Economy & Market
Science and Application of Grinding Aids
Published
1 year agoon
By
admin
Dr SB Hegde discusses the importance of grinding aids as essential chemical additives that enhance cement grinding efficiency, reduce energy consumption and improve overall cement quality.
Grinding aids are chemical additives used in the manufacturing of cement to improve the grinding efficiency and performance of the material. These additives have become a critical component of the cement industry, playing a significant role in optimising mill output, reducing energy consumption, and enhancing the quality of cement. However, the adoption of grinding aids varies significantly across regions, influenced by cost considerations, regulatory frameworks, and technical awareness.
Despite their utility, grinding aids remain underutilised in certain regions. For instance, Europe has achieved over 80 per cent penetration of grinding aids due to stringent energy efficiency norms and advanced technologies, while India lags at around 30 per cent penetration, primarily due to cost sensitivity and limited technical expertise. Additionally, inconsistent quality and improper dosing often lead to suboptimal performance, underlining the need for stringent quality control and process optimisation.
The global market for grinding aids is expanding, projected to reach $ 1.2 billion by 2030, with a CAGR of 5.5 per cent. In India, the market is currently valued at `500 crore (2024). Innovations in the chemistry of grinding aids and the push for sustainable, bio-based additives are opening new avenues for adoption. Moreover, real-time monitoring and digital integration in cement plants are poised to revolutionise grinding aid applications by ensuring precise dosing and performance optimisation.
This article delves into the science, chemistry, and application of grinding aids, exploring their role in improving milling efficiency, quality control, and concrete performance. It further addresses market dynamics, challenges in adoption, and the path forward for maximising the benefits of grinding aids in cement manufacturing.
Chemistry of Grinding Aids
Grinding aids are chemical compounds specifically designed to improve the efficiency of the cement grinding process. Their effectiveness arises from their ability to modify the physical and chemical interactions between cement particles during grinding, thereby reducing agglomeration and improving the flowability of the material. This section delves into the nomenclature, chemistry, and scientific characteristics of grinding aids, providing an advanced understanding of their role in cement manufacturing.
2.1. Nomenclature and Classification
Grinding aids are generally categorised based on their chemical composition and functional groups. The most common types include:
1. Amine-based Compounds:
- Triethanolamine (TEA)
- Diethanolamine (DEA)
- Monoethanolamine (MEA)
2. Glycol-based Compounds:
- Ethylene glycol (EG)
- Diethylene glycol (DEG)
- Polyethylene glycol (PEG)
3. Other Organic Compounds:
- Lignosulfonates
- Hydroxycarboxylic acids (e.g., citric acid)
4. Hybrid Formulations:
- Combinations of amines and glycols for enhanced performance
- Additives with functionalised polymers provide multiple benefits, such as improving hydration kinetics and early strength development.
These compounds are often blended with performance enhancers, such as surfactants or dispersants, to achieve desired operational and material properties.
2.2. Chemical Mechanism of Action
Grinding aids operate at the molecular level by modifying surface properties and reducing inter-particle forces. The primary mechanisms include:
1. Reduction of Surface Energy:
- Cement particles exhibit high surface energy due to fracture during grinding. Grinding aids adsorb onto particle surfaces, reducing their surface energy and preventing agglomeration.
2. Electrostatic Neutralisation:
- Many grinding aids neutralise electrostatic charges that cause particles to attract each other, thus improving dispersion.
3. Lubrication Effect:
- Glycol-based grinding aids act as lubricants at the contact points between particles and grinding media, reducing friction and energy consumption.
4. Improved Particle Size Distribution (PSD):
- Grinding aids influence PSD by stabilising fine particles and preventing the re-agglomeration of smaller fractions, resulting in improved cement quality.
2.3. Scientific Characteristics and Properties
The effectiveness of grinding aids depends on their physicochemical properties and interactions with cement clinker phases.
1. Molecular Weight and Structure:
- Low molecular weight compounds, such as TEA, are highly effective in reducing agglomeration but may increase water demand in the final cement.
- High molecular weight compounds, such as PEG, provide additional benefits like workability and slump retention.
2. Hydrophilicity and Hydrophobicity:
- Hydrophilic compounds, such as DEG, enhance water compatibility, while hydrophobic additives improve the grinding of clinker with high limestone content.
3. pH and Ionic Strength:
- Most grinding aids function optimally within a specific pH range (typically 7-9) to ensure effective adsorption on clinker particles.
- Ionic strength plays a critical role in the interaction of grinding aids with calcium ions present in the clinker.
4. Thermal Stability:
- The thermal decomposition of grinding aids during the grinding process can influence their effectiveness. For example, amine-based compounds degrade at temperatures above 200°C, whereas glycol-based compounds remain stable under similar conditions.
2.4. Advanced Chemical Interactions with Clinker Phases
Grinding aids interact differently with the primary clinker phases—C3S (alite), C2S (belite), C3A (tricalcium aluminate), and C4AF (ferrite).
1. C3S (Alite):
- Glycol-based compounds enhance the grinding of alite due to their ability to reduce crystalline hardness.
- TEA has been shown to accelerate the hydration of C3S, improving early strength.
2. C2S (Belite):
- Grinding aids have limited direct interaction with belite but indirectly improve its grinding efficiency by stabilising the fine particles in the cement mix.
3. C3A (Tricalcium Aluminate):
- Amine-based grinding aids are highly effective in modifying the hydration kinetics of C3A, thereby influencing setting time and workability.
4. C4AF (Ferrite):
- Ferrite phases are less reactive, but grinding aids reduce the grinding energy required for these phases, indirectly contributing to overall mill efficiency.
2.5. Examples of Performance Variation
Performance variations of grinding aids depend on clinker composition, mill type, and operating conditions. For instance:
- A study revealed that the use of TEA in ball mills improved the grinding efficiency by 15 per cent, while the same compound exhibited a 20 per cent improvement in vertical roller mills.
- Glycol-based aids showed superior performance with clinker containing higher SO3 content, improving Blaine fineness by 10 per cent compared to amine-based aids.
- Customised formulations combining TEA and PEG reduced specific power consumption by eight per cent in a cement plant in South India.
2.6. Quality Control and Standardisation
To ensure consistent performance, grinding aids undergo rigorous quality control tests, including:
1. Fourier Transform Infrared Spectroscopy (FTIR): Used to identify functional groups and confirm chemical composition.
2. Gas Chromatography-Mass Spectrometry (GC-MS): Determines the purity and presence of byproducts in grinding aid formulations.
3. Thermogravimetric Analysis (TGA): Assesses thermal stability and decomposition characteristics.
4. Surface Area and PSD Analysis: Evaluates the impact of grinding aids on cement particle size distribution and specific surface area.
5. Mill Trials: Performance is validated under real-world conditions by assessing mill output, specific power consumption, and cement quality metrics like Blaine fineness and compressive strength.
Performance Evaluation of Grinding Aids
The performance evaluation of grinding aids is crucial in determining their efficiency and overall contribution to cement manufacturing processes. A systematic assessment involves analysing key performance indicators (KPIs) such as energy consumption, mill output, and particle size distribution, while also evaluating their impact on cement hydration, setting time, and compressive strength. These evaluations, carried out both in laboratories and real-world industrial settings, provide critical insights into the effectiveness of grinding aids.
3.1. Key Performance Indicators (KPIs)
Energy consumption serves as a primary metric for evaluating grinding aids, as their primary objective is to reduce the energy required for grinding. Studies have revealed that grinding aids can lower specific energy consumption by five to 25 per cent, contingent upon factors such as cement type, mill configuration, and operating parameters. For instance, a South Indian cement plant achieved an eight per cent reduction in specific power consumption with a glycol-based grinding aid in a ball mill, equating to considerable cost savings.
Mill output is another essential parameter. Grinding aids enhance material flowability and reduce agglomeration, leading to increased throughput. For example, polycarboxylate ether (PCE)-based grinding aids have been shown to boost mill output in vertical roller mills by 10 to 15 per cent compared to traditional amine-based formulations. This improvement is due to the superior dispersion and grinding efficiency offered by PCE-based formulations.
Particle size distribution (PSD) is significantly impacted by grinding aids, as they help achieve a finer and more uniform grind. This results in improved packing density and reduced voids in the cement matrix. Laboratory tests with triethanolamine (TEA)-based grinding aids have demonstrated a 12 per cent increase in Blaine fineness, alongside a notable reduction in oversize particles (>45 microns).
3.2. Laboratory Testing Methods for Grinding Aids
To comprehensively evaluate grinding aids, laboratory testing under controlled conditions is indispensable. Standardised methods include:
Grinding Efficiency Tests: Laboratory ball mills simulate industrial grinding conditions. The addition of grinding aids is assessed by measuring power draw, material flow rate, and specific residue levels. These tests provide quantifiable data on grinding efficiency improvements.
Hydration Studies: Techniques like isothermal calorimetry and X-ray diffraction (XRD) monitor hydration kinetics and phase formation. Amine-based grinding aids accelerate calcium silicate
hydrate (C-S-H) formation, contributing to early strength development.
Rheology and Flowability Tests: Grinding aids improve flowability, evaluated using rheometers and flowability indices. Glycol-based additives typically enhance flow properties by 15 to 20 per cent, reducing clogging and promoting smoother mill operations.
Compressive Strength Testing: Cement mortars incorporating grinding aids are subjected to compressive strength tests at various curing ages (e.g., 1, 3, 7, and 28 days). TEA-based grinding aids exhibit a 10 to 15 per cent improvement in early compressive strength, while PCE-based formulations deliver balanced strength gains across all curing ages.
3.3. Effect of Grinding Aids on Cement Hydration, Setting Time, and Compressive Strength Development
Grinding aids play a pivotal role in influencing cement hydration. Amine-based formulations, such as TEA and diethanolamine (DEA), enhance alite (C3S) hydration, leading to accelerated setting and early strength gain. However, excessive dosages can retard ettringite formation, thereby delaying setting time.
Glycol-based additives improve particle dispersion, ensuring uniform hydration. This results in enhanced compressive strength development at all ages. For instance, laboratory experiments demonstrated an eight per cent increase in 28-day compressive strength with ethylene glycol-based grinding aids compared to untreated cement.
Polycarboxylate ether-based grinding aids represent a modern advancement, offering dual benefits of improved grinding efficiency and compatibility with chemical admixtures like superplasticisers. This synergy optimises hydration, resulting in superior strength development. Studies have shown a 12 per cent increase in 28-day compressive strength for PCE-based grinding aids in cement containing supplementary materials like fly ash and slag.
3.4. Examples of Performance Variations with Specific Grinding Aids
Performance variations among grinding aids are influenced by their chemical compositions and the specific characteristics of the grinding process.
For example:
- A North American cement plant achieved a 15 per cent increase in mill throughput and a 10 per cent reduction in specific energy consumption after transitioning from TEA-based to hybrid amine-glycol grinding aids.
- Comparative trials revealed that diethylene glycol (DEG) is more effective in reducing grinding energy for clinker with high C3A content, while TEA offers superior performance for clinker with low gypsum levels.
- A European cement manufacturer observed significant quality improvements with PCE-based grinding aids, particularly for blended cements containing up to 30 per cent fly ash. These cements exhibited narrower PSD and enhanced durability characteristics.
Challenges in Grinding Aid Adoption
Grinding aids, despite their proven benefits in enhancing milling efficiency and improving cement quality, face several challenges in widespread adoption. Understanding these challenges requires a detailed analysis of operational, environmental, and regulatory factors at both global and regional levels, including India. This section delves into the barriers to the extensive use of grinding aids, with a focus on technical, logistical, and market-driven aspects.
4.1. Reasons for Limited Popularity in Some Regions and Plants
The limited adoption of grinding aids in certain regions and plants often stems from economic constraints and lack of awareness. In emerging markets, the upfront cost of grinding aids may deter smaller or cost-sensitive cement producers. For example, in India, many mid-sized plants operate on tight profit margins and prioritise short-term cost reductions over long-term efficiency gains. Globally, smaller plants in Africa and Southeast Asia also exhibit lower adoption rates due to financial constraints and limited technical knowledge about the benefits of grinding aids.
Additionally, plant operators may hesitate to incorporate grinding aids due to the perception that these additives increase operational complexity. Variations in clinker composition and grinding equipment across plants often necessitate customised formulations of grinding aids, which can create challenges in consistency and effectiveness. For instance, cement plants using vertical roller mills (VRMs) often require different grinding aid formulations compared to those with ball mills, leading to variability in performance and discouraging adoption.
4.2. Impact of Raw Material Variability on Grinding Aid Effectiveness
The variability of raw materials, including clinker and gypsum, presents a significant challenge to the consistent performance of grinding aids. Differences in chemical composition, mineralogy, and moisture content of raw materials can influence the reactivity and efficacy of grinding aids. For example, clinkers with high levels of alite (C3S) and belite (C2S) require different formulations compared to those with elevated free lime or alkali content.
In India, raw material variability is particularly pronounced due to the use of diverse limestone sources and blended cements containing fly ash, slag, or other supplementary cementitious materials (SCMs). A study conducted by a leading Indian cement producer revealed that grinding aids optimised for clinker-based cement exhibited suboptimal performance when used for fly ash-blended cement, resulting in inconsistent strength development and mill throughput.
Globally, similar issues arise in regions where raw material quality is inconsistent. Cement plants in Southeast Asia, for instance, frequently encounter challenges due to high moisture content in limestone and clay, which affects grinding efficiency and necessitates frequent adjustments in grinding aid dosage.
4.3. Concerns Over Operational and Maintenance Issues in Cement Mills
Operational and maintenance challenges in cement mills also contribute to the limited adoption of grinding aids. Excessive use of grinding aids can lead to unwanted side effects, such as excessive coating of grinding media and mill internals, which can reduce grinding efficiency and increase maintenance costs. For example, ethylene glycol-based grinding aids, when used at high dosages, may lead to the formation of sticky residues, necessitating frequent cleaning of mill components.
Furthermore, some plant operators report issues related to the compatibility of grinding aids with chemical admixtures or process conditions. In certain cases, the use of amine-based grinding aids has been linked to increased foaming in water-recirculating systems, leading to operational disruptions and higher water treatment costs.
Additionally, the adoption of grinding aids in plants using VRMs is often hindered by the sensitivity of these mills to operating parameters. Variations in grinding aid dosage or clinker properties can significantly affect mill vibrations and stability, creating operational challenges.
4.4. Environmental and Regulatory Challenges Related to Grinding Aids
Environmental concerns and regulatory restrictions represent another significant barrier to the widespread adoption of grinding aids. Many grinding aids contain volatile organic compounds (VOCs), which are subject to stringent environmental regulations in developed markets such as Europe and North America. For instance, amine-based formulations, including triethanolamine (TEA) and diethanolamine (DEA), are classified as hazardous substances in some regions, limiting their usage.
In India, while environmental regulations are less restrictive, there is growing pressure from policymakers and environmental organisations to minimise the carbon footprint of cement manufacturing. Grinding aid manufacturers face the challenge of developing eco-friendly formulations that meet performance requirements while adhering to environmental standards. This has spurred interest in biodegradable and low-VOC grinding aids, although their higher cost remains a deterrent.
Additionally, regulatory approval processes for new grinding aid formulations can be time-consuming and costly, particularly in regions with strict compliance standards. This limits the introduction of innovative products in markets such as the EU, where REACH (Registration, Evaluation, Authorisation, and Restriction of Chemicals) compliance is mandatory.
About the author:
Dr SB Hegde, a global cement industry leader with over 30 years of experience, is a Professor at Jain College of Engineering, India, and a Visiting Professor at Pennsylvania State University, USA. Recipient of the ‘Global Visionary’ award, Dr Hegde advises India’s think tank CSTEP on hydrogen usage in cement and consults for major cement companies. He also serves on expert panels of key industry bodies and journals globally.
Concrete
Refractory demands in our kiln have changed
Published
21 hours agoon
February 20, 2026By
admin
Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, points out why performance, predictability and life-cycle value now matter more than routine replacement in cement kilns.
As Indian cement plants push for higher throughput, increased alternative fuel usage and tighter shutdown cycles, refractory performance in kilns and pyro-processing systems is under growing pressure. In this interview, Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, shares how refractory demands have evolved on the ground and how smarter digital monitoring is improving kiln stability, uptime and clinker quality.
How have refractory demands changed in your kiln and pyro-processing line over the last five years?
Over the last five years, refractory demands in our kiln and pyro line have changed. Earlier, the focus was mostly on standard grades and routine shutdown-based replacement. But now, because of higher production loads, more alternative fuels and raw materials (AFR) usage and greater temperature variation, the expectation from refractory has increased.
In our own case, the current kiln refractory has already completed around 1.5 years, which itself shows how much more we now rely on materials that can handle thermal shock, alkali attack and coating fluctuations. We have moved towards more stable, high-performance linings so that we don’t have to enter the kiln frequently for repairs.
Overall, the shift has been from just ‘installation and run’ to selecting refractories that give longer life, better coating behaviour and more predictable performance under tougher operating conditions.
What are the biggest refractory challenges in the preheater, calciner and cooler zones?
• Preheater: Coating instability, chloride/sulphur cycles and brick erosion.
• Calciner: AFR firing, thermal shock and alkali infiltration.
• Cooler: Severe abrasion, red-river formation and mechanical stress on linings.
Overall, the biggest challenge is maintaining lining stability under highly variable operating conditions.
How do you evaluate and select refractory partners for long-term performance?
In real plant conditions, we don’t select a refractory partner just by looking at price. First, we see their past performance in similar kilns and whether their material has actually survived our operating conditions. We also check how strong their technical support is during shutdowns, because installation quality matters as much as the material itself.
Another key point is how quickly they respond during breakdowns or hot spots. A good partner should be available on short notice. We also look at their failure analysis capability, whether they can explain why a lining failed and suggest improvements.
On top of this, we review the life they delivered in the last few campaigns, their supply reliability and their willingness to offer plant-specific custom solutions instead of generic grades. Only a partner who supports us throughout the life cycle, which includes selection, installation, monitoring and post-failure analysis, fits our long-term requirement.
Can you share a recent example where better refractory selection improved uptime or clinker quality?
Recently, we upgraded to a high-abrasion basic brick at the kiln outlet. Earlier we had frequent chipping and coating loss. With the new lining, thermal stability improved and the coating became much more stable. As a result, our shutdown interval increased and clinker quality remained more consistent. It had a direct impact on our uptime.
How is increased AFR use affecting refractory behaviour?
Increased AFR use is definitely putting more stress on the refractory. The biggest issue we see daily is the rise in chlorine, alkalis and volatiles, which directly attack the lining, especially in the calciner and kiln inlet. AFR firing is also not as stable as conventional fuel, so we face frequent temperature fluctuations, which cause more thermal shock and small cracks in the lining.
Another real problem is coating instability. Some days the coating builds too fast, other days it suddenly drops, and both conditions impact refractory life. We also notice more dust circulation and buildup inside the calciner whenever the AFR mix changes, which again increases erosion.
Because of these practical issues, we have started relying more on alkali-resistant, low-porosity and better thermal shock–resistant materials to handle the additional stress coming from AFR.
What role does digital monitoring or thermal profiling play in your refractory strategy?
Digital tools like kiln shell scanners, IR imaging and thermal profiling help us detect weakening areas much earlier. This reduces unplanned shutdowns, helps identify hotspots accurately and allows us to replace only the critical sections. Overall, our maintenance has shifted from reactive to predictive, improving lining life significantly.
How do you balance cost, durability and installation speed during refractory shutdowns?
We focus on three points:
• Material quality that suits our thermal profile and chemistry.
• Installation speed, in fast turnarounds, we prefer monolithic.
• Life-cycle cost—the cheapest material is not the most economical. We look at durability, future downtime and total cost of ownership.
This balance ensures reliable performance without unnecessary expenditure.
What refractory or pyro-processing innovations could transform Indian cement operations?
Some promising developments include:
• High-performance, low-porosity and nano-bonded refractories
• Precast modular linings to drastically reduce shutdown time
• AI-driven kiln thermal analytics
• Advanced coating management solutions
• More AFR-compatible refractory mixes
These innovations can significantly improve kiln stability, efficiency and maintenance planning across the industry.
Concrete
Digital supply chain visibility is critical
Published
21 hours agoon
February 20, 2026By
admin
MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, discusses how data, discipline and scale are turning Industry 4.0 into everyday business reality.
Over the past five years, digitalisation in Indian cement manufacturing has moved decisively beyond experimentation. Today, it is a strategic lever for cost control, operational resilience and sustainability. In this interview, MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, explains how integrated digital foundations, advanced analytics and real-time visibility are helping deliver measurable business outcomes.
How has digitalisation moved from pilot projects to core strategy in Indian cement manufacturing over the past five years?
Digitalisation in Indian cement has evolved from isolated pilot initiatives into a core business strategy because outcomes are now measurable, repeatable and scalable. The key shift has been the move away from standalone solutions toward an integrated digital foundation built on standardised processes, governed data and enterprise platforms that can be deployed consistently across plants and functions.
At Shree Cement, this transition has been very pragmatic. The early phase focused on visibility through dashboards, reporting, and digitisation of critical workflows. Over time, this has progressed into enterprise-level analytics and decision support across manufacturing and the supply chain,
with clear outcomes in cost optimisation, margin protection and revenue improvement through enhanced customer experience.
Equally important, digital is no longer the responsibility of a single function. It is embedded into day-to-day operations across planning, production, maintenance, despatch and customer servicing, supported by enterprise systems, Industrial Internet of Things (IIoT) data platforms, and a structured approach to change management.
Which digital interventions are delivering the highest ROI across mining, production and logistics today?
In a capital- and cost-intensive sector like cement, the highest returns come from digital interventions that directly reduce unit costs or unlock latent capacity without significant capex.
Supply chain and planning (advanced analytics): Tools for demand forecasting, S&OP, network optimisation and scheduling deliver strong returns by lowering logistics costs, improving service levels, and aligning production with demand in a fragmented and regionally diverse market.
Mining (fleet and productivity analytics): Data-led mine planning, fleet analytics, despatch discipline, and idle-time reduction improve fuel efficiency and equipment utilisation, generating meaningful savings in a cost-heavy operation.
Manufacturing (APC and process analytics): Advanced Process Control, mill optimisation, and variability reduction improve thermal and electrical efficiency, stabilise quality and reduce rework and unplanned stoppages.
Customer experience and revenue enablement (digital platforms): Dealer and retailer apps, order visibility and digitally enabled technical services improve ease of doing business and responsiveness. We are also empowering channel partners with transparent, real-time information on schemes, including eligibility, utilisation status and actionable recommendations, which improves channel satisfaction and market execution while supporting revenue growth.
Overall, while Artificial Intelligence (AI) and IIoT are powerful enablers, it is advanced analytics anchored in strong processes that typically delivers the fastest and most reliable ROI.
How is real-time data helping plants shift from reactive maintenance to predictive and prescriptive operations?
Real-time and near real-time data is driving a more proactive and disciplined maintenance culture, beginning with visibility and progressively moving toward prediction and prescription.
At Shree Cement, we have implemented a robust SAP Plant Maintenance framework to standardise maintenance workflows. This is complemented by IIoT-driven condition monitoring, ensuring consistent capture of equipment health indicators such as vibration, temperature, load, operating patterns and alarms.
Real-time visibility enables early detection of abnormal conditions, allowing teams to intervene before failures occur. As data quality improves and failure histories become structured, predictive models can anticipate likely failure modes and recommend timely interventions, improving MTBF and reducing downtime. Over time, these insights will evolve into prescriptive actions, including spares readiness, maintenance scheduling, and operating parameter adjustments, enabling reliability optimisation with minimal disruption.
A critical success factor is adoption. Predictive insights deliver value only when they are embedded into daily workflows, roles and accountability structures. Without this, they remain insights without action.
In a cost-sensitive market like India, how do cement companies balance digital investment with price competitiveness?
In India’s intensely competitive cement market, digital investments must be tightly linked to tangible business outcomes, particularly cost reduction, service improvement, and faster decision-making.
This balance is achieved by prioritising high-impact use cases such as planning efficiency, logistics optimisation, asset reliability, and process stability, all of which typically deliver quick payback. Equally important is building scalable and governed digital foundations that reduce the marginal cost of rolling out new use cases across plants.
Digitally enabled order management, live despatch visibility, and channel partner platforms also improve customer centricity while controlling cost-to-serve, allowing service levels to improve without proportionate increases in headcount or overheads.
In essence, the most effective digital investments do not add cost. They protect margins by reducing variability, improving planning accuracy, and strengthening execution discipline.
How is digitalisation enabling measurable reductions in energy consumption, emissions, and overall carbon footprint?
Digitalisation plays a pivotal role in improving energy efficiency, reducing emissions and lowering overall carbon intensity.
Real-time monitoring and analytics enable near real-time tracking of energy consumption and critical operating parameters, allowing inefficiencies to be identified quickly and corrective actions to be implemented. Centralised data consolidation across plants enables benchmarking, accelerates best-practice adoption, and drives consistent improvements in energy performance.
Improved asset reliability through predictive maintenance reduces unplanned downtime and process instability, directly lowering energy losses. Digital platforms also support more effective planning and control of renewable energy sources and waste heat recovery systems, reducing dependence on fossil fuels.
Most importantly, digitalisation enables sustainability progress to be tracked with greater accuracy and consistency, supporting long-term ESG commitments.
What role does digital supply chain visibility play in managing demand volatility and regional market dynamics in India?
Digital supply chain visibility is critical in India, where demand is highly regional, seasonality is pronounced, and logistics constraints can shift rapidly.
At Shree Cement, planning operates across multiple horizons. Annual planning focuses on capacity, network footprint and medium-term demand. Monthly S&OP aligns demand, production and logistics, while daily scheduling drives execution-level decisions on despatch, sourcing and prioritisation.
As digital maturity increases, this structure is being augmented by central command-and-control capabilities that manage exceptions such as plant constraints, demand spikes, route disruptions and order prioritisation. Planning is also shifting from aggregated averages to granular, cost-to-serve and exception-based decision-making, improving responsiveness, lowering logistics costs and strengthening service reliability.
How prepared is the current workforce for Industry 4.0, and what reskilling strategies are proving most effective?
Workforce preparedness for Industry 4.0 is improving, though the primary challenge lies in scaling capabilities consistently across diverse roles.
The most effective approach is to define capability requirements by role and tailor enablement accordingly. Senior leadership focuses on digital literacy for governance, investment prioritisation, and value tracking. Middle management is enabled to use analytics for execution discipline and adoption. Frontline sales and service teams benefit from
mobile-first tools and KPI-driven workflows, while shop-floor and plant teams focus on data-driven operations, APC usage, maintenance discipline, safety and quality routines.
Personalised, role-based learning paths, supported by on-ground champions and a clear articulation of practical benefits, drive adoption far more effectively than generic training programmes.
Which emerging digital technologies will fundamentally reshape cement manufacturing in the next decade?
AI and GenAI are expected to have the most significant impact, particularly when combined with connected operations and disciplined processes.
Key technologies likely to reshape the sector include GenAI and agentic AI for faster root-cause analysis, knowledge access, and standardisation of best practices; industrial foundation models that learn patterns across large sensor datasets; digital twins that allow simulation of process changes before implementation; and increasingly autonomous control systems that integrate sensors, AI, and APC to maintain stability with minimal manual intervention.
Over time, this will enable more centralised monitoring and management of plant operations, supported by strong processes, training and capability-building.
Concrete
Cement Additives for Improved Grinding Efficiency
Published
21 hours agoon
February 20, 2026By
admin
Shreesh A Khadilkar discusses how advanced additive formulations allow customised, high-performance and niche cements—offering benefits while supporting blended cements and long-term cost and carbon reduction.
Cement additives are chemicals (inorganic and organic) added in small amounts (0.01 per cent to 0.2 per cent by weight) during cement grinding. Their main job? Reduce agglomeration, prevent pack-set, and keep the mill running smoother. Thus, these additions primarily improve, mill thru-puts, achieve lower clinker factor in blended cements PPC/PSC/PCC. Additionally, these additives improve concrete performance of cements or even for specific special premium cements with special USPs like lower setting times or for reduced water permeability in the resultant cement mortars and concrete (water repellent /permeation resistant cements), corrosion resistance etc.
The cement additives are materials which could be further differentiated as:
Grinding aids:
• Bottlenecks in cement grinding capacity, such materials can enhance throughputs
• Low specific electrical energy consumption during cement grinding
• Reduce “Pack set” problem and improve powder flowability
Quality improvers:
• Opportunity for further clinker factor reduction
• Solution for delayed cement setting or strength development issues at early or later ages.
Others: materials which are used for specific special cements with niche properties as discussed in the subsequent pages.
When cement additives are used as grinding aids or quality improvers, in general the additives reduce the inter-particle forces; reduce coating over grinding media and mill internals. Due to creation of like charges on cement particles, there is decreased agglomeration, much improved flowability, higher generation of fines better dispersion of particles in separator feed and reduction of mill filling level (decrease of residence time). However, in VRM grinding; actions need to be taken to have stable bed formation on the table.
It has been reported in literature and also substantiated by a number of detailed evaluations of different cement additive formulations in market, that the cement additive formulations are a combination of different chemical compounds, typically composed of:
- Accelerator/s for the hydration reaction of cements which are dependent on the acceleration effect desired in mortar compressive strengths at early or later ages, the choice of the materials is also dependent on clinker quality and blending components (flyash / slag) or a mix of both.
- Water reducer / workability / wet-ability enhancer, which would show impact on the resultant cement mortars and concrete. Some of the compounds (retarders) like polysaccharide derivatives, gluconates etc., show an initial retarding action towards hydration which result in reducing the water requirements for the cements thus act as water reducers, or it could be some appropriate polymeric molecules which show improved wet-ability and reduce water demand. These are selected based on the mineral component and type of cements (PPC/PSC /PCC).
- Grinding aids: Compounds that work as Grinding Aid i.e. which would enhance Mill thru-put on one hand as well as would increase the early strengths due to the higher fines generation/ or activation of cement components. These compounds could be like alkanol-amines such as TIPA, DEIPA, TEA etc. or could be compounds like glycols and other poly-ols, depending on whether it is OPC or PPC or PSC or PCC manufacture.
Mechanism of action — Step By Step—
- Reduce Agglomeration, Cement particles get electrostatically charged during grinding, stick together, form “flocs”, block mill efficiency, waste energy. Grinding aid molecules adsorb onto particle surfaces, neutralise charge, prevent re-agglomeration.
- Improve Powder Flowability, Adsorbed molecules create a lubricating layer, particles slide past each other easier, better mill throughput, less “dead zone” buildup.
Also reduces caking on mill liners, diaphragms, and separator screens, less downtime for cleaning. - Enhance Grinding Efficiency (Finer Product Faster), By preventing agglomeration, particles stay dispersed more surface area exposed to grinding media, finer grind achieved with same energy input, Or: same fineness achieved with less energy, huge savings.
Example:
• Without aid ? 3500 cm²/g Blaine needs 40 kWh/ton
• With use of optimum grinding aid same fineness at 32 kWh/ton 20 per cent energy savings - Reduce Pack Set and Silo Caking Grinding aids (GA) inhibit hydration of free lime (CaO) during storage prevents premature hardening or “pack set” in silos. especially critical in humid climates or with high free lime clinker.
It may be stated here that Overdosing of GA can cause: – Foaming in mill (especially with glycols) reduces grinding efficiency, retardation of cement setting (especially with amines/acids), odor issues (in indoor mills) – Corrosion of mill components (if acidic aids used improperly)
The best practice to optimise use of GA is Start with 0.02 per cent to 0.05 per cent dosage test fineness, flow, and set time adjust up/down. Due to static charge of particles, the sample may stick to the sides of sampler pipe and so sampling need to be properly done.
Depending on type of cements i.e. OPC, PPC, PSC, PCC, the grinding aids combinations need to be optimised, a typical Poly carboxylate ether also could be a part of the combo grinding aids
Cement additives for niche properties of the cement in concrete.
The cement additives can also be tailor made to create specific niche properties in cements, OPC, PPC, PSC and PCC to create premium or special brands. The special niche properties of the cement being its additional USP of such cement products, and are useful for customers to build a durable concrete structure with increased service life.
Such properties could be:
• Additives for improved concrete performance of cements, high early strength in PPC/PSC/PCC, much reduced water demand in cement, cements with improved slump retentivity in concrete, self-compacting, self levelling in concrete, cements with improved adhesion property of the cement mortar
• Water repellence / water proofing, permeability resistance in mortars and concrete.
• Biocidal cement
• Photo catalytic cements
• Cements with negligible ASR reactions etc.
Additives for cements for improved concrete performance
High early strengths: Use of accelerators. These are chemical compounds which enhance the degree of hydration of cement. These can include setting or hardening accelerators depending on whether their action occurs in the plastic or hardened state respectively. Thus, the setting accelerators reduce the setting time, whereas the hardening accelerators increase the early age strengths. The setting accelerators act during the initial minutes of the cement hydration, whereas the hardening accelerators act mainly during the initial days of hydration.
Chloride salts are the best in class. However, use of chloride salts as hardening accelerators are strongly discouraged for their action in promoting the corrosion of rebar, thus, chloride-free accelerators are preferred. The hardening accelerators could be combinations of compounds like nitrate, nitrite and thiocyanate salts of alkali or alkaline earth metals or thiosulphate, formate, and alkanol amines depending on the cement types.
However, especially in blended cements (PPC/PSC/PCC the increased early strengths invariably decrease the 28 day strengths. These aspects lead to creating combo additives along with organic polymers to achieve improved early strengths as well as either same or marginally improved 28 days strengths with reduced clinker factor in the blended cement, special OPC with reduced admixture requirements. With use of appropriate combination of inorganic and organic additives we could create an OPC with substantially reduced water demand or improved slump retentivity. Use of such an OPC would show exceptional concrete performance in high grade concretes as it would exhibit lower admixture requirements in High Grade Concretes.
PPC with OPC like properties: With the above concept we could have a PPC, having higher percentage flyash, with a combo cement additive which would have with concrete performance similar to OPC in say M40/M50 concrete. Such a PPC would produce a high-strength PPC concrete (= 60 MPa @ 28d) + improved workability, durability and sustainability.
Another interesting aspect could also be of using ultrafine fine flyash /ultrafine slags as additions in OPC/PPC/PSC for achieving lower clinker factor as well as to achieve improved later age strengths with or without a combo cement additive.
The initial adhesion property at sites of especially PPC/PSC/PCC based mortars can be improved through use of appropriate organic polymers addition during the manufacture of these cements. Such cements would have a better adhesion property for plastering/brick bonding etc., as it has much lower rebound loss of their mortars in such applications.
It is needless to mention here that with use of additives, we could also have cement with viscosity modifying cement additives, for self-compaction and self-leveling concrete performance.
Use of Phosphogypsum retards the setting time of cements, we can use additive different additive combos to overcome retardation and improve the 1 day strengths of the cements and concretes.
About the author:
Shreesh Khadilkar, Consultant & Advisor, Former Director Quality & Product Development, ACC, a seasoned consultant and advisor, brings over 37 years of experience in cement manufacturing, having held leadership roles in R&D and product development at ACC Ltd. With deep expertise in innovative cement concepts, he is dedicated to sharing his knowledge and improving the performance of cement plants globally.
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Trending News
-
Concrete4 weeks agoAris Secures Rs 630 Million Concrete Supply Order
-
Concrete3 weeks agoNITI Aayog Unveils Decarbonisation Roadmaps
-
Concrete3 weeks agoJK Cement Commissions 3 MTPA Buxar Plant, Crosses 31 MTPA
-
Economy & Market3 weeks agoBudget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook


