Connect with us

Concrete

AFR can provide economic and environmental benefits

Published

on

Shares

Tushar Khandhadia, General Manager – Production, Udaipur Cement Works, in conversation with Kanika Mathur about the impact of AFR on efficiency and quality.

As the cement industry moves towardmore sustainable practices, alternative fuels and raw materials (AFR) play a crucial role in reducing carbon emissions and enhancing resource efficiency. In this exclusive interview, Tushar Khandhadia, General Manager – Production at Udaipur Cement Works, shares insights on how the company integrates AFR into its production process, the challenges involved, and the latest innovations driving sustainable cement manufacturing.

Which AFR does your company currently use in cement production?
Our organisation employs a variety of AFR to enhance sustainability and reduce our carbon footprint. These include:

  • Alternative fuels: Waste-derived fuels such as municipal solid waste (MSW), tire-derived fuel (TDF), biomass, and industrial waste, waste mix for co-incineration LCV.
  • Alternative raw materials: Industrial by-products like fly ash, f.f slag, jarosite chemical gypsum, granulated slag, bf dust, chemical sludge (waste water treatment, ETP sludge – solid, spent carbon, waste mix (solid)).

How do alternative fuels impact the efficiency and quality of cement?
While alternative fuels can provide economic and environmental benefits, they must be carefully managed to ensure that the final quality of the cement is not compromised. The key to optimising the impact of alternative fuels on cement production lies in the selection of the right types of fuels, proper blending, and controlling combustion conditions to maintain both efficiency and high-quality output.

Fuel characteristics

  • Energy content: Alternative fuels (such as biomass, waste-derived fuels, or industrial by-products) often have lower energy content compared to traditional fuels like coal or pet coke. This means that more of the alternative fuel is required to achieve the same level of heat generation. As a result, more fuel needs to be burned, potentially increasing the overall heat consumption of
    the kiln.
  • Moisture and volatile matter: Some alternative fuels have higher moisture content or volatile substances, requiring additional energy to evaporate the moisture or combust these volatile compounds. This can lead to a higher heat consumption during the combustion process.
  • Burning efficiency: combustion characteristics: Different alternative fuels may burn at different rates or temperatures compared to traditional fuels, which could affect the kiln’s efficiency. Incomplete combustion of some alternative fuels might cause heat losses and thus increase the energy needed to maintain kiln operation.
  • Clinker formation: Alternative fuels may affect the formation of clinker (the solid material produced in the kiln). If the composition or combustion characteristics of the alternative fuel cause uneven heating or changes in clinker quality, additional energy may be needed to stabilise the temperature or improve the quality of the clinker.
  • Operational adjustments: process optimisation: When switching to alternative fuels, adjustments are often required to optimise the kiln’s operational parameters (like air flow, temperature control, etc.). Until these adjustments are fully optimised, the kiln may operate less efficiently, leading to higher heat consumption.

Impact on quality:

  • Chemical composition: Some alternative fuels, such as those derived from industrial waste or hazardous materials, may introduce chemical compounds that can alter the final properties of cement. However, proper fuel management ensures that any potential adverse effects on cement quality are minimised.
  • Clinker quality: The quality of the clinker, which is the key ingredient in cement, can be affected by the composition of the alternative fuels. Some alternative fuels may introduce impurities (such as chlorine or sulphur), which could lead to clinker quality issues, such as instability or the formation of undesirable compounds.
  • Consistency in product: The use of alternative fuels can cause variations in the combustion process, which may lead to slight fluctuations in temperature and material composition. These inconsistencies could impact the final cement quality, though careful fuel selection and blending can mitigate these risks.
  • Environmental impacts on quality: One of the advantages of using alternative fuels is their potential to reduce the carbon footprint of cement production. The reduction of CO2 emissions and other pollutants indirectly benefits the overall quality of the end product, as it promotes sustainability and cleaner production processes.

Environmental and sustainability considerations

  • Lower CO2 emissions: By using alternative fuels, the cement industry can reduce its reliance on fossil fuels, thereby decreasing CO2 emissions. The use of waste materials like municipal solid waste or biomass can result in a carbon-neutral or lower-carbon cement production process.
  • Waste reduction: AFR helps recycle waste materials, reduce landfill use and promote circular economy practices, which indirectly enhances the sustainability of the cement industry.

What challenges do you face in sourcing and utilising AFR?
Sourcing and utilising AFR in cement production comes with several challenges that must be addressed to ensure that the transition is both effective and sustainable. Below are the key challenges typically faced:

Fuel quality variability

  • Inconsistent properties: AFRs such as waste materials, biomass or industrial by-products can vary significantly in their chemical composition, energy content, moisture levels and combustion characteristics. This inconsistency can complicate kiln operations, as cement plants are optimised for burning specific fuels like coal or petcoke. Variability in AFR can lead to issues with combustion efficiency, temperature control, and process stability.
  • Contaminants: Some AFRs may contain unwanted contaminants (e.g., plastics, heavy metals, chlorine, or sulfur) that could affect both the kiln’s performance and the quality of the final product. These contaminants can increase emissions or cause equipment corrosion and premature wear.

Supply chain and availability

  • Logistical complexity: Sourcing AFR requires a robust and reliable supply chain, as many alternative fuels come from waste streams that may not be consistently available. This variability in supply can lead to fluctuations in fuel availability, which may impact production schedules.
  • Sourcing reliability: The availability of certain types of AFRs may be limited by geographic location, government regulations, or competing demands (e.g., the use of biomass for other industries or energy production). This can make it difficult to secure a stable and consistent supply of AFR, particularly in regions where waste recycling infrastructure is underdeveloped.

Storage and handling

  • Storage issues: Some AFRs, especially organic or biomass-based fuels, may require specialised storage facilities to prevent degradation, moisture absorption, or contamination. Proper storage is necessary to maintain fuel quality and prevent losses due to spoilage.
  • Handling challenges: Different AFRs require different handling techniques, such as shredding, drying or sorting, before they can be used in the kiln. This adds complexity to the operational process and may require investment in new infrastructure and equipment.

Regulatory and environmental concerns

  • Compliance with regulations: The use of certain AFRs may be subject to stringent environmental regulations, particularly regarding emissions, waste management and fuel quality standards. Compliance with these regulations may require additional monitoring, testing and reporting, increasing operational costs and complexity.
  • Emission control: Some alternative fuels may lead to higher levels of certain pollutants (e.g., dioxins, furans, or particulate matter) if not properly managed. Cement plants must invest in additional air pollution control technologies (e.g., scrubbers, electrostatic precipitators) to mitigate these emissions.

Technical adaptation of kilns and equipment

  • Modification of existing systems: Cement plants may need to retrofit or upgrade their existing equipment (e.g., burners, air systems, or fuel handling systems) to efficiently utilise AFR. These modifications can be costly, time-consuming, and may require downtime.
  • Impact on kiln efficiency: The combustion characteristics of AFR differ from those of traditional fuels, and improper adaptation can lead to inefficient burning, lower kiln temperatures and lower overall kiln throughput. Continuous monitoring and optimisation of the kiln operation are essential to ensure efficient use of AFR.

Cost and economic viability

  • Initial investment: While AFRs can provide cost savings in the long term (especially if they are locally sourced or cheaper than conventional fuels), the upfront cost of modifying equipment, establishing fuel handling processes, and meeting regulatory requirements can be significant.
  • Price fluctuations: The cost of alternative fuels can fluctuate based on market conditions, waste availability, and local competition for resources. Such variability in pricing may make it difficult to predict savings over time and could affect the economic feasibility of using AFRs.

Quality control of cement

  • Impact on product consistency: The chemical composition of AFRs can affect the clinker quality and, in turn, the final cement product. Variations in the AFR may result in inconsistent burning conditions in the kiln, which can lead to variations in clinker mineral composition and final cement properties.
  • Blending and optimisation: To ensure that product quality remains consistent, cement producers must carefully manage the blending of alternative fuels with traditional fuels. Finding the right balance and ensuring stable quality control requires detailed analysis and optimisation.

Public perception and social acceptance

  • Concerns about waste incineration: In some regions, the use of waste-derived fuels in cement kilns may face resistance due to public concerns about the environmental and health impacts of burning waste. These concerns can affect the social acceptance of AFR use, particularly if local communities are not fully educated about the benefits of AFR in reducing waste and emissions.
  • Brand reputation: Cement companies must also be mindful of their brand reputation when using waste-derived fuels. Public perception can play a significant role in the company’s market standing, especially in more environmentally conscious regions.

Long-term sustainability of AFR supply

  • Sustainability of fuel sources: The long-term availability of certain types of AFR, such as biomass or waste-derived fuels, may be subject to factors like changing waste management practices, government policies, and market demand. Over-reliance on a single source of AFR could lead to supply chain disruptions or sustainability concerns in the future.

Strategies to overcome these challenges
To overcome these challenges, cement producers often adopt several strategies:

  • Diversification of AFR sources: Relying on a mix of different AFR types (e.g., industrial by-products, biomass, municipal waste) can help mitigate supply risks and fuel quality issues.
  • Partnerships and collaboration: Collaborating with waste management companies, municipalities, and regulatory bodies can help secure a reliable AFR supply and ensure compliance with regulations.
  • Technology and monitoring: Investing in advanced combustion technologies, sensors, and control systems can help optimise AFR utilisation in the kiln, ensuring efficient combustion and minimising emissions.
  • Training and skill development: Ensuring that staff are well-trained in handling and utilising AFRs can help minimise operational challenges and improve overall kiln efficiency.

While there are many challenges associated with sourcing and utilising AFR, many of them can be addressed with proper planning, technology, and management. The long-term benefits of using alternative fuels, including environmental sustainability and cost savings, often outweigh the challenges, especially with ongoing improvements in fuel handling and kiln optimisation.

How does AFR adoption contribute to cost savings and sustainability?
The adoption of AFR) in cement production can significantly contribute to both cost savings and sustainability. Here’s how:

Cost Savings

  • Reduced reliance on expensive fossil fuels: Traditional fuels like coal or petcoke can be subject to volatile price fluctuations due to geopolitical factors or market changes. AFRs, such as industrial by-products, biomass, or waste materials, are often less expensive than conventional fuels. By switching to AFRs, cement producers can lower their overall fuel costs.
  • Utilising waste streams: Many AFRs are waste products from other industries or municipal waste. Using these materials instead of purchasing new fuels reduces the cost of sourcing energy, as companies may even receive subsidies or payments for taking certain waste materials off their hands (e.g., biomass, plastics, tires).
  • Reduced disposal costs: Cement plants can help reduce the cost of waste disposal for municipalities and industries by accepting waste streams as alternative fuels. Waste management and disposal can be expensive, and cement producers may receive financial incentives for taking in these materials.
  • Operational efficiency: Local sourcing of AFRs can cut down transportation costs compared to importing traditional fuels from distant sources. If waste materials are available locally, their use in cement production can result in both cost savings and a smaller carbon footprint due to reduced transportation emissions.
  • Energy efficiency gains with optimised kiln operations: AFRs, when properly integrated into cement production, can lead to more efficient energy usage. Some AFRs burn hotter or more efficiently than traditional fuels, improving the energy output per unit of fuel used. This means that the cement plant might be able to produce the same amount of clinker with less energy.

Reduction in carbon emissions

  • Lower greenhouse gas emissions: One of the most significant benefits of AFR adoption is the reduction in CO2 emissions. Many alternative fuels have a lower carbon footprint than traditional fossil fuels. For instance, biomass can be considered carbon-neutral since the CO2 released during its combustion is roughly equivalent to the CO2 absorbed during the plant’s growth. Using waste materials that would otherwise decompose in landfills (producing methane, a potent greenhouse gas) also helps to reduce the overall carbon impact.
  • Reduced reliance on fossil fuels: By replacing fossil fuels with renewable or waste-derived alternatives, cement producers reduce their overall consumption of non-renewable resources, helping to lower their carbon footprint and contribute to global sustainability goals.

Waste diversion

  • Waste-to-energy: By using waste materials as fuel, cement plants contribute to waste diversion from landfills and incinerators. This process transforms waste into a valuable resource, helping to reduce the environmental impact associated with landfill usage and waste incineration, both of which are significant sources of pollution.
  • Circular economy contribution: AFR adoption is an example of a circular economy model, where waste is transformed into valuable resources rather than being discarded. This contributes to the reduction of environmental pollution and promotes sustainability within industries.
  • Resource conservation: By using alternative fuels instead of coal, oil, or gas, cement plants help preserve natural resources. Fossil fuels are finite, and their extraction can cause environmental degradation. By utilising AFRs, companies help reduce the pressure on extracting and depleting natural reserves.
  • Reduced landfill impact: The cement industry can help alleviate the growing challenge of managing waste by using materials that might otherwise end up in landfills. For instance, tire-derived fuels, plastics, and even certain types of municipal solid waste can be repurposed in cement kilns, decreasing the amount of waste needing disposal and contributing to a reduction in landfill waste volume.
  • Energy efficiency and lower resource consumption: Many AFRs, like biomass or waste oils, may have similar or higher calorific values than conventional fuels, contributing to better energy efficiency in the kiln process. This optimised energy use leads to a reduced need for fossil fuels and less overall consumption of resources, which contributes to sustainability efforts.

The adoption of AFRs in cement production delivers clear benefits in terms of cost savings (through reduced fuel and disposal costs, and energy efficiencies) and sustainability (by lowering emissions, reducing waste, conserving resources, and supporting a circular economy). While the transition to AFRs may require upfront investments in technology and infrastructure, the long-term economic and environmental benefits make it a key strategy for the cement industry to align with global sustainability goals, reduce operational costs, and enhance its competitive edge in an increasingly eco-conscious market.

Are there any recent innovations your company has implemented in AFR usage?
Yes, we have done several major projects for utilisation of AFR in our kiln.
Development of robust AFR handling systems: Innovations in AFR handling systems are enabling the safe and efficient use of various waste materials. Technologies such as pipe conveyors and precise metering systems ensure that different types of AFR can be fed into the kiln without environmental impact. These systems are designed to accommodate the varying characteristics of alternative fuels, providing comprehensive support from planning through operation to service and optimisation measures.
Real-time monitoring and quality assessment: Systems enable continuous monitoring of AFR quality, detecting anomalies and ensuring consistent fuel quality. This real-time analysis allows for immediate adjustments to the combustion process, optimising AFR utilisation.
Combustion optimisation through ML: Machine learning algorithms analyse kiln data to optimise combustion processes, ensuring complete fuel combustion and minimising waste. This leads to reduced fuel consumption, lower emissions and enhanced energy efficiency.

Concrete

Smart-Tech in Cement!

Published

on

By

Shares

An invigorating discussion amongst industry experts, on digital transformation, sustainability and cybersecurity, threw interesting insights.

The cement industry is at a crucial juncture, with digital transformation, sustainability, and automation shaping its future. The panel discussion explored key points on digitalisation, sustainability and automation, emphasising the importance of a multidisciplinary approach to modern cement manufacturing.
The webinar was moderated by Dr SB Hegde, Professor, Jain College of Engineering & Technology, Hubli; and Visiting Professor, Pennsylvania State University, USA.

Speakers included:

  • Dr Hemantkumar Aiyer, VP & Head R&D, Nuvoco Vistas Corp
  • Dr Raju Goyal, Executive President, Chief Technical and Sustainability Officer,

UltraTech Cement

  • Dr Rizwan Sabjan, Head – Global Sales and Proposals, Process Control and Optimisation, FLSmidth Cement
  • Prosenjit Dutta, Director Operations, PS Digitech-HR India
  • Raghu Vokuda, Chief Digital Officer,

JSW Cement

  • Sachin Vaidya, Regional GM – Digital, Process Industries, ABB

Role of digital transformation
Dr Hegde emphasised the need for integrating emerging technologies with a multidisciplinary approach to enhance cement plant efficiency. He highlighted that “understanding of systems and how to integrate them” is essential for maximising the benefits of digital tools.
Sabjan echoed this sentiment, stressing that cement plants need to embrace a cultural and mindset shift to fully leverage digital technologies. He pointed out, “Software can do wonders for the plant, but only if the workforce understands and implements it effectively.” He warned against isolated implementations, advocating for a holistic approach where departments like OT, quality control and automation work together.

Sustainability: The road ahead
With sustainability becoming a global priority, cement manufacturers must adapt to new environmental regulations and carbon reduction goals. Dr Hegde posed a critical question: “How is the cement industry moving towards sustainability, and how can plants prepare for these changes?”
Sabjan responded by highlighting the importance of long-term planning and commitment. “Often, discussions happen, but after two months, we forget about them and restart from scratch. This approach will not work. We need a structured, goal-oriented plan with defined KPIs,” he said. Sabjan emphasised the need for a systematic approach, focusing on tangible metrics such as energy savings. “If a plant aims to improve energy efficiency by five percent, it must set this as a goal and track progress,” he suggested.
The discussion also underscored the need for strong leadership to drive digital adoption. “A motivated team and a dynamic leader can make all the difference,” Dr Hegde noted.

Enhancing durability with digital tools
Strength and durability remain critical concerns in cement production. Goyal explained, “Machine learning-based lab technologies enable predictive analysis, allowing manufacturers to forecast 28-day, 7-day, and 1-day strengths before the material leaves the mill.” He also emphasised the importance of soft sensors, which “help predict strength and optimise mix design before production.”
He elaborated on the role of XRF/XRD analysis: “These tools provide elemental and mineralogical insights, allowing for quick adjustments to raw materials and ensuring consistent quality.” Furthermore, digital twins are revolutionising cement quality optimisation. “They allow us to simulate and test mix designs before implementation, reducing errors and optimising durability.”

Cybersecurity risks in IT-OT integration
As cement plants become increasingly digitalised, cybersecurity threats pose significant risks. Vaidya expressed concern that many manufacturers underestimate cybersecurity risks. “As a technology provider, I often struggle to convince cement manufacturers of the importance of cybersecurity. Some benefits are intangible but essential for plant security.”
He outlined major threats, including malware attacks, unauthorised network access, and operational disruptions. “Preventive measures include secure data transactions, network monitoring, and regular cybersecurity training for staff to minimise insider threats,” he said.
He urged cement companies to take cybersecurity seriously: “As digital transformation advances, cybersecurity is not an option—it is a necessity. Without proper security protocols, cement plants risk cyberattacks that could halt production.”
Dr Hegde agreed, adding, “People often ignore cybersecurity until they experience financial loss. Awareness must be proactive, not reactive.”
Dutta stated, “Advanced process control (APC) is a game-changer for cement manufacturing, allowing us to stabilise operations, optimise fuel efficiency, and reduce energy consumption through real-time data insights.”
He emphasised the transformative impact of real-time data analytics and advanced process control (APC) in cement manufacturing. He highlighted that APC enables manufacturers to optimise raw mix design, fuel efficiency and kiln operations through data-driven decision-making. By continuously monitoring critical parameters, APC minimises process variations, improves stability, and reduces energy consumption, leading to cost savings and enhanced productivity. Additionally, he stressed the role of predictive maintenance in preventing equipment failures, extending machinery lifespan and minimising downtime, ultimately ensuring consistent quality and operational efficiency in cement production.

Will Indian plants become fully autonomous?
With AI, robotics and digital twins transforming global cement production, the question arises: Can Indian cement plants become fully autonomous within the next 5–10 years?
Vokuda was skeptical about complete automation in the near future. “Indian cement plants will see significant automation, but full autonomy remains unlikely within a decade. A hybrid model, combining AI-powered decision-making with human oversight, is more practical.”
He highlighted key challenges: “Unlike developed nations, India’s low labour costs may make full automation less attractive. Additionally, digital twin technology in India is still in its early stages, focusing more on process twins than asset twins.”
Another challenge is data management. “AI-ML models require vast amounts of data, which necessitates ultra-low latency networks like 5G and edge computing. We are not yet at that level of technological maturity,” he explained.
Despite these hurdles, he remains optimistic: “While full automation may take longer, the industry will continue to evolve with advancements in digital twins, real-time analytics, and AI-driven insights.”

Conclusion
Experts agree that while technology holds immense potential, its successful implementation depends on cultural shifts, strong leadership, and structured execution.
Key takeaways from the discussion include:

  • Integration of digital tools: Multidisciplinary collaboration is essential for successful implementation.
  • Sustainability goals: Defined KPIs and a long-term approach are crucial.
  • Quality optimisation: Machine learning, real-time analysis, and digital twins are improving cement strength and durability.
  • Cybersecurity: As digital transformation progresses, cement plants must prioritise cybersecurity.
  • Automation: While full autonomy is unlikely soon, AI and digital tools will play a growing role in decision-making.
    As the industry moves forward, cement manufacturers must embrace technological advancements while ensuring resilience against cybersecurity threats and operational challenges. With the right strategies, India’s cement sector can achieve greater efficiency, sustainability, and innovation in the years to come.

ICR’s virtual panel discussion was supported by FLSmidth Cement as the Presenting Partner and ABB as the Gold Partner.

Continue Reading

Concrete

The Science and Application of Grinding Aids

Published

on

By

Shares

Dr SB Hegde discusses the importance of grinding aids as essential chemical additives that enhance cement grinding efficiency, reduce energy consumption and improve overall cement quality in the concluding part of his article.

Grinding aids represent a critical segment of the cement additives market, driven by their ability to enhance grinding efficiency, reduce energy consumption, and improve cement quality. The market dynamics of grinding aids vary significantly across regions, influenced by economic growth, cement production capacities and regulatory environments.

Global market size and growth projections
The global grinding aids market was valued at approximately US $ 1.2 billion in 2023 and is expected to grow at a CAGR of 5.5 per cent from 2023 to 2030, reaching nearly US $ 1.8 billion by 2030.
This growth is fueled by the increasing focus on energy efficiency and sustainable cement production practices worldwide.
Rapid urbanisation and infrastructure development, especially in emerging economies, are major growth drivers. Cement producers are increasingly adopting grinding aids to address rising energy costs, reduce carbon footprints, and improve production efficiencies. For instance, grinding aids have been shown to lower energy consumption by up to 25 per cent, making them a cost-effective solution for plants facing energy price volatility.

Regional trends: Developed vs. developing markets

  • Developed markets: Europe and North America represent mature markets for grinding aids. Europe, driven by stringent environmental regulations such as the EU Emissions Trading System (EU ETS), has witnessed a steady rise in the adoption of low-VOC and eco-friendly grinding aids. Leading players in these markets emphasise sustainability and compliance with regulatory frameworks, contributing to steady demand.
    In North America, the focus is on productivity enhancements in large-scale cement plants, with grinding aids used to achieve finer cement grades and support blended cement production.
  • Developing markets: Emerging economies in Asia-Pacific, the Middle East, and Africa exhibit the fastest growth in grinding aid adoption. The Asia-Pacific region accounted for over 40 per cent of global grinding aid consumption in 2023, with countries like India, China, and Vietnam leading the way. The rapid urbanisation, rising construction activity, and increasing cement production capacities in these regions are
    driving demand.

In Africa, grinding aids are gaining traction as manufacturers focus on optimising production costs in an environment of fluctuating raw material and energy prices.

Market size and adoption rate in India
India, the world’s second-largest cement producer, offers a significant growth opportunity for grinding aids. In 2023, the grinding aids market in India was valued at US$ 150 million, with a projected growth rate of over seven per cent CAGR through 2030. The adoption rate remains relatively low at smaller plants, which prioritise cost-saving over efficiency gains. However, leading manufacturers and integrated cement plants are increasingly embracing grinding aids, particularly for blended cement production.
Blended cements, such as Portland Pozzolana Cement (PPC) and Portland Slag Cement (PSC), account for more than 70 per cent of the Indian cement market. Grinding aids tailored for fly ash and slag-blended cements are in high demand, with some products delivering up to a 15 per cent increase in mill throughput and improved early strength development.

Emerging trends

  • Eco-friendly formulations: The growing demand for sustainable grinding aids has prompted companies to develop low-VOC and biodegradable alternatives.
  • Customised solutions: Grinding aid formulations are increasingly tailored to address specific raw material challenges and production processes, such as VRMs or high-SCM cement blends.
  • Digitalisation: Smart dosing systems integrated with real-time mill monitoring are enabling optimised grinding aid usage, ensuring consistent performance across diverse production conditions.

Bridging the Trust Gap
For cement plant operators, the quality and performance of grinding aids often appear as a ‘black box.’ The lack of transparency in the formulation and quality checks of these additives has historically limited trust and widespread adoption. Grinding aid manufacturers must address this issue by fostering transparency and providing detailed insights into the testing and validation of their products. This would not only instill confidence but also strengthen collaboration with cement companies.
Grinding aid producers should provide robust documentation outlining the physical and chemical characteristics of their formulations, supported by consistent performance data from laboratory tests, industrial-scale trials, and third-party validations. This transparency is essential to demystify grinding aids’ performance and demonstrate their effectiveness across diverse operational conditions.

Emerging innovations in grinding aid chemistry
The path forward for grinding aid manufacturers lies in innovation. Recent research highlights the potential of hybrid formulations combining traditional amines and glycols with advanced polymeric additives like polycarboxylate ethers (PCEs). These hybrid products can address specific challenges such as improving grindability in blended cements containing fly ash or slag, where traditional additives often underperform. Nano-engineering of grinding aids, incorporating nanoparticles for optimised dispersion and enhanced hydration kinetics, represents another promising avenue.

Leveraging AI for optimisation

The integration of artificial intelligence (AI) and machine learning tools into grinding aid application systems is reshaping the cement industry. AI-driven systems enable real-time optimisation of grinding aid dosages by analysing mill performance data, such as power consumption, throughput, and particle size distribution. For example, a cement plant in Europe reported a 15 per cent reduction in specific energy consumption and a 10 per cent
increase in mill throughput using AI-optimised dosing systems. This innovation reduces operational variability and improves the predictability of grinding aid performance.

Expectations from grinding aid producers
The cement industry demands more than just products; it seeks partnerships with grinding aid manufacturers. Key expectations include:
1. Customised formulations: Tailored products designed for specific raw materials, clinker compositions, and mill configurations to maximise efficiency and performance.
2. Eco-friendly additives: Grinding aids with low volatile organic compound (VOC) emissions and biodegradable ingredients that align with the industry’s sustainability goals.
3. Comprehensive technical support: On-site training and technical services to help plant operators understand grinding aid chemistry, application techniques and performance optimisation strategies.
4. Advanced quality control systems: Transparent testing protocols, including real-time quality assurance of grinding aids delivered to cement plants. Regular reporting of performance consistency through defined KPIs like grindability index and Blaine fineness is essential.

Role of cement companies in promoting grinding aid usage
Cement producers must take an active role in promoting grinding aid adoption. Sharing success stories of energy savings, improved mill performance, and enhanced cement quality can encourage industry-wide adoption. For example, an Indian cement manufacturer recently documented a 20 per cent improvement in 28-day compressive strength and a 10 per cent reduction in energy consumption with glycol-based additives, driving interest among peers.
Moreover, collaborative initiatives between cement producers and grinding aid manufacturers, such as joint research programs and knowledge-sharing forums, could lead to significant advancements in grinding technology. Organisations like the Cement Manufacturers’ Association of India and the World Cement Association can facilitate these partnerships.

Conclusion
Grinding aids play a pivotal role in modern cement manufacturing, offering significant advantages in energy efficiency, mill productivity and cement quality. Despite their transformative potential, adoption remains inconsistent due to challenges like raw material variability, operational concerns and limited trust in product formulations. Transparency and collaboration between grinding aid producers and cement manufacturers are critical to addressing these issues and fostering broader acceptance.
Innovations in grinding aid chemistry, including hybrid formulations and nano-engineered additives, have unlocked new possibilities for enhancing grindability and hydration performance. Meanwhile, advancements in artificial intelligence and data analytics have opened avenues for real-time optimisation, ensuring precise dosing and measurable cost savings. These developments underscore the evolving synergy between technology and grinding aid applications.
Globally, the grinding aid market is poised for growth, with developed regions leading adoption and emerging economies like India offering immense potential driven by infrastructure demands. However, tapping into these opportunities requires grinding aid producers to align with industry expectations. Cement manufacturers expect customised solutions, eco-friendly formulations, technical support and transparent quality assurance processes to build trust and confidence.
The path forward demands a collaborative approach. Grinding aid producers must continue investing in research and innovation while actively engaging with the cement industry to educate stakeholders and demonstrate measurable benefits. Concurrently, the cement industry must champion adoption through case studies, knowledge sharing, and regulatory support. Together, these efforts will ensure grinding aids fulfill their promise of enabling a more efficient, sustainable, and resilient cement manufacturing sector.

References
1. Gao, J., Zhang, S., Wang, X., & Ma, B. (2011). “Effect of organic grinding aids on cement properties and the analysis via liquid chromatography-mass spectrometry.” Construction and Building Materials, 25(8), 3600–3605.
2. Amritphale, S. S., Patel, M., & Singh, R. (2017). “Grinding aids: A study on their mechanism of action in cement grinding processes.” Indian Cement Review.
3. Cembureau – The European Cement Association. “Cement grinding optimisation through grinding aids.” Industry Report, 2023.
4. Flatt, R. J., & Schober, I. (2012). “Superplasticisers and the rheology of concrete.” International Journal of Cement Chemistry, 64(4), 91–109.
5. Mejeoumov, G. G. (2007). “Improved cement quality and grinding efficiency by means of closed mill circuit modeling.” PhD Dissertation, Texas A&M University.
6. Global Cement. “Advances in grinding aids: Market trends and new technologies.” Published October 2024.
7. Statista. “Global grinding aids market size and forecast (2023-2030).” Published March 2024.
8. Pal, B. K., & Rath, P. C. (2020). “Influence of grinding aids on particle size distribution, strength, and hydration of cement.” Journal of Materials Science and Applications, 45(2), 234–246.
9. Indian Cement Review. “Emerging market scope of grinding aids in India.” Published July 2023.
10. Zhang, H., Li, X., & Zhao, Y. (2022). “The role of grinding aids in improving cement hydration kinetics.” Journal of Advanced Materials Science, 17(6), 527–540.
11. Sika AG. “Technical Report on Polycarboxylate Ether (PCE) based grinding aids.” Published 2022.
12. Cement and Concrete Research. “AI-driven optimisation in cement grinding: Case studies and industrial applications.” Volume 152, 2023.
13. Taylor, H. F. W. (1997). Cement Chemistry (2nd Edition). Thomas Telford Publishing.
14. Indian Bureau of Mines (IBM). “Market trends and challenges in cement manufacturing.” Annual Report, 2024.
15. World Cement Association. “Sustainability in grinding aids and cement additives.” Published 2024.

About the author:
Dr SB Hegde, a global cement industry leader with over 30 years of experience, is a Professor at Jain College of Engineering, India, and a Visiting Professor at Pennsylvania State University, USA. Recipient of the ‘Global Visionary’ award, Dr Hegde advises India’s think tank CSTEP on hydrogen usage in cement and consults for major cement companies. He also serves on expert panels of key industry bodies and journals globally.

Continue Reading

Concrete

Smart sustainable solutions

Published

on

By

Shares

Efficient bulk material handling has always been critical for seamless production, cost reduction and environmental compliance. Kanika Mathur delves into advanced automation, smart sensors and sustainable transport solutions that are key to overcoming challenges.

The cement industry is a cornerstone of infrastructure development, contributing significantly to economic growth. However, cement production involves the handling and transportation of vast quantities of raw materials such as limestone, clay, iron ore, fly ash and gypsum, as well as the final product—cement itself. Efficient bulk material handling (BMH) systems are crucial in ensuring uninterrupted production, reducing operational costs, minimising material wastage and improving overall efficiency.

In an industry where material losses, dust emissions, and energy consumption are major concerns, advancements in bulk material handling technology are playing a vital role in optimising operations. Automated and energy-efficient bulk handling solutions, such as pneumatic conveying systems, belt conveyors and stacker-reclaimer systems, are transforming the way cement plants manage their raw materials and finished products. This article explores the key aspects of bulk material handling in the cement industry, the latest technological advancements, and the challenges and opportunities in this space.

Importance of bulk material handling
Cement manufacturing requires the continuous movement of raw materials from mines and quarries to processing plants, followed by the transportation of the finished product to storage facilities and distribution networks. Bulk material handling systems ensure that this process runs smoothly, reducing downtime and enhancing productivity.
According to the Global Cement Report (2023), inefficient material handling contributes to 5 – 10 per cent of total cement production losses in India. Additionally, poor handling practices lead to high levels of dust pollution, which is a significant environmental and health concern. With cement production in India expected to reach 500 million metric tonnes by 2025, the demand for advanced and automated material handling systems is increasing rapidly.
Jacob Jose, CEO and Managing Director, Methods India, says, “With our advanced pipe conveyors, downhill conveyors and cross-country conveyors, we have revolutionised the way cement plants transport raw materials. Our technology helps reduce operational costs, minimise environmental impact and improve energy efficiency. Over the years, we have observed a positive impact in the industry, particularly with the growing adoption of pipe conveyors and cross-country conveyors, which have proven to be more efficient and environmentally friendly alternatives to traditional transport methods.”

Key bulk material handling technologies
1. Belt conveyors: The workhorse of cement plants
Belt conveyors are one of the most widely used bulk material handling solutions in the cement industry. They transport raw materials, clinker and finished cement over long distances within the plant and to storage facilities. Modern high-capacity belt conveyors can handle loads exceeding 10,000 tonnes per hour, significantly improving efficiency.

  • Advantages: High efficiency, low operational costs, and reduced manual intervention.
  • Challenges: Belt wear and tear, spillage, and maintenance requirements.
  • Technological advancement: The introduction of heat-resistant and fire-retardant conveyor belts has improved durability, while sensor-based predictive maintenance systems help detect belt failures before they occur.

2. Stacker and reclaimer systems: Optimising storage and retrieval
Stackers and reclaimers are essential for managing bulk raw materials in cement plants. Stackers pile materials such as limestone, coal, and gypsum, while reclaimers retrieve them for processing. These systems ensure homogeneous blending, reducing material variability and enhancing cement quality.

  • Latest innovation: Automated stacker and reclaimer systems with AI-driven optimisation help maximise storage space and minimise
    retrieval time.
  • Efficiency gains: Newer stacker-reclaimer designs allow for material recovery rates of over 90 per cent, reducing wastage and ensuring a steady feed to the production line.

3. Pneumatic conveying systems: Dust-free material transfer
Pneumatic conveying systems use air pressure or vacuum systems to move powdered and granular materials such as fly ash, cement and kiln dust through pipelines. They are particularly useful in reducing dust emissions and preventing material contamination.

  • Advantages: Dust-free operation, reduced environmental impact, and minimal maintenance.
  • Industry adoption: Many Indian cement plants are shifting from mechanical conveyors to high-pressure pneumatic conveying systems to comply with pollution control regulations set by the Central Pollution Control Board (CPCB).

4. Screw conveyors and bucket elevators: Compact and versatile solutions

  • Screw conveyors: Used for short-distance material movement, particularly for handling fine and powdered materials such as cement, gypsum, and pulverised coal.
  • Bucket elevators: Ideal for vertical material transport, commonly used for lifting raw meal, cement, and clinker to storage silos.
  • Technological upgrades: The introduction of wear-resistant alloy buckets and variable-speed drives has enhanced the reliability and efficiency of these systems.

Challenges in bulk material handling
Despite significant advancements, several challenges continue to hinder bulk material handling efficiency in cement plants:
1. Material spillage and dust emissions
Material spillage and dust emissions pose environmental, health, and financial challenges. Uncontrolled dust emissions from conveyors, transfer points, and storage facilities not only violate regulatory norms but also lead to material losses. Studies show that up to three per cent of bulk materials are lost due to improper handling in Indian cement plants.

  • Solution: Enclosed conveyors, dust suppression systems, and bag filters help reduce dust pollution.

2. High energy consumption
Bulk material handling systems consume a significant amount of energy, especially in large cement plants where materials need to be transported over long distances. According to a CII (Confederation of Indian Industry) report (2023), energy costs account for nearly 40 per cent of total production expenses in cement manufacturing.

  • Solution: Energy-efficient conveyor motors, regenerative braking systems, and smart automation can help reduce power consumption.

3. Wear and tear of equipment
Continuous exposure to abrasive materials like limestone and clinker leads to significant wear and tear in bulk material handling equipment, increasing maintenance costs and downtime.

  • Solution: The use of wear-resistant liners, ceramic-coated conveyor belts, and automated lubrication systems extends equipment life and reduces maintenance downtime.

4. Logistics and transportation bottlenecks
Moving bulk materials from cement plants to distribution centers requires an efficient logistics network. Rail and road congestion, inadequate infrastructure, and high transportation costs often result in delays and increased operational expenses.

  • Solution: Integrated bulk terminals and automated dispatch systems improve supply chain efficiency. The Indian government’s push for multi-modal logistics parks (MMLPs) is expected to enhance cement transportation efficiency.

Indrendra Singh Raghuwanshi, Sales Head – Cement Division, ATS Conveyors, says, “Ensuring that our systems handle diverse alternative fuels reliably is at the core of our engineering approach. Alternative fuels, such as biomass, MSW, RDF and industrial waste vary significantly in terms of composition, size, moisture content, and combustibility. All our systems are designed with flexibility and robustness to meet the unique challenges posed by these fuels while maintaining operational efficiency and safety. Also, before deployment to site, we conduct extensive testing for our equipment to ensure that they can reliably handle alternative fuels under a variety of conditions. This includes testing different fuel types, moisture levels, and feeding rates to identify any potential challenges. Our systems are then fine-tuned during the commissioning phase to ensure optimal performance in real-world conditions.”

The future is automation and digitalisation

The future of bulk material handling in the cement industry lies in automation, artificial intelligence (AI), and digital twin technologies. Leading cement manufacturers are investing in IoT-enabled bulk handling systems that provide real-time monitoring, predictive maintenance, and AI-based process optimisation.

1. Smart sensors and predictive maintenance
AI-powered sensors are now being integrated into conveyors and stackers to detect early signs of wear and tear, enabling proactive maintenance and reducing unplanned downtime.
Nishith Kundar, Co-Managing Partner, Cemtech Engineering Solutions, says, “One of our latest advancements is the introduction of drone inspection technology. Since silos are confined spaces, it is often difficult to assess their internal condition, particularly at the top. We have incorporated drone inspections for both pre-cleaning and post-cleaning assessments. Pre-cleaning drone inspections help us analyse the extent of material buildup, while post-cleaning inspections ensure that the silo has been thoroughly cleaned. This technology is also applicable to pre-heaters, allowing us to monitor internal conditions in confined spaces. By leveraging drone technology, we provide precise and efficient cleaning services, improving safety and operational efficiency.”

2. Digital twin technology
Digital twin models create a virtual replica of bulk handling systems, allowing operators to simulate various scenarios and optimise material flow before implementing changes in real time.

3. Automated Guided Vehicles (AGVs) and robotics
The adoption of AGVs and robotic material handling systems is gaining traction in cement plants for automated raw material transport, warehouse management, and truck loading/unloading.
Gaurav Gautam, Business Unit Head,
Beumer Group, says, “A major recent focus has been integrating digital monitoring tools into our equipment. These tools include condition monitoring sensors that track temperature variations, vibrations and operational anomalies in real-time. By capturing this data, plant operators can take proactive actions when conditions start deviating from normal parameters. This approach prevents sudden breakdowns and, in the long term, enhances the durability and reliability of the equipment.”
“Moving forward, digitalisation will play a key role in tackling wear and tear challenges. By increasing the number of data capture points and applying advanced analytics tools, we can gain deeper insights into equipment health and performance, ensuring a more efficient and predictive maintenance strategy,” he adds.

Conclusion
Efficient bulk material handling is the backbone of cement manufacturing, ensuring a seamless flow of raw materials and finished products while minimising environmental impact and operational costs. As India’s cement industry moves towards higher production capacities and stricter environmental norms, investing in advanced, automated and energy-efficient bulk handling solutions will be key to maintaining competitiveness.
By embracing smart technologies, automation and sustainable handling practices, cement manufacturers can enhance productivity, reduce material losses, and contribute to a greener and more efficient future for the industry.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds