Coupled with cloud-enabled dashboards, these systems give plant managers real-time operational visuals. Emerging strategies include motor-driven kilns, optimised compressor control and regenerative braking in conveyors—all promising integrated energy savings and system longevity.

Maintenance and digital condition monitoring
Robust gear and motor performance depends as much on diligent maintenance as on quality hardware. Cement plants operate in abrasive environments, where dust ingress and heat accelerate wear on gearboxes and bearings. Traditional preventive schedules are being enhanced with condition-based monitoring (CBM), employing vibration, oil quality and thermal sensors to detect anomalies before breakdowns occur.
“The products we manufacture are primarily made from 42CrMo4 alloy steel, which is well-known for its strength and durability. This type of steel is highly resistant to corrosion and mechanical stress, which is essential in an environment like a cement plant. We also advise our customers to use protective covers while the machines are operating to further reduce environmental wear and tear. As for material performance, the tensile strength of the steel we use is around 900 N/mm². In comparison, many competitor products fail at around 600 N/mm². This shows that we never compromise on material quality, even if it means our costs are higher. Our philosophy is to prioritise long-term durability over short-term price reductions, and this approach has helped us build a strong reputation for reliability,” says Dheepan Ramalingam, Managing Director, Ringfeder Power Transmission (I).
CBM-enabled gearboxes report early signs of wear—uneven vibration, tooth damage, or gearbox play—well in advance of delays. Remote monitoring allows engineers to schedule maintenance during planned shutdowns, reducing unplanned downtime. This approach is especially valuable for critical components like kiln pinions or mill drives, where failures can stall production lines for hours or
even days.
For motors, performance data such as current fluctuations, temperature rise, and RPM deviations are tracked. Alerts flag performance drift or impending failure, triggering targeted maintenance and preventing catastrophic breakdowns. Coupled with operator training, these data-driven tools build a maintenance culture that extends asset longevity and optimises operational costs.
As plants scale in complexity, digital twins are gaining traction. By simulating gear stresses and motor behaviours under load scenarios, engineers can anticipate and resolve potential issues. Predictive analytics, powered by AI, further enhance reliability, enabling asset care programs that are cost-effective and aligned with safety and sustainability objectives.

Safety, reliability and compliance standards
In heavy industries like cement, safety and compliance are non-negotiable—and the gear and drive systems play a central role in risk prevention. Gear failures can result in catastrophic downtime or physical hazards such as shattered components or oil fires. Similarly, motor overheating, shaft misalignment, or electrical surges can pose serious threats to personnel and equipment. Therefore, selecting systems that comply with international standards like ISO 9001, IEC 60034, ISO 6336, or OSHA guidelines is critical.
Many high-performance drives now come equipped with built-in safety features: torque limiting, electronic braking, soft-start functions, thermal overload protection, and arc-flash prevention systems. These features not only protect the drive system itself but also safeguard connected equipment and operators. For example, a kiln drive motor with real-time torque monitoring can alert operators before any mechanical over-torque incident occurs, reducing the risk of accidents or
gear damage.
Regulatory compliance is another layer cement manufacturers cannot afford to overlook. Indian plants, especially those supplying to government or infrastructure projects, are now required to submit compliance records for emissions, energy consumption, and equipment safety. Components like drives and motors are increasingly scrutinised for CE marking, RoHS conformity, and BIS certification. This has elevated the importance of sourcing from certified vendors who can provide full documentation and after-sales support.
Training is also part of the safety ecosystem. OEMs and drive manufacturers now offer onsite and digital certification programs for plant technicians, enabling them to detect faults, align motors and gearboxes correctly, and safely shut down systems when needed. The result is not just improved compliance—but also a more resilient and skilled maintenance workforce, better equipped to manage evolving plant demands.

Sustainability impact and energy savings
Driven by climate targets and energy cost pressures, the cement industry is elevating energy efficiency as a sustainability imperative. Cement plants are working to reduce their energy-intensity—both in electricity (e) and thermal—through advanced drives, efficient gears, and digital controls. They aim to reduce electrical use toward 4?GJ/t and overall energy consumption below global best-practice levels.
The switch to VSD-equipped fans, pumps, and kilns reduces CO2 emissions and energy expenses. For example, a kiln fan retrofitted with VFDs at a Chinese plant lowered annual energy consumption by 10 per cent, saving US?$124,000. In India,
embracing dry-process technology and VSDs has helped most plants meet or outperform PAT-II efficiency benchmarks.
Gear innovations also contribute to sustainability. High-efficiency planetary and helical gear systems reduce friction losses and require less frequent oil changes and part replacements. Gearboxes designed with optimised tooth profiles and high-strength alloys, such as carburised steel, cut mechanical drag and electrical demand. Brands are also exploring low-lubricant and sealed gearbox systems to reduce environmental contamination.
Energy savings compound when drives and gears are integrated with alternative energy sources. Waste Heat Recovery (WHR) systems supply power to drives, reducing grid load. Solar/battery systems and kinetic energy recovery (e.g., regenerative braking) help close the efficiency loop. Together, these measures support the industry’s decarbonisation ambition toward Net Zero by 2070.

Smart factories, electrification trends
As Industry 4.0 gains momentum, gears, motors, and drives are no longer just mechanical components—they are becoming intelligent nodes in the cement plant’s digital nervous system. The integration of sensors, IoT-enabled monitoring and cloud-based analytics is turning static assets into dynamic, responsive systems.
Today, predictive maintenance dashboards allow engineers to visualise gearbox temperature trends, motor vibration or torque fluctuations in real time—enabling proactive interventions and optimising asset life.
Ramalingam exemplifies, “One of the most exciting developments is the integration of electronic feedback systems into our product lines. This represents a step toward smart technology, where products can provide real-time performance data. We are currently working on embedding sensors and feedback modules into our systems, which can give users predictive insights and maintenance alerts.”
One major trend is the emergence of digital twins—virtual replicas of physical systems that simulate their behaviour under real-world conditions. In cement applications, digital twins can model gearbox loads, monitor motor efficiency curves, and forecast failure modes. Paired with machine learning algorithms, they enable optimisation of process parameters, drive tuning, and asset scheduling without physical trials—cutting downtime and testing costs.
Another exciting development is the shift toward fully electrified drive systems, especially in rotary kilns and large vertical mills. While traditional hydraulic or mechanical drive systems still dominate in many plants, high-torque electric drives are gaining adoption due to their precision, lower maintenance, and ability to integrate with control systems. These drives also support energy recovery strategies—such as regenerative braking—enabling significant reductions in net power consumption.
Looking ahead, innovations like sensorless motor control, self-healing gear coatings, and edge AI processors for real-time condition assessment will redefine how cement plants view motion systems. These advancements won’t just boost uptime—they will provide the agility, traceability, and efficiency required for the future-ready, low-carbon smart
cement plant.

Conclusion
In cement manufacturing, gears, drives and motors serve as the backbone of plant operations—ensuring continuous, controlled motion across critical processes like crushing, grinding, kiln rotation and material handling. Today, these systems are evolving rapidly, with high-efficiency gearboxes, VFD-integrated motors and digital condition monitoring helping plants improve uptime, reduce energy use and extend equipment life.
Keeping up with the changing needs of the cement sector is mandatory for component providers. Kalra states, “Challenges are constant, especially in engineering and manufacturing. One of the biggest challenges is the increasing demand for precision and reliability from cement plants. Every year, the expectations rise. Clients demand tighter tolerances, better materials and longer-lasting components—even if the products we supplied years ago are still running without a single complaint.”
As India’s cement industry scales up capacity while pushing for sustainability and operational excellence, investing in reliable, customisable, and digitally enabled motion systems is no longer optional—it’s strategic. Whether it’s through localised innovation, safety compliance, or predictive maintenance, the performance of gears, drives, and motors will remain central to meeting future efficiency and Net
Zero goals.

– Kanika Mathur

Concrete

Nuvoco Vistas Reports Record Q2 EBITDA, Expands Capacity to 35 MTPA

Cement Major Nuvoco Posts Rs 3.71 bn EBITDA in Q2 FY26

Published

on

By

Shares

Nuvoco Vistas Corp. Ltd., one of India’s leading building materials companies, has reported its highest-ever second-quarter consolidated EBITDA of Rs 3.71 billion for Q2 FY26, reflecting an 8% year-on-year revenue growth to Rs 24.58 billion. Cement sales volume stood at 4.3 MMT during the quarter, driven by robust demand and a rising share of premium products, which reached an all-time high of 44%.

The company continued its deleveraging journey, reducing like-to-like net debt by Rs 10.09 billion year-on-year to Rs 34.92 billion. Commenting on the performance, Jayakumar Krishnaswamy, Managing Director, said, “Despite macro headwinds, disciplined execution and focus on premiumisation helped us achieve record performance. We remain confident in our structural growth trajectory.”

Nuvoco’s capacity expansion plans remain on track, with refurbishment of the Vadraj Cement facility progressing towards operationalisation by Q3 FY27. In addition, the company’s 4 MTPA phased expansion in eastern India, expected between December 2025 and March 2027, will raise its total cement capacity to 35 MTPA by FY27.

Reinforcing its sustainability credentials, Nuvoco continues to lead the sector with one of the lowest carbon emission intensities at 453.8 kg CO? per tonne of cementitious material.

Continue Reading

Concrete

Jindal Stainless to Invest $150 Mn in Odisha Metal Recovery Plant

New Jajpur facility to double metal recovery capacity and cut emissions

Published

on

By

Shares

Jindal Stainless Limited has announced an investment of $150 million to build and operate a new wet milling plant in Jajpur, Odisha, aimed at doubling its capacity to recover metal from industrial waste. The project is being developed in partnership with Harsco Environmental under a 15-year agreement.

The facility will enable the recovery of valuable metals from slag and other waste materials, significantly improving resource efficiency and reducing environmental impact. The initiative aligns with Jindal Stainless’s sustainability roadmap, which focuses on circular economy practices and low-carbon operations.

In financial year 2025, the company reduced its carbon footprint by about 14 per cent through key decarbonisation initiatives, including commissioning India’s first green hydrogen plant for stainless steel production and setting up the country’s largest captive solar energy plant within a single industrial campus in Odisha.

Shares of Jindal Stainless rose 1.8 per cent to Rs 789.4 per share following the announcement, extending a 5 per cent gain over the past month.

Continue Reading

Concrete

Vedanta gets CCI Approval for Rs 17,000 MnJaiprakash buyout

Acquisition marks Vedanta’s expansion into cement, real estate, and infra

Published

on

By

Shares

Vedanta Limited has received approval from the Competition Commission of India (CCI) to acquire Jaiprakash Associates Limited (JAL) for approximately Rs 17,000 million under the Insolvency and Bankruptcy Code (IBC) process. The move marks Vedanta’s strategic expansion beyond its core mining and metals portfolio into cement, real estate, and infrastructure sectors.

Once the flagship of the Jaypee Group, JAL has faced severe financial distress with creditors’ claims exceeding Rs 59,000 million. Vedanta emerged as the preferred bidder in a competitive auction, outbidding the Adani Group with an overall offer of Rs 17,000 million, equivalent to Rs 12,505 million in net present value terms. The payment structure involves an upfront settlement of around Rs 3,800 million, followed by annual instalments of Rs 2,500–3,000 million over five years.

The National Asset Reconstruction Company Limited (NARCL), which acquired the group’s stressed loans from a State Bank of India-led consortium, now leads the creditor committee. Lenders are expected to take a haircut of around 71 per cent based on Vedanta’s offer. Despite approvals for other bidders, Vedanta’s proposal stood out as the most viable resolution plan, paving the way for the company’s diversification into new business verticals.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds