Economy & Market
There is a push towards eco-friendly packaging
Published
1 year agoon
By
admin
Riddhish Pandey, Associate General Manager (Packing Plant), Wonder Cement, shares with Kanika Mathur insights into the latest bagging and packaging technologies.
In this insightful interview, we get to understand the cutting-edge advancements in cement
bagging, packaging, and palletising, through the processes at Wonder Cement, as the company focusses on efficiency, sustainability and customer-driven innovations.
How do advancements in bagging and packaging technologies improve efficiency in cement distribution?
Auto truck loader operations for handling cement bags play a critical role in ensuring that cement reaches customers quickly and in optimal condition. Advancements in bagging and packaging technologies have significantly enhanced the efficiency of cement distribution by automating processes that were once manual. Automated bagging systems, for example, allow for faster and more precise filling of cement bags, reducing the need for manual labour, which not only makes operations safer but also improves the consistency of bag weights. Innovations such as high-speed packaging machines have further boosted throughput by minimising downtime, leading to an increase in overall production capacity. Moreover, efficient packaging practices reduce the risk of damage during transportation, ensuring that cement reaches customers without compromise.
A notable advancement in modern packaging systems is the integration of advanced Roto packers with in-line bag weight correction mechanisms. These systems automatically adjust bag weights within a defined range, significantly reducing the need for manual intervention. The use of check weighers plays a vital role in this process, as they ensure that bag weights remain consistent and accurate. This not only reduces downtime associated with manual corrections but also enhances the overall efficiency and reliability of the packaging process.
What innovations in packaging materials are being adopted to enhance the durability of cement bags?
The adoption of multi-layered packaging materials, such as woven polypropylene (WPP) bags, has significantly improved the durability and strength of cement packaging. WPP bags offer enhanced resistance to moisture, tearing, and wear and tear, which is crucial during handling, transportation, and storage. These bags are particularly effective in protecting the cement from environmental factors that could compromise its quality. In addition to WPP bags, some companies are exploring the use of biodegradable or recycled materials as a sustainable alternative. These materials provide a balance between durability and environmental responsibility, helping to reduce the overall environmental impact of cement packaging without sacrificing product integrity.
Moreover, adding protective coatings and lamination to packaging has further strengthened the cement bags’ ability to withstand external pressures. These additional layers help maintain the integrity of the cement by providing an extra shield against moisture, dust, and other contaminants, ensuring the product remains in optimal condition during both storage and transit. This combination of advanced materials and protective measures enhances the overall quality of cement distribution, benefiting both the environment and customers.
How does automation in bagging and palletising impact production and cost optimisation?
Automation in bagging and palletising has led to significant improvements in production speed and cost optimisation within the cement industry. Automated systems reduce reliance on manual labor, which not only lowers operational costs but also minimises the chances of human error. These systems are designed to run continuously without downtime, thus increasing production output and ensuring a more efficient workflow.
Automated palletising, in particular, plays a crucial role by ensuring the precise stacking of cement bags. This reduces the risk of product damage during handling and transportation, as the bags are organised in a manner that maximises their stability. Additionally, improved stacking helps optimise space utilisation, which leads to more efficient storage and reduces transportation costs. Moreover, the introduction of the ‘First Come, First Out’ (FIFO) system for truck loading helps minimise Turnaround Time (TAT) by ensuring that older stock is loaded and dispatched first. This further enhances operational efficiency by reducing delays and improving the logistics process, ensuring a quicker, more streamlined delivery to customers. These automation-driven improvements contribute to both faster production cycles and cost savings, making cement distribution more effective overall.
We are using the VFD system in the packer to reduce power capacity of packing plant operation to reduce per ton cost.
What measures do you take to ensure sustainable and eco-friendly packaging solutions?
Sustainable packaging solutions are becoming a key focus in the cement industry, driven by the growing need to reduce environmental impact. One of the main strategies involves adopting eco-friendly materials, such as biodegradable bags and recycled plastic products. This shift not only helps reduce the reliance on traditional plastics but also aligns with broader environmental goals.
Reducing the use of single-use plastics is another crucial step in this process. By implementing systems for reusing and recycling cement bags, companies can significantly cut down on waste, minimising their environmental footprint. A well-designed recycling programme for cement bags, where feasible, can contribute to reducing the demand for new raw materials and ensure that packaging materials are used to their full potential. Additionally, optimising packaging design to minimise material usage, without compromising on the strength or quality of the bags, can further reduce waste. Lightweight yet durable packaging helps lower environmental impact while maintaining the integrity of the product.
Exploring alternative materials like paper bags with high-strength properties is another promising direction. These paper bags are both recyclable and biodegradable, offering a more sustainable option compared to conventional plastic bags. With the right innovations and materials, cement packaging can become more environmentally friendly, helping to reduce overall waste and promote sustainability within the industry.
How do you address challenges related to the transportation and handling of cement pallets?
To effectively address challenges related to transportation and handling, we ensure that our cement pallets are stacked optimally and securely, minimising the risk of damage during transit. Our palletising process uses specialised materials and techniques to ensure that the bags remain stable and well-positioned throughout transportation. This approach reduces the likelihood of shifting or collapsing, which can lead to product damage or inefficiencies in space utilisation. Additionally, we implement comprehensive training programs for workers, focusing on the proper handling of cement bags. These training initiatives equip employees with the necessary skills to safely load and unload the bags, further minimising the risk of damage during these crucial stages. By emphasising safe and efficient handling, we improve both the quality and reliability of our cement delivery process, ensuring that customers receive their orders in optimal condition.
This combination of optimised palletising, secure stacking, and trained workforce helps streamline the entire logistics process, contributing to reduced damage rates and enhanced operational efficiency.
What role does digitalisation play in optimising bagging and palletising operations?
Digitalisation plays a pivotal role in optimising bagging and palletising operations by integrating advanced tracking and monitoring systems. These systems leverage sensors and automated technologies to gather real-time data on critical factors such as machine performance, product weight, and packaging integrity. This data-driven approach allows for immediate adjustments to the process, ensuring consistent product quality and reducing the likelihood of errors or inconsistencies.
One of the key benefits of digitalisation is the implementation of predictive maintenance. By continuously monitoring equipment conditions, digital systems can anticipate potential failures before they occur, reducing downtime and keeping production running smoothly. This proactive approach helps maximise the lifespan of machinery and ensures that operations are not interrupted by unexpected breakdowns. Additionally, digitalisation enhances inventory management by providing real-time insights into stock levels, enabling companies to optimise their production schedules. This leads to more efficient, just-in-time production and delivery, ensuring that the right amount of cement is produced and dispatched without overstocking or shortages. Overall, the integration of digital systems boosts efficiency, reduces operational costs, and improves the reliability of the bagging and palletising process.
How are customer demands influencing trends in cement packaging design and functionality?
Customer demands are playing an increasingly influential role in shaping packaging designs, with a clear focus on convenience, durability, and sustainability. Modern consumers are looking for packaging that enhances usability, such as bags with ergonomic designs that are easy to carry, and resealable options that allow for more flexibility in storage. These features cater to the growing demand for practical, user-friendly solutions, especially for residential or small-scale use.
Alongside convenience, there is a significant push towards eco-friendly packaging. Customers are now more conscious of environmental issues, leading to a preference for packaging made from sustainable materials, such as biodegradable or recyclable options. This demand reflects the broader trend toward sustainability in various industries, including cement packaging, as consumers seek ways to reduce their environmental footprint. Additionally, the trend toward smaller, more compact bags is gaining traction. Many customers now prefer to purchase cement in smaller quantities, especially for residential or projects. This change in consumer behavior requires packaging solutions that are not only convenient but also tailored to individual needs.
Finally, customers expect a high level of consistency in packaging quality. Cement packaging must not only be functional but also provide reliable protection during storage and transit. The durability of the packaging is essential to ensure that the cement reaches customers without damage, maintaining its integrity and usability.
By responding to these customer demands, companies can enhance customer satisfaction while contributing to sustainability and efficiency in the cement packaging process.
What strategies do you implement to minimise waste and improve recyclability in cement packaging?
Prioritising waste reduction through the use of recyclable packaging materials is a crucial step in making cement packaging more sustainable. By working closely with suppliers, we can ensure that the materials used for packaging are eco-friendly, recyclable, or reusable at the end of their life cycle. This collaboration helps us source packaging solutions that align with our environmental goals, reducing waste and conserving resources.
In addition to using recyclable materials, we can focus on optimising packaging sizes and material usage during production. By designing packaging that is efficient and tailored to customer needs, we can minimise excess materials, thus reducing waste and improving resource efficiency. Streamlining packaging design not only lowers costs but also supports sustainability by ensuring that materials are used as effectively as possible.
To further support a circular economy, we can actively raise awareness among customers about the importance of proper disposal and recycling of cement packaging. Providing clear instructions on how to recycle or reuse packaging materials can empower customers to contribute to the circular economy, where materials are kept in use for as long as possible, reducing the need for new resources and minimising environmental impact.
Through these combined efforts, we can help foster a more sustainable approach to cement packaging, making a positive impact on both the environment and the community.
Concrete
Refractory demands in our kiln have changed
Published
3 days agoon
February 20, 2026By
admin
Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, points out why performance, predictability and life-cycle value now matter more than routine replacement in cement kilns.
As Indian cement plants push for higher throughput, increased alternative fuel usage and tighter shutdown cycles, refractory performance in kilns and pyro-processing systems is under growing pressure. In this interview, Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, shares how refractory demands have evolved on the ground and how smarter digital monitoring is improving kiln stability, uptime and clinker quality.
How have refractory demands changed in your kiln and pyro-processing line over the last five years?
Over the last five years, refractory demands in our kiln and pyro line have changed. Earlier, the focus was mostly on standard grades and routine shutdown-based replacement. But now, because of higher production loads, more alternative fuels and raw materials (AFR) usage and greater temperature variation, the expectation from refractory has increased.
In our own case, the current kiln refractory has already completed around 1.5 years, which itself shows how much more we now rely on materials that can handle thermal shock, alkali attack and coating fluctuations. We have moved towards more stable, high-performance linings so that we don’t have to enter the kiln frequently for repairs.
Overall, the shift has been from just ‘installation and run’ to selecting refractories that give longer life, better coating behaviour and more predictable performance under tougher operating conditions.
What are the biggest refractory challenges in the preheater, calciner and cooler zones?
• Preheater: Coating instability, chloride/sulphur cycles and brick erosion.
• Calciner: AFR firing, thermal shock and alkali infiltration.
• Cooler: Severe abrasion, red-river formation and mechanical stress on linings.
Overall, the biggest challenge is maintaining lining stability under highly variable operating conditions.
How do you evaluate and select refractory partners for long-term performance?
In real plant conditions, we don’t select a refractory partner just by looking at price. First, we see their past performance in similar kilns and whether their material has actually survived our operating conditions. We also check how strong their technical support is during shutdowns, because installation quality matters as much as the material itself.
Another key point is how quickly they respond during breakdowns or hot spots. A good partner should be available on short notice. We also look at their failure analysis capability, whether they can explain why a lining failed and suggest improvements.
On top of this, we review the life they delivered in the last few campaigns, their supply reliability and their willingness to offer plant-specific custom solutions instead of generic grades. Only a partner who supports us throughout the life cycle, which includes selection, installation, monitoring and post-failure analysis, fits our long-term requirement.
Can you share a recent example where better refractory selection improved uptime or clinker quality?
Recently, we upgraded to a high-abrasion basic brick at the kiln outlet. Earlier we had frequent chipping and coating loss. With the new lining, thermal stability improved and the coating became much more stable. As a result, our shutdown interval increased and clinker quality remained more consistent. It had a direct impact on our uptime.
How is increased AFR use affecting refractory behaviour?
Increased AFR use is definitely putting more stress on the refractory. The biggest issue we see daily is the rise in chlorine, alkalis and volatiles, which directly attack the lining, especially in the calciner and kiln inlet. AFR firing is also not as stable as conventional fuel, so we face frequent temperature fluctuations, which cause more thermal shock and small cracks in the lining.
Another real problem is coating instability. Some days the coating builds too fast, other days it suddenly drops, and both conditions impact refractory life. We also notice more dust circulation and buildup inside the calciner whenever the AFR mix changes, which again increases erosion.
Because of these practical issues, we have started relying more on alkali-resistant, low-porosity and better thermal shock–resistant materials to handle the additional stress coming from AFR.
What role does digital monitoring or thermal profiling play in your refractory strategy?
Digital tools like kiln shell scanners, IR imaging and thermal profiling help us detect weakening areas much earlier. This reduces unplanned shutdowns, helps identify hotspots accurately and allows us to replace only the critical sections. Overall, our maintenance has shifted from reactive to predictive, improving lining life significantly.
How do you balance cost, durability and installation speed during refractory shutdowns?
We focus on three points:
• Material quality that suits our thermal profile and chemistry.
• Installation speed, in fast turnarounds, we prefer monolithic.
• Life-cycle cost—the cheapest material is not the most economical. We look at durability, future downtime and total cost of ownership.
This balance ensures reliable performance without unnecessary expenditure.
What refractory or pyro-processing innovations could transform Indian cement operations?
Some promising developments include:
• High-performance, low-porosity and nano-bonded refractories
• Precast modular linings to drastically reduce shutdown time
• AI-driven kiln thermal analytics
• Advanced coating management solutions
• More AFR-compatible refractory mixes
These innovations can significantly improve kiln stability, efficiency and maintenance planning across the industry.
Concrete
Digital supply chain visibility is critical
Published
3 days agoon
February 20, 2026By
admin
MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, discusses how data, discipline and scale are turning Industry 4.0 into everyday business reality.
Over the past five years, digitalisation in Indian cement manufacturing has moved decisively beyond experimentation. Today, it is a strategic lever for cost control, operational resilience and sustainability. In this interview, MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, explains how integrated digital foundations, advanced analytics and real-time visibility are helping deliver measurable business outcomes.
How has digitalisation moved from pilot projects to core strategy in Indian cement manufacturing over the past five years?
Digitalisation in Indian cement has evolved from isolated pilot initiatives into a core business strategy because outcomes are now measurable, repeatable and scalable. The key shift has been the move away from standalone solutions toward an integrated digital foundation built on standardised processes, governed data and enterprise platforms that can be deployed consistently across plants and functions.
At Shree Cement, this transition has been very pragmatic. The early phase focused on visibility through dashboards, reporting, and digitisation of critical workflows. Over time, this has progressed into enterprise-level analytics and decision support across manufacturing and the supply chain,
with clear outcomes in cost optimisation, margin protection and revenue improvement through enhanced customer experience.
Equally important, digital is no longer the responsibility of a single function. It is embedded into day-to-day operations across planning, production, maintenance, despatch and customer servicing, supported by enterprise systems, Industrial Internet of Things (IIoT) data platforms, and a structured approach to change management.
Which digital interventions are delivering the highest ROI across mining, production and logistics today?
In a capital- and cost-intensive sector like cement, the highest returns come from digital interventions that directly reduce unit costs or unlock latent capacity without significant capex.
Supply chain and planning (advanced analytics): Tools for demand forecasting, S&OP, network optimisation and scheduling deliver strong returns by lowering logistics costs, improving service levels, and aligning production with demand in a fragmented and regionally diverse market.
Mining (fleet and productivity analytics): Data-led mine planning, fleet analytics, despatch discipline, and idle-time reduction improve fuel efficiency and equipment utilisation, generating meaningful savings in a cost-heavy operation.
Manufacturing (APC and process analytics): Advanced Process Control, mill optimisation, and variability reduction improve thermal and electrical efficiency, stabilise quality and reduce rework and unplanned stoppages.
Customer experience and revenue enablement (digital platforms): Dealer and retailer apps, order visibility and digitally enabled technical services improve ease of doing business and responsiveness. We are also empowering channel partners with transparent, real-time information on schemes, including eligibility, utilisation status and actionable recommendations, which improves channel satisfaction and market execution while supporting revenue growth.
Overall, while Artificial Intelligence (AI) and IIoT are powerful enablers, it is advanced analytics anchored in strong processes that typically delivers the fastest and most reliable ROI.
How is real-time data helping plants shift from reactive maintenance to predictive and prescriptive operations?
Real-time and near real-time data is driving a more proactive and disciplined maintenance culture, beginning with visibility and progressively moving toward prediction and prescription.
At Shree Cement, we have implemented a robust SAP Plant Maintenance framework to standardise maintenance workflows. This is complemented by IIoT-driven condition monitoring, ensuring consistent capture of equipment health indicators such as vibration, temperature, load, operating patterns and alarms.
Real-time visibility enables early detection of abnormal conditions, allowing teams to intervene before failures occur. As data quality improves and failure histories become structured, predictive models can anticipate likely failure modes and recommend timely interventions, improving MTBF and reducing downtime. Over time, these insights will evolve into prescriptive actions, including spares readiness, maintenance scheduling, and operating parameter adjustments, enabling reliability optimisation with minimal disruption.
A critical success factor is adoption. Predictive insights deliver value only when they are embedded into daily workflows, roles and accountability structures. Without this, they remain insights without action.
In a cost-sensitive market like India, how do cement companies balance digital investment with price competitiveness?
In India’s intensely competitive cement market, digital investments must be tightly linked to tangible business outcomes, particularly cost reduction, service improvement, and faster decision-making.
This balance is achieved by prioritising high-impact use cases such as planning efficiency, logistics optimisation, asset reliability, and process stability, all of which typically deliver quick payback. Equally important is building scalable and governed digital foundations that reduce the marginal cost of rolling out new use cases across plants.
Digitally enabled order management, live despatch visibility, and channel partner platforms also improve customer centricity while controlling cost-to-serve, allowing service levels to improve without proportionate increases in headcount or overheads.
In essence, the most effective digital investments do not add cost. They protect margins by reducing variability, improving planning accuracy, and strengthening execution discipline.
How is digitalisation enabling measurable reductions in energy consumption, emissions, and overall carbon footprint?
Digitalisation plays a pivotal role in improving energy efficiency, reducing emissions and lowering overall carbon intensity.
Real-time monitoring and analytics enable near real-time tracking of energy consumption and critical operating parameters, allowing inefficiencies to be identified quickly and corrective actions to be implemented. Centralised data consolidation across plants enables benchmarking, accelerates best-practice adoption, and drives consistent improvements in energy performance.
Improved asset reliability through predictive maintenance reduces unplanned downtime and process instability, directly lowering energy losses. Digital platforms also support more effective planning and control of renewable energy sources and waste heat recovery systems, reducing dependence on fossil fuels.
Most importantly, digitalisation enables sustainability progress to be tracked with greater accuracy and consistency, supporting long-term ESG commitments.
What role does digital supply chain visibility play in managing demand volatility and regional market dynamics in India?
Digital supply chain visibility is critical in India, where demand is highly regional, seasonality is pronounced, and logistics constraints can shift rapidly.
At Shree Cement, planning operates across multiple horizons. Annual planning focuses on capacity, network footprint and medium-term demand. Monthly S&OP aligns demand, production and logistics, while daily scheduling drives execution-level decisions on despatch, sourcing and prioritisation.
As digital maturity increases, this structure is being augmented by central command-and-control capabilities that manage exceptions such as plant constraints, demand spikes, route disruptions and order prioritisation. Planning is also shifting from aggregated averages to granular, cost-to-serve and exception-based decision-making, improving responsiveness, lowering logistics costs and strengthening service reliability.
How prepared is the current workforce for Industry 4.0, and what reskilling strategies are proving most effective?
Workforce preparedness for Industry 4.0 is improving, though the primary challenge lies in scaling capabilities consistently across diverse roles.
The most effective approach is to define capability requirements by role and tailor enablement accordingly. Senior leadership focuses on digital literacy for governance, investment prioritisation, and value tracking. Middle management is enabled to use analytics for execution discipline and adoption. Frontline sales and service teams benefit from
mobile-first tools and KPI-driven workflows, while shop-floor and plant teams focus on data-driven operations, APC usage, maintenance discipline, safety and quality routines.
Personalised, role-based learning paths, supported by on-ground champions and a clear articulation of practical benefits, drive adoption far more effectively than generic training programmes.
Which emerging digital technologies will fundamentally reshape cement manufacturing in the next decade?
AI and GenAI are expected to have the most significant impact, particularly when combined with connected operations and disciplined processes.
Key technologies likely to reshape the sector include GenAI and agentic AI for faster root-cause analysis, knowledge access, and standardisation of best practices; industrial foundation models that learn patterns across large sensor datasets; digital twins that allow simulation of process changes before implementation; and increasingly autonomous control systems that integrate sensors, AI, and APC to maintain stability with minimal manual intervention.
Over time, this will enable more centralised monitoring and management of plant operations, supported by strong processes, training and capability-building.
Concrete
Cement Additives for Improved Grinding Efficiency
Published
3 days agoon
February 20, 2026By
admin
Shreesh A Khadilkar discusses how advanced additive formulations allow customised, high-performance and niche cements—offering benefits while supporting blended cements and long-term cost and carbon reduction.
Cement additives are chemicals (inorganic and organic) added in small amounts (0.01 per cent to 0.2 per cent by weight) during cement grinding. Their main job? Reduce agglomeration, prevent pack-set, and keep the mill running smoother. Thus, these additions primarily improve, mill thru-puts, achieve lower clinker factor in blended cements PPC/PSC/PCC. Additionally, these additives improve concrete performance of cements or even for specific special premium cements with special USPs like lower setting times or for reduced water permeability in the resultant cement mortars and concrete (water repellent /permeation resistant cements), corrosion resistance etc.
The cement additives are materials which could be further differentiated as:
Grinding aids:
• Bottlenecks in cement grinding capacity, such materials can enhance throughputs
• Low specific electrical energy consumption during cement grinding
• Reduce “Pack set” problem and improve powder flowability
Quality improvers:
• Opportunity for further clinker factor reduction
• Solution for delayed cement setting or strength development issues at early or later ages.
Others: materials which are used for specific special cements with niche properties as discussed in the subsequent pages.
When cement additives are used as grinding aids or quality improvers, in general the additives reduce the inter-particle forces; reduce coating over grinding media and mill internals. Due to creation of like charges on cement particles, there is decreased agglomeration, much improved flowability, higher generation of fines better dispersion of particles in separator feed and reduction of mill filling level (decrease of residence time). However, in VRM grinding; actions need to be taken to have stable bed formation on the table.
It has been reported in literature and also substantiated by a number of detailed evaluations of different cement additive formulations in market, that the cement additive formulations are a combination of different chemical compounds, typically composed of:
- Accelerator/s for the hydration reaction of cements which are dependent on the acceleration effect desired in mortar compressive strengths at early or later ages, the choice of the materials is also dependent on clinker quality and blending components (flyash / slag) or a mix of both.
- Water reducer / workability / wet-ability enhancer, which would show impact on the resultant cement mortars and concrete. Some of the compounds (retarders) like polysaccharide derivatives, gluconates etc., show an initial retarding action towards hydration which result in reducing the water requirements for the cements thus act as water reducers, or it could be some appropriate polymeric molecules which show improved wet-ability and reduce water demand. These are selected based on the mineral component and type of cements (PPC/PSC /PCC).
- Grinding aids: Compounds that work as Grinding Aid i.e. which would enhance Mill thru-put on one hand as well as would increase the early strengths due to the higher fines generation/ or activation of cement components. These compounds could be like alkanol-amines such as TIPA, DEIPA, TEA etc. or could be compounds like glycols and other poly-ols, depending on whether it is OPC or PPC or PSC or PCC manufacture.
Mechanism of action — Step By Step—
- Reduce Agglomeration, Cement particles get electrostatically charged during grinding, stick together, form “flocs”, block mill efficiency, waste energy. Grinding aid molecules adsorb onto particle surfaces, neutralise charge, prevent re-agglomeration.
- Improve Powder Flowability, Adsorbed molecules create a lubricating layer, particles slide past each other easier, better mill throughput, less “dead zone” buildup.
Also reduces caking on mill liners, diaphragms, and separator screens, less downtime for cleaning. - Enhance Grinding Efficiency (Finer Product Faster), By preventing agglomeration, particles stay dispersed more surface area exposed to grinding media, finer grind achieved with same energy input, Or: same fineness achieved with less energy, huge savings.
Example:
• Without aid ? 3500 cm²/g Blaine needs 40 kWh/ton
• With use of optimum grinding aid same fineness at 32 kWh/ton 20 per cent energy savings - Reduce Pack Set and Silo Caking Grinding aids (GA) inhibit hydration of free lime (CaO) during storage prevents premature hardening or “pack set” in silos. especially critical in humid climates or with high free lime clinker.
It may be stated here that Overdosing of GA can cause: – Foaming in mill (especially with glycols) reduces grinding efficiency, retardation of cement setting (especially with amines/acids), odor issues (in indoor mills) – Corrosion of mill components (if acidic aids used improperly)
The best practice to optimise use of GA is Start with 0.02 per cent to 0.05 per cent dosage test fineness, flow, and set time adjust up/down. Due to static charge of particles, the sample may stick to the sides of sampler pipe and so sampling need to be properly done.
Depending on type of cements i.e. OPC, PPC, PSC, PCC, the grinding aids combinations need to be optimised, a typical Poly carboxylate ether also could be a part of the combo grinding aids
Cement additives for niche properties of the cement in concrete.
The cement additives can also be tailor made to create specific niche properties in cements, OPC, PPC, PSC and PCC to create premium or special brands. The special niche properties of the cement being its additional USP of such cement products, and are useful for customers to build a durable concrete structure with increased service life.
Such properties could be:
• Additives for improved concrete performance of cements, high early strength in PPC/PSC/PCC, much reduced water demand in cement, cements with improved slump retentivity in concrete, self-compacting, self levelling in concrete, cements with improved adhesion property of the cement mortar
• Water repellence / water proofing, permeability resistance in mortars and concrete.
• Biocidal cement
• Photo catalytic cements
• Cements with negligible ASR reactions etc.
Additives for cements for improved concrete performance
High early strengths: Use of accelerators. These are chemical compounds which enhance the degree of hydration of cement. These can include setting or hardening accelerators depending on whether their action occurs in the plastic or hardened state respectively. Thus, the setting accelerators reduce the setting time, whereas the hardening accelerators increase the early age strengths. The setting accelerators act during the initial minutes of the cement hydration, whereas the hardening accelerators act mainly during the initial days of hydration.
Chloride salts are the best in class. However, use of chloride salts as hardening accelerators are strongly discouraged for their action in promoting the corrosion of rebar, thus, chloride-free accelerators are preferred. The hardening accelerators could be combinations of compounds like nitrate, nitrite and thiocyanate salts of alkali or alkaline earth metals or thiosulphate, formate, and alkanol amines depending on the cement types.
However, especially in blended cements (PPC/PSC/PCC the increased early strengths invariably decrease the 28 day strengths. These aspects lead to creating combo additives along with organic polymers to achieve improved early strengths as well as either same or marginally improved 28 days strengths with reduced clinker factor in the blended cement, special OPC with reduced admixture requirements. With use of appropriate combination of inorganic and organic additives we could create an OPC with substantially reduced water demand or improved slump retentivity. Use of such an OPC would show exceptional concrete performance in high grade concretes as it would exhibit lower admixture requirements in High Grade Concretes.
PPC with OPC like properties: With the above concept we could have a PPC, having higher percentage flyash, with a combo cement additive which would have with concrete performance similar to OPC in say M40/M50 concrete. Such a PPC would produce a high-strength PPC concrete (= 60 MPa @ 28d) + improved workability, durability and sustainability.
Another interesting aspect could also be of using ultrafine fine flyash /ultrafine slags as additions in OPC/PPC/PSC for achieving lower clinker factor as well as to achieve improved later age strengths with or without a combo cement additive.
The initial adhesion property at sites of especially PPC/PSC/PCC based mortars can be improved through use of appropriate organic polymers addition during the manufacture of these cements. Such cements would have a better adhesion property for plastering/brick bonding etc., as it has much lower rebound loss of their mortars in such applications.
It is needless to mention here that with use of additives, we could also have cement with viscosity modifying cement additives, for self-compaction and self-leveling concrete performance.
Use of Phosphogypsum retards the setting time of cements, we can use additive different additive combos to overcome retardation and improve the 1 day strengths of the cements and concretes.
About the author:
Shreesh Khadilkar, Consultant & Advisor, Former Director Quality & Product Development, ACC, a seasoned consultant and advisor, brings over 37 years of experience in cement manufacturing, having held leadership roles in R&D and product development at ACC Ltd. With deep expertise in innovative cement concepts, he is dedicated to sharing his knowledge and improving the performance of cement plants globally.
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Trending News
-
Concrete4 weeks agoAris Secures Rs 630 Million Concrete Supply Order
-
Concrete4 weeks agoNITI Aayog Unveils Decarbonisation Roadmaps
-
Concrete3 weeks agoJK Cement Commissions 3 MTPA Buxar Plant, Crosses 31 MTPA
-
Economy & Market3 weeks agoBudget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook


