Concrete
The use of AFR plays a critical role in our strategy
Published
11 months agoon
By
admin
Rajesh Kumar Nayma, Assistant General Manager – Environment, Wonder Cement, shares the company’s ambitious commitment to reducing emissions through advanced technology and alternative fuel use, thereby driving significant change in the cement industry.
How does your company address the environmental impact of cement production, particularly in terms of reducing emissions?
Wonder Cement Limited (WCL) has played a vital role in Indian infrastructure development and focuses towards a more sustainable future, including environment protection, clean energy and water positivity. The organisation is a firm believer in putting a positive impact on the environment. Environment and sustainability is a core value that drives our operations. We are committed to minimising the environmental impact from cement production, particularly when it comes to emissions. We do the impact analysis due to operation of the units being carried out at design stage level to ensure minimum impact on the environment i.e. air, water and land. Equipment selection is done accordingly taking various measures to ensure no fugitive emission, stack emission, water pollution and soil degradation such as installation of best-in-class air pollution control equipment (ESP’s Reverse Air Baghouse); bag filters at all the material transfer points; provided covered storage facilities/storage silos to maintain ambient air quality; fugitive emission and stack emission well within the prescribed emission Norms, Selective Non Catalytic Reactor (SNCR) for control of NOx Emission; and preventive routine maintenance of air pollution control equipment are carried out. By taking these measures, WCL ensures emissions are well below the stipulated norms for particulate matter, SO2 and NOx.
We are focusing on reducing the GreenHouse Gases (GHG) emissions, too. Due to our operations, we have done GHG Invertisation, which aims to achieve Net Zero by 2060, in line with the nation’s commitment in COP-26.
We have Zero Liquid Discharges facilities across all our units. Being dry process cement manufacturing units, the wastewater generation in our units is very low in quantum and the implemented closed-loop systems help to reuse process water and minimise fresh water consumption. WCL is reusing 100 per cent STP/ETP water in its process, greenbelt development and dust suppression at its integrated cement plant and split grinding units.
What measures have been implemented to monitor and control emissions of CO2, NOx, and particulate matter during the cement manufacturing process?
We have installed an Online Continuous Stack Monitoring System (OCEMS) in all the process stacks along with PTZ cameras and Continuous Ambient Air Quality Monitoring Systems (CAAQMS) in all our operating units. Real time data of OCEMS/CAAQMS is transmitted to SPCB/CPCB servers, and also to our control systems, which enables us to take corrective action on priority.
The major pollutants through air are particulate matter and gaseous emissions. The emissions of particulate matters from all the stacks are maintained within the prescribed norms by installing bag house, bag filters and electorstatic precipitator (ESP) at all major sources of air pollution i.e. raw mill, kiln, clinker cooler and coal mill cement mills and captive power plant (CPP).
We have also installed SNCR technology along with a low NOx burner to reduce NOx emissions effectively to keep the same in the prescribed norms and lime dosing systems have been installed in the power plants to ensure SO2 emission within the prescribed norms.
We use alternative fuels and raw materials (AFR) in order to increase our green energy portfolio, to reduce the clinker factor and to reduce the power/energy consumption per tonne of clinker/cement. The installation of WHRB in all the operating kilns has further helped in cutting down the CO2 emissions.
Can you elaborate on the role of alternative fuels and raw materials in reducing the environmental footprint of cement production?
The use of AFR plays a critical role in our strategy to reduce the environmental footprint of cement production. By substituting traditional fossil fuels with waste-derived alternatives like biomass, refuse-derived fuel (RDF) and industrial by-products, we significantly lower CO2 emissions and reduce the demand for natural resources.
The utilisation of supplementary cementitious materials (SCMs), such as fly ash, helps in reducing clinker consumption, which is a major source of carbon emissions in cement production. This not only decreases our reliance on energy-intensive processes but also promotes waste recycling and resource efficiency. AFR adoption is an integral part of our commitment to the circular economy, ensuring that we minimise waste and optimise the use of materials throughout the production cycle, ultimately contributing to a more sustainable and eco-friendly cement industry.
WCL is exploring transitioning from fossil fuels to cleaner alternatives like biofuels or hydrogen or RDF/plastic waste/other hazardous waste. Till date, 5 per cent TSR has been achieved, while the intent is to achieve more than 20 per cent TSR. WCL is utilising the hazardous and other waste as an alternative fuel or raw material. We have used more than 3 lakh metric tonne of hydrogen waste and other waste in FY-2023-24.
How does your company approach waste management and recycling to minimise environmental harm?
WCL is focusing on the 3 R’s – Reduce, Reuse and Recycle. We focus on optimum utilisation of natural resources and reuse of said resource as well as recycling of the waste material generated from our operations.
We are contributing to reduce the legacy waste generated in our municipalities and we have co-processed more than 50000 tonnes of RDF/plastic waste. Additionally, we are sending other waste generated at our facilities such as used oil / used lead acid batteries / e-waste to authorised recyclers. We are focused on targeted reduction in waste generation.
We are also utilising alternative raw materials. which are the waste from other industries such as red mud, chemical gypsum, iron sludge and ETP sludge to substitute natural resources.
WCL is also increasing the use of recycled content of plastic in PP bags.
We have met our EPR target for plastic waste introduced in the market for FY 23-24 through co-processing of plastic waste in its kiln. Additional EPR credit will be traded for this in the market.
What are the biggest challenges your company faces in achieving compliance with environmental regulations, both locally and globally?
WCL is committed toward 100 per cent compliances to applicable rules and regulations and having dedicated resources to do so, when we talk about the challenges WCL faces in complying with environmental regulations is the constantly evolving nature of both local and global environmental rules and regulation which further leads to strength. While we are committed to adhering to stringent regulations, keeping up with the rapid changes in environmental laws requires continuous upgradation in technology and processes. Another challenge is the high capital investment needed for adopting cleaner technologies, such as De_Sox System / SNCR / Up-gradation of ESP /bag house and carbon capture systems.
Additionally, the availability of AFR can be inconsistent, making it difficult to achieve consistent reductions in GHG emissions. Despite these challenges, WCL remains committed to sustainability and continuously collaborates with regulatory bodies and industry experts to stay ahead of compliance requirements. We also invest in research and development to innovate our production processes, ensuring that we not only meet but exceed environmental compliances.
What technological innovations or process optimisations has your company adopted to lower greenhouse gas emissions?
WCL has adopted several technological innovations and process optimisations to lower greenhouse gas emissions. One of the key initiatives is the installation of 45 MW waste heat recovery systems, which capture excess heat from the production process and convert it into energy, reducing the overall carbon footprint. We have also introduced advanced burner technology with lower NOx emissions and optimised energy consumption and presently we are less than 47 KWh/tonne of clinker, which is one of the best in the cement industry.
The deployment of energy-efficient vertical roller mills (VRM) for clinker grinding also contributes to reducing energy consumption and emissions. These innovations are part of our broader commitment to sustainability and are continuously enhanced to meet global environmental standards.
WCL is focusing on investing in renewable energy sources like solar or wind power to meet the electricity needs. We have installed a solar power plant at our Nimbahera plant and Jhajjar grinding unit as well as 15 MW windmills at Pratapgarh, for our grinding units located at Aligarh, Uttar Pradesh and Dhule Maharashtra. We have renewable power purchase agreements to source renewable energy, which will replace approximately 50 to 60 per cent of energy demand from the grid, further leading to reducing the GHG emissions.
WCL is taking various operational/capex measures to reduce the energy requirement like installation of VFD, optimisation of differential pressures across bag filters and optimisation of kiln operation to get maximum output.
How does your company engage with stakeholders, including local communities and environmental agencies, to ensure transparency and sustainability in your operations?
WCL has a well-defined approach for identification of stakeholders, which is done after considering the material influence each group has on the company’s ability to create value (and vice-versa). The objective of stakeholder engagement is to foster connections, build trust and confidence and buy-in for your company’s key initiatives. This can also help us mitigate potential risks and conflicts with stakeholders.
Stakeholder engagement is done is to understand the needs and expectation of anyone who has a stake in our company, based on which we can develop our strategy and identify our focus areas such as:
- What long-term goals has the company set in terms of reducing emissions
- What steps are being taken to achieve them
- What are the key focus areas to take society along with us
WCL places great emphasis on engaging with stakeholders, including local communities, environmental agencies and industry experts, to ensure transparency and sustainability. We conduct regular environmental audits and share our findings with relevant regulatory bodies to ensure compliance. Our CSR initiatives are closely aligned with community needs, particularly in areas like water conservation, afforestation and waste management, health, education and women empowerment, which directly impact the local environment.
We maintain an open dialogue with local residents to address their concerns about air quality, emissions and resource use and carry out need based assessment and accordingly design our CER/CSR programme and further implement the same.
Additionally, WCL participates in various industry forums and collaborates with environmental agencies to stay ahead of regulatory changes and adopt best practices. Transparency is key to building trust, and we ensure that all stakeholders are kept informed about our sustainability initiatives through periodic reports and community outreach programs. This collaborative approach ensures that we maintain a positive environmental and social impact.
What long-term goals has your company set in terms of reducing emissions, and what steps are being taken to achieve them?
WCL has set ambitious long-term goals to significantly reduce emissions in line with global climate targets. One of our primary objectives is to achieve net-zero carbon emissions by 2060, with interim goals to reduce CO2 intensity by 25 per cent by 2040 through increasing Green Energy Portfolio from present 41 per cent to 70 per cent, AFR and green hydrogen 3 per cent to 40 per cent, reduction in clinker factor from 79 to 60 per cent and CCUS and electrification of the kiln, introduction of LC3 and PLC cements based on techno-economic feasibility.
To achieve these targets, we are investing to develop facilities to feed more AFR, which helps to reduce dependence on fossil fuels and natural resources and lower carbon emissions. We are also exploring carbon capture and storage (CCS) technologies to capture CO2 emissions at their source. WE are committed to achieving its long-term sustainability goals and contributing to the global effort to combat climate change.
– Kanika Mathur

Concrete
The primary high-power applications are fans and mills
Published
2 days agoon
October 10, 2025By
admin
Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how plants can achieve both cost competitiveness and sustainability by lowering emissions, reducing downtime and planning for significant power savings.
As one of the most energy-intensive industries, cement manufacturing faces growing pressure to optimise power consumption, reduce emissions and improve operational reliability. Technology providers like Innomotics India are enabling this transformation by combining advanced motors, AI-driven digital solutions and intelligent monitoring systems that enhance process stability and reduce energy costs. From severe duty motors built for extreme kiln environments to DigiMine AI solutions that optimise pyro and mill operations, Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how the company is helping cement plants achieve measurable energy savings while moving closer to their sustainability goals.
How does your Energy Performance Contracting model typically reduce power consumption in cement plants—e.g., MWh saved?
Our artificial intelligence-based DigiMine AI Pyro and Mill solutions developed specifically for the cement industry, supports our customers in improving their process stability, productivity and process efficiency. In Pyro, this is achieved by optimising fuel consumption (Coal / AFR), reducing Specific Heat Consumption and reduction in emissions (CO2, SOx and NOx) through continuous monitoring of thermodynamics in pyro and recommending set-points of crucial parameters in advance for maintaining stable operations.
Within the mill, this is achieved by improving throughput, reduce energy / power consumption and maintaining stable operations on a continuous basis. Our ROI-based value proposition captures the project KPIs like reduction of coal usage, increase of AFR, reduction of specific heat consumption (Kcal / Kg), reduction of specific power consumption (KWH / tonne), reduction of emissions, etc., by a specific percentage. This gives clarity to our customers to understand the investment vis-à-vis savings and estimate the recovery time of their investment, which typically is achieved within one year of DigiMine AI Pyro and Mill solutions implementation.
What role do digitalisation and motor monitoring play in overall plant energy optimisation?
Motors are being used extensively in cement production, and their monitoring play crucial role in ensuring continuous operation of applications. The monitoring system can automatically generate alerts for any anomaly / abnormalities in motor parameters, which allows plant team to take corrective actions and avoid any major equipment damage and breakdown. The alerts help maintenance team to plan maintenance schedule and related activity efficiently. Centralised and organised data gives overview to the engineers for day-to-day activities. Cement is amongst the top energy intensive industries in comparison to other industries. Hence, it becomes critically important to optimise efficiency, productivity and up-time of plant equipment. Motor monitoring and digitalisation plays a vital role in it. Monitoring and control of multiple applications and areas
within the plant or multiple plants becomes possible with digitalisation.
Digitalisation adds a layer on top of OT systems, bringing machine and process data onto a single interface. This solves the challenges such as system silo, different communications protocol, databases and most importantly, creates a common definition and measurement to plant KPIs. Relevant stakeholders, such as engineers, head of departments and plant heads, can see accurate information, analyse it and make better decisions with appropriate timing. In doing so, plant teams can take proactive actions before machine breakdown, enable better coordination during maintenance activities while improving operational efficiency and productivity.
Further using latest technologies like Artificial Intelligence can even assist operators in running their plant with minimal requirement of human intervention, which allows operators to utilise their time in focusing on more critical topics like analysing data to identify further improvements in operation.
Which of your high-efficiency IEC low-voltage motors deliver the best energy savings for cement mills or fans?
Innomotics India offers a range of IEC-compliant low-voltage motors engineered to deliver superior performance and energy savings, particularly for applications such as cement mills, large fans, and blowers. Innomotics has the complete range of IE4 motors from 0.37kW to 1000kW to meet the demands of cement industry. The IE5 range is also available for specific requirements.
Can safe area motors operate safely and efficiently in cement kiln environments?
Yes, safe area motors are designed to operate reliably in these environments without the risk of overheating. These motors have ingress protection that prevents dust, moisture ingress and can withstand mechanical stress. These motors are available in IE3 / IE4 efficiency classes thereby ensuring lower energy consumption during continuous operation. These motors comply with relevant Indian as well as international standards.
How do your SD Severe Duty motors contribute to lower emissions and lower cost in heavy duty cement applications?
Severe duty motors enhances energy efficiency and durability in demanding cement applications, directly contributing to lower emissions and operational costs. With high-efficiency ratings (such as IE3 or better), they reduce power consumption, minimising CO2 output from energy use. Their robust design handles extreme heat, dust and vibration—common in cement environments—ensuring reliable performance and fewer energy losses.
These motors also lower the total cost of ownership by reducing downtime, maintenance and replacement frequency. Their extended service life and minimal performance degradation help cement plants meet sustainability targets, comply with emissions regulations and improve overall energy management—all while keeping production consistent and cost-effective.
What pump, fan or compressor drive upgrades have shown approximately 60 per cent energy savings in industrial settings and can be replicated in cement plants?
In the cement industry, the primary high-power applications are fans and mills. Among these, fans have the greatest potential for energy savings. Examples, the pre-heater fan, bag house fan, and cooler fans. When there are variations in airflow or the need to maintain a constant pressure in a process, using a variable speed drive (VSD) system is a more effective option for starting and controlling these fans. This adaptive approach can lead to significant energy savings. For instance, vanes and dampers can remain open while the variable frequency drive and motor system manage airflow regulation efficiently.
Concrete
We conduct regular internal energy audits
Published
2 days agoon
October 10, 2025By
admin
Shaping the future of low-carbon cement production involves integrating renewables, digitalisation and innovative technologies. Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, gives us a detailed account of how.
In an industry where energy consumption can account for a significant portion of operating costs, cement manufacturers are under increasing pressure to adopt sustainable practices without compromising efficiency. Nuvoco Vistas has taken a decisive step in this direction, leveraging digitalisation, renewable energy and innovative technologies to drive energy efficiency across its operations. In this exclusive conversation, Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, shares its approach to energy management, challenges of modernising brownfield plants and its long-term roadmap to align efficiency with India’s net-zero vision.
How has your company improved energy efficiency over the past five years?
Over the past five years, we have prioritised energy conservation by enhancing operational efficiency and scaling up renewable energy adoption. Through strategic fuel mix optimisation, deployment of cleaner technologies, and greater integration of renewables, we have steadily reduced our environmental footprint while meeting energy needs sustainably.
Technological upgrades across our plants have further strengthened efficiency. These include advanced process control systems, enhanced trend analysis, grinding media optimisation and the integration of solar-powered utilities. Importantly, grid integration at our key plants has delivered significant cost savings and streamlined energy management.
A notable milestone has been the expansion of our solar power capacity and Waste Heat Recovery Systems (WHRS). Our solar power capacity has grown from 1.5 MW in FY 2021–22 to 5.5 MW, while our WHRS capacity has increased from 44.7 MW to 49 MW, underscoring our commitment to sustainable energy solutions.
What technologies or practices have shown the highest energy-saving potential in cement production?
One of our most significant achievements in advancing energy efficiency has been the successful commissioning of a 132 KV Grid Integration Project, which unified three of our major manufacturing units under a single power network. This milestone, enabled by a dedicated transmission line and a state-of-the-art Line-In Line-Out (LILO) substation, has transformed our energy management and operational capabilities.
With this integration, we have substantially reduced our contract demand, eliminated power disruptions, and enhanced operational continuity. Supported by an optical fibre network for real-time communication and automation, this project stands as a testament to our innovation-led manufacturing excellence and underscores Nuvoco’s vision of building a safer, smarter, and sustainable world.
What role does digitalisation play in achieving energy efficiency in your operations?
Digitalisation plays a transformative role in driving energy efficiency across our operations. At Nuvoco, we are leveraging cutting-edge technologies and advanced digital tools to enhance productivity, optimise energy consumption and strengthen our commitment to sustainability and employee safety.
We are developing AI-enabled dashboards to optimise WHRS and kiln operations, ensuring maximum efficiency. Additionally, our advanced AI models evaluate multiple operational parameters — including fuel pricing, moisture content and energy output — to identify the most cost-effective fuel combinations in real time. These initiatives are enabling data-driven decision-making, improving operational excellence and reducing our environmental footprint.
What is your long-term strategy for aligning energy efficiency with decarbonisation goals?
As part of India’s climate action agenda, the cement sector has laid out a clear decarbonisation roadmap to achieve net-zero CO2 emissions by 2070. At Nuvoco, we view this as both a responsibility and an opportunity to redefine the future of sustainable construction. Our long-term strategy focuses on aligning energy efficiency with decarbonisation goals by embracing innovative technologies, alternative raw materials and renewable energy solutions.
We are making strategic investments to scale up solar power installations and enhance our renewable energy mix significantly by 2028. These initiatives are a key part of our broader vision to reduce Scope 2 emissions and strengthen our contribution to India’s net-zero journey, while continuing to deliver innovative and sustainable solutions to our customers.
How do you measure and benchmark energy performance across different plants?
We adopt a comprehensive approach to measure and benchmark energy performance across our plants. Key metrics include Specific Heat Consumption (kCal/kg of clinker) and Specific Power Consumption (kWh/tonne of cement), which are continuously tracked against Best Available Technology (BAT) benchmarks, industry peers and global standards such as the WBCSD-CSI and CII benchmarks.
To ensure consistency and drive improvements, we conduct regular internal energy audits, leverage real-time dashboards and implement robust KPI tracking systems. These tools enable us to compare performance across plants effectively, identify optimisation opportunities and set actionable targets for energy efficiency and sustainability.
What are the key challenges in adopting energy-efficient equipment in brownfield cement plants?
Adopting energy-efficient technologies in brownfield cement plants presents a unique set of challenges due to the constraints of working within existing infrastructure. Firstly, the high capital expenditure and relatively long payback periods often require careful evaluation before investments are made. Additionally, integrating new technologies with legacy equipment can be complex, requiring significant customisation to ensure seamless compatibility and performance.
Another major challenge is minimising production disruptions during installation. Since brownfield plants are already operational, upgrades must be planned meticulously to avoid affecting output. In many cases, space constraints in older facilities add to the difficulty of accommodating advanced equipment without compromising existing layouts.
At Nuvoco, we address these challenges through a phased implementation approach, detailed project planning and by fostering a culture of innovation and collaboration across our plants. This helps us balance operational continuity with our commitment to driving energy efficiency and sustainability.
Concrete
Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport
The airport is set to become Asia’s largest air connectivity hub.
Published
2 days agoon
October 10, 2025By
admin
Enlight Metals has supplied 3,200 metric tonne of steel for the newly inaugurated Navi Mumbai International Airport, marking a major contribution to one of India’s largest infrastructure projects and reinforcing the company’s commitment to supporting national development.
The Navi Mumbai International Airport, developed under a Public-Private Partnership led by the Adani Group, was inaugurated today by Prime Minister Narendra Modi. The airport is set to become Asia’s largest air connectivity hub, enhancing regional connectivity, boosting economic growth, and expanding trade opportunities. Prime Minister Modi described the project as a “glimpse of Viksit Bharat,” highlighting its transformative impact on infrastructure and development in the region.
“The supply of 3,200 metric tonne of steel for this key project aligns with our focus on supporting critical infrastructure development through reliable and timely metal sourcing. Enlight Metals is committed to enhancing transparency and efficiency in the steel supply chain, contributing to projects integral to India’s growth objectives,” said Vedant Goel, Director, Enlight Metals.
Enlight Metals has implemented technology-driven solutions to strengthen supply chain efficiency, ensuring consistent availability of construction materials for large-scale projects nationwide. Its contribution to the Navi Mumbai International Airport underscores the company’s growing role in supporting India’s infrastructure development initiatives.
This milestone reflects Enlight Metals’ ongoing engagement in delivering quality materials and timely services for major national projects, further cementing its position as a reliable partner in India’s infrastructure sector

The primary high-power applications are fans and mills

We conduct regular internal energy audits

Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport

World of Concrete India 2025 Showcases Global Expertise and Green Solutions

JSW Cement Opens Rs 1 Billion Plant in Odisha

The primary high-power applications are fans and mills

We conduct regular internal energy audits

Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport

World of Concrete India 2025 Showcases Global Expertise and Green Solutions

JSW Cement Opens Rs 1 Billion Plant in Odisha
Trending News
-
Concrete4 weeks ago
Adani’s Strategic Emergence in India’s Cement Landscape
-
Concrete2 weeks ago
Cement Margins Seen Rising 12–18 per cent in FY26
-
Uncategorized1 week ago
Jindal Steel Commissions 5 MTPA Blast Furnace At Angul
-
Uncategorized1 week ago
Nippon Steel Buys 30% Stake In Canada’s Kami Iron Ore Project