Connect with us

Concrete

There is a push towards eco-friendly packaging

Published

on

Shares

Riddhish Pandey, Associate General Manager (Packing Plant), Wonder Cement, shares with Kanika Mathur insights into the latest bagging and packaging technologies.

In this insightful interview, we get to understand the cutting-edge advancements in cement
bagging, packaging, and palletising, through the processes at Wonder Cement, as the company focusses on efficiency, sustainability and customer-driven innovations.

How do advancements in bagging and packaging technologies improve efficiency in cement distribution?
Auto truck loader operations for handling cement bags play a critical role in ensuring that cement reaches customers quickly and in optimal condition. Advancements in bagging and packaging technologies have significantly enhanced the efficiency of cement distribution by automating processes that were once manual. Automated bagging systems, for example, allow for faster and more precise filling of cement bags, reducing the need for manual labour, which not only makes operations safer but also improves the consistency of bag weights. Innovations such as high-speed packaging machines have further boosted throughput by minimising downtime, leading to an increase in overall production capacity. Moreover, efficient packaging practices reduce the risk of damage during transportation, ensuring that cement reaches customers without compromise.
A notable advancement in modern packaging systems is the integration of advanced Roto packers with in-line bag weight correction mechanisms. These systems automatically adjust bag weights within a defined range, significantly reducing the need for manual intervention. The use of check weighers plays a vital role in this process, as they ensure that bag weights remain consistent and accurate. This not only reduces downtime associated with manual corrections but also enhances the overall efficiency and reliability of the packaging process.

What innovations in packaging materials are being adopted to enhance the durability of cement bags?
The adoption of multi-layered packaging materials, such as woven polypropylene (WPP) bags, has significantly improved the durability and strength of cement packaging. WPP bags offer enhanced resistance to moisture, tearing, and wear and tear, which is crucial during handling, transportation, and storage. These bags are particularly effective in protecting the cement from environmental factors that could compromise its quality. In addition to WPP bags, some companies are exploring the use of biodegradable or recycled materials as a sustainable alternative. These materials provide a balance between durability and environmental responsibility, helping to reduce the overall environmental impact of cement packaging without sacrificing product integrity.
Moreover, adding protective coatings and lamination to packaging has further strengthened the cement bags’ ability to withstand external pressures. These additional layers help maintain the integrity of the cement by providing an extra shield against moisture, dust, and other contaminants, ensuring the product remains in optimal condition during both storage and transit. This combination of advanced materials and protective measures enhances the overall quality of cement distribution, benefiting both the environment and customers.

How does automation in bagging and palletising impact production and cost optimisation?
Automation in bagging and palletising has led to significant improvements in production speed and cost optimisation within the cement industry. Automated systems reduce reliance on manual labor, which not only lowers operational costs but also minimises the chances of human error. These systems are designed to run continuously without downtime, thus increasing production output and ensuring a more efficient workflow.
Automated palletising, in particular, plays a crucial role by ensuring the precise stacking of cement bags. This reduces the risk of product damage during handling and transportation, as the bags are organised in a manner that maximises their stability. Additionally, improved stacking helps optimise space utilisation, which leads to more efficient storage and reduces transportation costs. Moreover, the introduction of the ‘First Come, First Out’ (FIFO) system for truck loading helps minimise Turnaround Time (TAT) by ensuring that older stock is loaded and dispatched first. This further enhances operational efficiency by reducing delays and improving the logistics process, ensuring a quicker, more streamlined delivery to customers. These automation-driven improvements contribute to both faster production cycles and cost savings, making cement distribution more effective overall.
We are using the VFD system in the packer to reduce power capacity of packing plant operation to reduce per ton cost.

What measures do you take to ensure sustainable and eco-friendly packaging solutions?
Sustainable packaging solutions are becoming a key focus in the cement industry, driven by the growing need to reduce environmental impact. One of the main strategies involves adopting eco-friendly materials, such as biodegradable bags and recycled plastic products. This shift not only helps reduce the reliance on traditional plastics but also aligns with broader environmental goals.
Reducing the use of single-use plastics is another crucial step in this process. By implementing systems for reusing and recycling cement bags, companies can significantly cut down on waste, minimising their environmental footprint. A well-designed recycling programme for cement bags, where feasible, can contribute to reducing the demand for new raw materials and ensure that packaging materials are used to their full potential. Additionally, optimising packaging design to minimise material usage, without compromising on the strength or quality of the bags, can further reduce waste. Lightweight yet durable packaging helps lower environmental impact while maintaining the integrity of the product.
Exploring alternative materials like paper bags with high-strength properties is another promising direction. These paper bags are both recyclable and biodegradable, offering a more sustainable option compared to conventional plastic bags. With the right innovations and materials, cement packaging can become more environmentally friendly, helping to reduce overall waste and promote sustainability within the industry.

How do you address challenges related to the transportation and handling of cement pallets?
To effectively address challenges related to transportation and handling, we ensure that our cement pallets are stacked optimally and securely, minimising the risk of damage during transit. Our palletising process uses specialised materials and techniques to ensure that the bags remain stable and well-positioned throughout transportation. This approach reduces the likelihood of shifting or collapsing, which can lead to product damage or inefficiencies in space utilisation. Additionally, we implement comprehensive training programs for workers, focusing on the proper handling of cement bags. These training initiatives equip employees with the necessary skills to safely load and unload the bags, further minimising the risk of damage during these crucial stages. By emphasising safe and efficient handling, we improve both the quality and reliability of our cement delivery process, ensuring that customers receive their orders in optimal condition.
This combination of optimised palletising, secure stacking, and trained workforce helps streamline the entire logistics process, contributing to reduced damage rates and enhanced operational efficiency.

What role does digitalisation play in optimising bagging and palletising operations?
Digitalisation plays a pivotal role in optimising bagging and palletising operations by integrating advanced tracking and monitoring systems. These systems leverage sensors and automated technologies to gather real-time data on critical factors such as machine performance, product weight, and packaging integrity. This data-driven approach allows for immediate adjustments to the process, ensuring consistent product quality and reducing the likelihood of errors or inconsistencies.
One of the key benefits of digitalisation is the implementation of predictive maintenance. By continuously monitoring equipment conditions, digital systems can anticipate potential failures before they occur, reducing downtime and keeping production running smoothly. This proactive approach helps maximise the lifespan of machinery and ensures that operations are not interrupted by unexpected breakdowns. Additionally, digitalisation enhances inventory management by providing real-time insights into stock levels, enabling companies to optimise their production schedules. This leads to more efficient, just-in-time production and delivery, ensuring that the right amount of cement is produced and dispatched without overstocking or shortages. Overall, the integration of digital systems boosts efficiency, reduces operational costs, and improves the reliability of the bagging and palletising process.

How are customer demands influencing trends in cement packaging design and functionality?
Customer demands are playing an increasingly influential role in shaping packaging designs, with a clear focus on convenience, durability, and sustainability. Modern consumers are looking for packaging that enhances usability, such as bags with ergonomic designs that are easy to carry, and resealable options that allow for more flexibility in storage. These features cater to the growing demand for practical, user-friendly solutions, especially for residential or small-scale use.
Alongside convenience, there is a significant push towards eco-friendly packaging. Customers are now more conscious of environmental issues, leading to a preference for packaging made from sustainable materials, such as biodegradable or recyclable options. This demand reflects the broader trend toward sustainability in various industries, including cement packaging, as consumers seek ways to reduce their environmental footprint. Additionally, the trend toward smaller, more compact bags is gaining traction. Many customers now prefer to purchase cement in smaller quantities, especially for residential or projects. This change in consumer behavior requires packaging solutions that are not only convenient but also tailored to individual needs.
Finally, customers expect a high level of consistency in packaging quality. Cement packaging must not only be functional but also provide reliable protection during storage and transit. The durability of the packaging is essential to ensure that the cement reaches customers without damage, maintaining its integrity and usability.
By responding to these customer demands, companies can enhance customer satisfaction while contributing to sustainability and efficiency in the cement packaging process.

What strategies do you implement to minimise waste and improve recyclability in cement packaging?
Prioritising waste reduction through the use of recyclable packaging materials is a crucial step in making cement packaging more sustainable. By working closely with suppliers, we can ensure that the materials used for packaging are eco-friendly, recyclable, or reusable at the end of their life cycle. This collaboration helps us source packaging solutions that align with our environmental goals, reducing waste and conserving resources.
In addition to using recyclable materials, we can focus on optimising packaging sizes and material usage during production. By designing packaging that is efficient and tailored to customer needs, we can minimise excess materials, thus reducing waste and improving resource efficiency. Streamlining packaging design not only lowers costs but also supports sustainability by ensuring that materials are used as effectively as possible.
To further support a circular economy, we can actively raise awareness among customers about the importance of proper disposal and recycling of cement packaging. Providing clear instructions on how to recycle or reuse packaging materials can empower customers to contribute to the circular economy, where materials are kept in use for as long as possible, reducing the need for new resources and minimising environmental impact.
Through these combined efforts, we can help foster a more sustainable approach to cement packaging, making a positive impact on both the environment and the community.

Concrete

Global Start-Up Challenge Launched to Drive Net Zero Concrete Solutions

Innovandi Open Challenge aims to connect start-ups with GCCA members to develop innovations

Published

on

By

Shares

Start-ups worldwide are invited to contribute to the global cement and concrete industry’s efforts to reduce CO2 emissions and combat climate change. The Global Cement and Concrete Association (GCCA) and its members are calling for applicants for the Innovandi Open Challenge 2025.

Now in its fourth year, the Innovandi Open Challenge aims to connect start-ups with GCCA members to develop innovations that help decarbonise the cement and concrete industry.

The challenge is seeking start-ups working on next-generation materials for net-zero concrete, such as low-carbon admixtures, supplementary cementitious materials (SCMs), activators, or binders. Innovations in these areas could help reduce the carbon-intensive element of cement, clinker, and integrate cutting-edge materials to lower CO2 emissions.

Thomas Guillot, GCCA’s Chief Executive, stated, “Advanced production methods are already decarbonising cement and concrete worldwide. Through the Innovandi Open Challenge, we aim to accelerate our industry’s progress towards net-zero concrete.”

Concrete is the second most widely used material on Earth, and its decarbonisation is critical to achieving net-zero emissions across the global construction sector.

Continue Reading

Concrete

StarBigBloc Acquires Land for AAC Blocks Greenfield Facility in Indore

The company introduced NXTGRIP Tile Adhesives alongside its trusted NXTFIX and NXTPLAST brands.

Published

on

By

Shares

StarBigBloc Building Material, a wholly-owned subsidiary of BigBloc Construction, one of the largest manufacturers of Aerated Autoclaved Concrete (AAC) Blocks, Bricks and ALC Panels in India has acquired land for setting up a green field facility for AAC Blocks in Indore, Madhya Pradesh. Company has purchased approx. 57,500 sq. mts. land at Khasra No. 382, 387, 389/2, Gram Nimrani, Tehsil Kasrawad, District – Khargone, Madhya Pradesh for the purpose of AAC Blocks business expansion in central India. The total consideration for the land deal is Rs 60 million and Stamp duty.

StarBigBloc Building Material Ltd currently operates one plant at Kheda near Ahmedabad with an installed capacity of 250,000 cubic meters per annum, serving most part of Gujarat, upto Udaipur in Rajasthan, and till Indore in Madhya Pradesh. The capacity utilisation at Starbigbloc Building Material Ltd for the third quarter was 75 per cent. The planned expansion will enable the company to establish a stronger presence in Madhya Pradesh and surrounding regions. Reaffirming its commitment to the Green Initiative, it has also installed a 800 KW solar rooftop power project — a significant step toward sustainability and lowering its carbon footprint.

Narayan Saboo, Chairman, Bigbloc Construction said “The AAC block industry is set to play a pivotal role in India’s construction sector, and our company is ready for a significant leap forward. The proposed expansion in Indore, Madhya Pradesh aligns with our growth strategy, focusing on geographic expansion, R&D investments, product diversification, and strategic branding and marketing initiatives to enhance visibility, increase market share, and strengthen stakeholder trust.”

Bigbloc Construction has recently expanded into construction chemicals with Block Jointing Mortar, Ready Mix Plaster, and Tile Adhesives, tapping into high-demand segments. The company introduced NXTGRIP Tile Adhesives alongside its trusted NXTFIX and NXTPLAST brands, ensuring superior bonding, strength, and performance.

In May 2024, the board of directors approved fund-raising through SME IPO or Preferential issue to support expansion plans of Starbigboc Building Material subject to requisite approvals and market conditions, Starbigboc Building Material aims to expand its production capacity from current 250,000 cubic meters per annum to over 1.2 million cubic meters per annum in the next 4-5 years. Company is targeting revenues of Rs 4.28 billion by FY27-28, with an expected EBITDA of Rs 1.25 billion and net profit of Rs 800 million. In FY23-24, the company reported revenues of Rs 940.18 million, achieving a revenue CAGR of over 21 per cent in the last four years.

Incorporated in 2015, BigBloc Construction is one of the largest and only listed AAC block manufacturer in India, with a 1.3 million cbm annual capacity across plants in Gujarat (Kheda, Umargaon, Kapadvanj) and Maharashtra (Wada). The company, which markets its products under the ‘NXTBLOC’ brand, is one of the few in the AAC industry to generate carbon credits. With over 2,000 completed projects and 1,500+ in the pipeline, The company’s clients include Lodha, Adani Realty, IndiaBulls Real Estate, DB Realty, Prestige, Piramal, Oberoi Realty, Tata Projects, Shirke Group, Shapoorji Pallonji Group, Raheja, PSP Projects, L&T, Sunteck, Dosti Group, Purvankara Ltd, DY Patil, Taj Hotels, Godrej Properties, Torrent Pharma, GAIL among others.

Continue Reading

Concrete

World Cement Association Calls for Industry Action

The cement industry is responsible for 8 per cent of global CO2 emissions

Published

on

By

Shares

The cement industry is responsible for 8 per cent of global CO2 emissions—a staggering figure that demands urgent action, particularly as 2024 marked the first year the planet surpassed the 1.5°C global warming limit. Recognising this critical juncture, the World Cement Association (WCA) has released a landmark White Paper, “Long-Term Forecast for Cement and Clinker Demand”, which projects a sharp decline in long-term cement and clinker demand. By 2050, annual clinker production is expected to fall below 1 Gt from its current level of 2.4 Gt, with far-reaching implications for global carbon emissions and the viability of carbon capture projects.

WCA CEO Ian Riley underscores the complexity of this challenge:
“Carbon capture remains a vital tool for tackling emissions in hard-to-abate sectors like cement. However, flawed demand assumptions and the fragmented nature of cement production globally could undermine the feasibility of such projects. Industry stakeholders must rethink their strategies and embrace innovative, sustainable practices to achieve meaningful emissions reductions.”

Key Findings from the WCA White Paper
The WCA White Paper provides a comprehensive roadmap for the industry’s decarbonisation journey, highlighting the following critical insights:
1. Declining Cement and Clinker Demand: Global cement demand is expected to drop to approximately 3 billion tonnes annually by 2050, while clinker demand could decline even more steeply, reaching just 1.5 billion tonnes annually.
2. Implications for Carbon Capture and Storage (CCS): With reduced clinker production, the need for CCS is expected to decline, necessitating a shift in investment and policy priorities.
3. Alternative Materials and Clinker-Free Technologies: These innovations hold transformative potential for reshaping demand patterns and cutting emissions.
4. Supply Chain Optimisation: Enhancing logistics and reducing waste are key strategies for adapting to evolving market dynamics.

A Path to Lower Emissions
Clinker production, the largest source of CO2 emissions in cement manufacturing, generates one-third of emissions from fuel combustion and two-thirds from limestone decomposition. According to our white paper, transitioning to lower-carbon fuels could reduce specific fuel emissions per tonne of clinker by nearly 70% by 2050. Overall CO2 emissions from cement production are forecast to decline from 2.4 Gt in 2024 to less than 1 Gt by 2050, even before factoring in carbon capture technologies.

Ian Riley emphasised: “This white paper provides actionable insights to help the cement industry accelerate its decarbonisation journey. By prioritising innovation and collaboration, the industry can achieve substantial emissions reductions and align with global climate goals.”

Continue Reading

Trending News

This will close in 5 seconds

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds