Concrete
Greener Mining, Stronger Cement
Published
12 months agoon
By
admin
Sustainable mining is shaping the cement industry’s path to environmental responsibility and paving the way for a greener future. However, it is an uphill task – one that requires technology, on-ground support and forward-thinking leadership. ICR looks at how companies are seeking to balance production demands with environmental responsibility.
Cement production relies heavily on the extraction of raw materials like limestone, clay, and gypsum, making the mining process a key component of the supply chain. However, traditional mining methods often result in significant environmental degradation, including habitat destruction, deforestation, and water contamination.
To address these issues, the cement industry is adopting sustainable mining practices that minimise environmental impact while ensuring resource efficiency. Techniques such as precision mining, water conservation, land reclamation, and the use of renewable energy in operations are being widely implemented. These practices not only help reduce the carbon footprint but also support biodiversity and ecosystem restoration in mining areas.
Pukhraj Sethiya, India Managing Director, and Jyotirmoy Saha, Senior Consultant, ReVal Consulting, say, “Mine planning is a complex job and requires extensive critical thinking along with technical competency. With a core focus on sustainability and resource recovery maximisation, our mine plans are built in ways that ensure long term gains for our esteemed clients. We deploy first principle thinking and create numerous design iterations which helps us in curating a comparative picture of the different ways of operating a particular mine. This involves defining the mine pit boundary first which is of prime importance to ensure optimum land requirement and utilisation.”
Sustainable mining is vital for the cement industry as it ensures the long-term availability of raw materials while aligning with global environmental goals. By embracing these practices, cement manufacturers can reduce waste, conserve natural resources, and contribute to a more sustainable production cycle, ultimately leading to enhanced cost efficiency and regulatory compliance in an increasingly eco-conscious market.
Impact of traditional mining
Traditional mining practices, often employed in the extraction of raw materials for cement production, pose significant environmental challenges. Conventional mining methods, such as open-pit mining, can lead to large-scale habitat destruction, deforestation, and soil erosion. The removal of vegetation and the disruption of natural landscapes often result in the loss of biodiversity and long-term ecological degradation.
One of the primary concerns is the pollution of water bodies due to the release of harmful chemicals and sediments, which can affect aquatic ecosystems and local communities relying on these resources. Air pollution, caused by dust emissions and the release of greenhouse gases from mining operations, contributes to climate change and affects the health of nearby populations. Land degradation and the generation of large quantities of waste materials also present significant environmental challenges.
Rajendra Bora, AVP – Mines, Wonder Cement, says, “Balancing raw material extraction with ecosystem preservation is one of our core priorities at Wonder Cement Ltd. We adopt a holistic approach to mining, integrating stringent environmental impact assessments before beginning operations. This allows us to plan our extraction activities in ways that minimise disruption to local ecosystems. For example, we have implemented controlled blasting techniques and utilised buffer zones to protect wildlife and vegetation. We have also restored abandoned quarries into eco-friendly landscapes that support local biodiversity. Use of Surface Miner helps in preserving the natural ecosystem during raw material extraction.”
“Wonder Cement is committed to reducing its reliance on natural resources through the use of alternative raw materials. We have adopted the use of industrial by-products such as fly ash, slag, and other recycled materials to supplement raw material requirements in cement production. These alternative materials not only reduce the need for mining but also contribute to the circular economy by diverting waste from landfills. This approach underscores our commitment to resource efficiency and sustainability” he adds.
Key challenges in addressing these issues include the need for sustainable resource management, the high costs of implementing environmentally friendly technologies, and balancing economic pressures with ecological preservation. Additionally, restoring ecosystems post-mining can be complex and time-consuming, requiring extensive rehabilitation efforts.
The cement industry must navigate these challenges by adopting more sustainable mining techniques and implementing stricter environmental regulations to mitigate the ecological impact of mining activities while ensuring the long-term viability of raw material extraction.
Emerging technologies in eco-friendly mining
The mining industry is witnessing a transformative shift towards eco-friendly practices through the adoption of emerging technologies like artificial intelligence (AI), automation, and data analytics. These innovations are revolutionising resource extraction, helping reduce the environmental footprint while enhancing efficiency in cement production.
AI-powered systems can predict equipment failures, optimise mining routes, and improve energy efficiency by analysing vast amounts of operational data. Automation, such as autonomous vehicles and robotic drills, minimises human intervention in hazardous environments and reduces energy consumption. These technologies also contribute to precision mining, where resource extraction is optimised to avoid wastage, lowering emissions and reducing land degradation.
Dr Ing. Metodi Zlatev, Head of the Sales and Project Department, Haver & Boecker Niagara, says, “Industry 4.0 and innovative technologies are revolutionising cement mining operations by making them more sustainable and efficient. Our Quatro 4.0 system allows operations to manage their system in an optimal way. It automatically, effortlessly and securely provides data that can signal potential maintenance issues while enabling deep insights into machine productivity, scrap rates and more. This proactive approach allows operations to reduce downtime and costs, optimise their processes and contribute to the environment.”
“Furthermore, our Pulse condition monitoring system, equipped with advanced sensors installed on critical machinery, provides 24/7 monitoring capabilities. This continuous surveillance ensures that any deviations or potential issues are detected early, allowing for timely interventions. The accompanying mobile app provides instant access to this data, facilitating quick decision-making and further reducing unexpected downtime. By integrating such advanced systems, cement companies can achieve their goals of operational excellence and environmental stewardship,” he adds.
Data analytics plays a crucial role in monitoring environmental impact, helping mining companies track emissions, water usage, and biodiversity changes in real-time. This data-driven approach enables better decision-making and supports compliance with environmental regulations.
By integrating AI, automation, and data analytics, eco-friendly mining technologies are improving resource efficiency, reducing operational costs, and minimising the ecological impact of mining operations. For the cement industry, these innovations offer a pathway towards more sustainable raw material sourcing, aligning with global decarbonisation goals.
Role of explosives in mining
Explosives play a critical role in mining operations, particularly in extracting raw materials for industries like cement production. Traditional explosives, such as ammonium nitrate fuel oil (ANFO), are widely used to break rock formations and access valuable minerals. While effective, the use of such explosives raises concerns about environmental impacts, including air pollution, ground vibrations and habitat disruption.
In the context of sustainable mining, there is a growing focus on using eco-friendly explosives and blasting techniques that minimise environmental harm. Emulsion-based explosives, for example, offer a safer, more efficient alternative with lower toxicity levels and reduced emissions. Innovations in precision blasting, supported by data analytics and real-time monitoring, also contribute to more controlled and targeted explosions, reducing waste and energy consumption.
Shubham Choudhari, Chief Technology Officer, SBL Energy, says, “At SBL Energy, we leverage advanced technology to improve resource recovery during blasting. Our precision blasting techniques ensure optimal rock fragmentation, minimising the need for re-blasting and ensuring that a higher proportion of extracted material is of high quality and ready for processing.”
Sustainable explosives practices align with broader goals of reducing carbon emissions and preserving ecosystems around mining areas. By incorporating these advancements, the cement industry can continue to meet its raw material demands while maintaining a commitment to environmental stewardship.
Reducing carbon footprint
Reducing the carbon footprint of mining operations has become a priority as the cement industry aims to align with global sustainability goals. A significant shift towards the adoption of renewable energy sources for powering mining equipment is helping to achieve this. Traditionally, mining operations have relied heavily on fossil fuels, leading to high carbon emissions. However, by integrating solar, wind, and other renewable energy solutions, mining companies can reduce their dependence on carbon-intensive power sources. Solar-powered mining equipment, wind farms, and hybrid energy systems are increasingly being deployed to lower emissions and enhance energy efficiency.
Furthermore, electrification of heavy machinery, such as electric trucks and loaders, is contributing to a decrease in the use of diesel, significantly cutting operational emissions. These renewable-powered technologies not only reduce greenhouse gas emissions but also bring long-term cost savings by lowering fuel expenses and enhancing operational resilience against energy price fluctuations.
For the cement industry, adopting renewable energy in mining operations is crucial in minimising environmental impact, supporting the industry’s decarbonisation journey, and contributing to global efforts to combat climate change.
Sustainable water management and biodiversity preservation
Sustainable water management has become a critical focus in mining, especially within the cement industry, where efficient resource utilisation is essential. Mining operations can be water-intensive, but advanced techniques like water recycling, rainwater harvesting, and the treatment of wastewater are helping to mitigate water scarcity issues. Closed-loop water systems, which minimise water withdrawal from local sources, ensure that mining operations remain eco-friendly and sustainable.
Restoration of mining sites post-extraction is another key aspect of responsible mining. Leading practices include land reclamation, afforestation and soil stabilisation efforts that rehabilitate the environment after mining activities cease. These measures ensure that ecosystems are restored, enabling the land to support plant life and wildlife once again.
Efforts to preserve biodiversity around mining areas are equally important. Companies are increasingly conducting biodiversity assessments before starting extraction and implementing strategies to protect local flora and fauna. Creating wildlife corridors, reducing habitat fragmentation, and ensuring minimal disruption to natural ecosystems are becoming standard practices in sustainable mining, reflecting the industry’s commitment to environmental stewardship. These initiatives not only help in reducing the environmental footprint of mining operations but also support long-term ecological balance, aligning with global sustainability goals.
Alternative fuels in mining
The shift towards incorporating alternative fuels in mining machinery is gaining traction as industries, including the cement sector, strive to reduce their carbon footprints and environmental impact. Utilising alternative fuels like biodiesel, hydrogen, and compressed natural gas (CNG) in mining equipment helps reduce the reliance on traditional fossil fuels, which are major contributors to greenhouse gas emissions.
One of the primary benefits of this shift is a significant reduction in CO2 emissions, aligning with global sustainability goals and the industry’s efforts to achieve net-zero targets. Additionally, alternative fuels often offer enhanced energy efficiency and lower operational costs over time, making mining operations more economically sustainable.
Furthermore, using cleaner fuel sources improves air quality in and around mining sites, promoting healthier working environments for employees and minimising the environmental degradation caused by mining activities. As cement production continues to grow, adopting alternative fuels in mining machinery becomes a key strategy for fostering greener, more sustainable mining practices.
Ethical supply chains from mine to cement plant
The cement industry faces increasing scrutiny regarding the ethical implications of its supply chains, particularly in sourcing raw materials from mining operations. Establishing transparent and ethical supply chains is essential not only for compliance with regulatory standards but also for fostering trust among stakeholders, including consumers, investors and local communities.
To achieve this, companies must prioritise traceability at every stage of the supply chain, ensuring that materials are sourced responsibly and sustainably. This includes conducting thorough due diligence on suppliers to verify their environmental and labour practices. Embracing technologies like blockchain can enhance transparency, allowing for real-time tracking of materials from extraction through to processing and delivery at cement plants.
Additionally, engaging with local communities and stakeholders is crucial for addressing social and environmental concerns associated with mining activities. By investing in community development and ensuring fair labour practices, companies can build stronger relationships and support sustainable practices that benefit all parties involved.
Ultimately, creating ethical supply chains not only mitigates risks but also enhances brand reputation and contributes to the overall sustainability of the cement industry. By committing to transparency and ethical sourcing, companies can help pave the way for a more responsible and sustainable future in cement production.
Challenges in cement mining
Cement mining, a critical component of the cement production process, faces numerous challenges that can impact efficiency, sustainability and overall operational success. Understanding these challenges is essential for industry stakeholders aiming to optimise mining operations while adhering to environmental and social standards.
- Regulatory compliance: The cement industry is subject to stringent environmental regulations and mining laws. Ensuring compliance with these regulations can be challenging, requiring substantial investment in environmental management systems and processes.
- Environmental impact: Traditional mining practices can lead to significant ecological disruptions, including habitat destruction, soil erosion and water contamination. Balancing the need for raw materials with environmental protection is a complex challenge that requires innovative practices and technologies.
- Resource depletion: As easily accessible reserves are depleted, mining operations must dig deeper or explore less accessible locations, which can increase costs and operational risks. Sustainable resource management and efficient extraction techniques are critical to mitigating this issue.
- Community relations: Cement mining often occurs in close proximity to local communities, which can lead to conflicts over land use, environmental concerns and social impacts. Building and maintaining positive relationships with local stakeholders is essential for the long-term success of mining operations.
- Technological advancements: Keeping pace with rapidly evolving technologies in the mining sector is a challenge. Adopting new technologies, such as automation and data analytics, can enhance efficiency but may require significant investment and training.
- Economic fluctuations: Volatility in the global cement market can affect demand for raw materials and, consequently, mining operations. Companies must develop strategies to adapt to market changes while maintaining operational efficiency.
Addressing these challenges requires a multifaceted approach that integrates sustainable practices, community engagement and technological innovation. By proactively tackling these issues, the cement industry can enhance the resilience and sustainability of its mining operations, ultimately contributing to a more responsible cement production process.
Innovations on the horizon for sustainable mining
As the cement industry increasingly prioritises sustainability, innovative practices and technologies are emerging to transform mining operations. The integration of advanced automation, robotics and AI is optimising resource extraction, reducing operational costs and minimising environmental impact. These technologies enhance decision-making and operational efficiency, allowing companies to improve resource allocation and predict equipment failures, thereby minimising waste.
Moreover, innovations in eco-friendly explosives and the shift towards electric and hybrid mining equipment are significantly reducing the environmental footprint of mining operations. Sustainable explosives minimise vibrations and dust emissions, improving safety and reducing ecological disruption. The adoption of IoT-enabled remote monitoring systems further enhances operational efficiency and safety by allowing real-time tracking and management of mining processes.
The long-term integration of these innovations will not only support the cement industry’s growth trajectory but also help align it with environmental regulations and climate goals. By optimising resource efficiency and reducing waste, the cement industry can meet the increasing global demand for its products while fostering better relationships with local communities and attracting investment in green technologies. Embracing these advancements positions the industry as a leader in sustainable development, paving the way for a more resilient and eco-friendly future.
Conclusion
The future of sustainable mining in the cement industry is bright, driven by innovative technologies and practices that prioritise environmental responsibility. The integration of advanced automation, eco-friendly explosives, and IoT solutions is reshaping mining operations, enhancing efficiency and significantly reducing ecological impacts. As the industry embraces these advancements, it not only meets the growing global demand for cement but also aligns with sustainability goals and environmental regulations. By fostering a commitment to sustainable mining, the cement industry can ensure its long-term growth while contributing to a healthier planet and building stronger relationships with communities, ultimately paving the way for a more resilient and sustainable future.

Concrete
The primary high-power applications are fans and mills
Published
2 days agoon
October 10, 2025By
admin
Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how plants can achieve both cost competitiveness and sustainability by lowering emissions, reducing downtime and planning for significant power savings.
As one of the most energy-intensive industries, cement manufacturing faces growing pressure to optimise power consumption, reduce emissions and improve operational reliability. Technology providers like Innomotics India are enabling this transformation by combining advanced motors, AI-driven digital solutions and intelligent monitoring systems that enhance process stability and reduce energy costs. From severe duty motors built for extreme kiln environments to DigiMine AI solutions that optimise pyro and mill operations, Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how the company is helping cement plants achieve measurable energy savings while moving closer to their sustainability goals.
How does your Energy Performance Contracting model typically reduce power consumption in cement plants—e.g., MWh saved?
Our artificial intelligence-based DigiMine AI Pyro and Mill solutions developed specifically for the cement industry, supports our customers in improving their process stability, productivity and process efficiency. In Pyro, this is achieved by optimising fuel consumption (Coal / AFR), reducing Specific Heat Consumption and reduction in emissions (CO2, SOx and NOx) through continuous monitoring of thermodynamics in pyro and recommending set-points of crucial parameters in advance for maintaining stable operations.
Within the mill, this is achieved by improving throughput, reduce energy / power consumption and maintaining stable operations on a continuous basis. Our ROI-based value proposition captures the project KPIs like reduction of coal usage, increase of AFR, reduction of specific heat consumption (Kcal / Kg), reduction of specific power consumption (KWH / tonne), reduction of emissions, etc., by a specific percentage. This gives clarity to our customers to understand the investment vis-à-vis savings and estimate the recovery time of their investment, which typically is achieved within one year of DigiMine AI Pyro and Mill solutions implementation.
What role do digitalisation and motor monitoring play in overall plant energy optimisation?
Motors are being used extensively in cement production, and their monitoring play crucial role in ensuring continuous operation of applications. The monitoring system can automatically generate alerts for any anomaly / abnormalities in motor parameters, which allows plant team to take corrective actions and avoid any major equipment damage and breakdown. The alerts help maintenance team to plan maintenance schedule and related activity efficiently. Centralised and organised data gives overview to the engineers for day-to-day activities. Cement is amongst the top energy intensive industries in comparison to other industries. Hence, it becomes critically important to optimise efficiency, productivity and up-time of plant equipment. Motor monitoring and digitalisation plays a vital role in it. Monitoring and control of multiple applications and areas
within the plant or multiple plants becomes possible with digitalisation.
Digitalisation adds a layer on top of OT systems, bringing machine and process data onto a single interface. This solves the challenges such as system silo, different communications protocol, databases and most importantly, creates a common definition and measurement to plant KPIs. Relevant stakeholders, such as engineers, head of departments and plant heads, can see accurate information, analyse it and make better decisions with appropriate timing. In doing so, plant teams can take proactive actions before machine breakdown, enable better coordination during maintenance activities while improving operational efficiency and productivity.
Further using latest technologies like Artificial Intelligence can even assist operators in running their plant with minimal requirement of human intervention, which allows operators to utilise their time in focusing on more critical topics like analysing data to identify further improvements in operation.
Which of your high-efficiency IEC low-voltage motors deliver the best energy savings for cement mills or fans?
Innomotics India offers a range of IEC-compliant low-voltage motors engineered to deliver superior performance and energy savings, particularly for applications such as cement mills, large fans, and blowers. Innomotics has the complete range of IE4 motors from 0.37kW to 1000kW to meet the demands of cement industry. The IE5 range is also available for specific requirements.
Can safe area motors operate safely and efficiently in cement kiln environments?
Yes, safe area motors are designed to operate reliably in these environments without the risk of overheating. These motors have ingress protection that prevents dust, moisture ingress and can withstand mechanical stress. These motors are available in IE3 / IE4 efficiency classes thereby ensuring lower energy consumption during continuous operation. These motors comply with relevant Indian as well as international standards.
How do your SD Severe Duty motors contribute to lower emissions and lower cost in heavy duty cement applications?
Severe duty motors enhances energy efficiency and durability in demanding cement applications, directly contributing to lower emissions and operational costs. With high-efficiency ratings (such as IE3 or better), they reduce power consumption, minimising CO2 output from energy use. Their robust design handles extreme heat, dust and vibration—common in cement environments—ensuring reliable performance and fewer energy losses.
These motors also lower the total cost of ownership by reducing downtime, maintenance and replacement frequency. Their extended service life and minimal performance degradation help cement plants meet sustainability targets, comply with emissions regulations and improve overall energy management—all while keeping production consistent and cost-effective.
What pump, fan or compressor drive upgrades have shown approximately 60 per cent energy savings in industrial settings and can be replicated in cement plants?
In the cement industry, the primary high-power applications are fans and mills. Among these, fans have the greatest potential for energy savings. Examples, the pre-heater fan, bag house fan, and cooler fans. When there are variations in airflow or the need to maintain a constant pressure in a process, using a variable speed drive (VSD) system is a more effective option for starting and controlling these fans. This adaptive approach can lead to significant energy savings. For instance, vanes and dampers can remain open while the variable frequency drive and motor system manage airflow regulation efficiently.
Concrete
We conduct regular internal energy audits
Published
2 days agoon
October 10, 2025By
admin
Shaping the future of low-carbon cement production involves integrating renewables, digitalisation and innovative technologies. Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, gives us a detailed account of how.
In an industry where energy consumption can account for a significant portion of operating costs, cement manufacturers are under increasing pressure to adopt sustainable practices without compromising efficiency. Nuvoco Vistas has taken a decisive step in this direction, leveraging digitalisation, renewable energy and innovative technologies to drive energy efficiency across its operations. In this exclusive conversation, Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, shares its approach to energy management, challenges of modernising brownfield plants and its long-term roadmap to align efficiency with India’s net-zero vision.
How has your company improved energy efficiency over the past five years?
Over the past five years, we have prioritised energy conservation by enhancing operational efficiency and scaling up renewable energy adoption. Through strategic fuel mix optimisation, deployment of cleaner technologies, and greater integration of renewables, we have steadily reduced our environmental footprint while meeting energy needs sustainably.
Technological upgrades across our plants have further strengthened efficiency. These include advanced process control systems, enhanced trend analysis, grinding media optimisation and the integration of solar-powered utilities. Importantly, grid integration at our key plants has delivered significant cost savings and streamlined energy management.
A notable milestone has been the expansion of our solar power capacity and Waste Heat Recovery Systems (WHRS). Our solar power capacity has grown from 1.5 MW in FY 2021–22 to 5.5 MW, while our WHRS capacity has increased from 44.7 MW to 49 MW, underscoring our commitment to sustainable energy solutions.
What technologies or practices have shown the highest energy-saving potential in cement production?
One of our most significant achievements in advancing energy efficiency has been the successful commissioning of a 132 KV Grid Integration Project, which unified three of our major manufacturing units under a single power network. This milestone, enabled by a dedicated transmission line and a state-of-the-art Line-In Line-Out (LILO) substation, has transformed our energy management and operational capabilities.
With this integration, we have substantially reduced our contract demand, eliminated power disruptions, and enhanced operational continuity. Supported by an optical fibre network for real-time communication and automation, this project stands as a testament to our innovation-led manufacturing excellence and underscores Nuvoco’s vision of building a safer, smarter, and sustainable world.
What role does digitalisation play in achieving energy efficiency in your operations?
Digitalisation plays a transformative role in driving energy efficiency across our operations. At Nuvoco, we are leveraging cutting-edge technologies and advanced digital tools to enhance productivity, optimise energy consumption and strengthen our commitment to sustainability and employee safety.
We are developing AI-enabled dashboards to optimise WHRS and kiln operations, ensuring maximum efficiency. Additionally, our advanced AI models evaluate multiple operational parameters — including fuel pricing, moisture content and energy output — to identify the most cost-effective fuel combinations in real time. These initiatives are enabling data-driven decision-making, improving operational excellence and reducing our environmental footprint.
What is your long-term strategy for aligning energy efficiency with decarbonisation goals?
As part of India’s climate action agenda, the cement sector has laid out a clear decarbonisation roadmap to achieve net-zero CO2 emissions by 2070. At Nuvoco, we view this as both a responsibility and an opportunity to redefine the future of sustainable construction. Our long-term strategy focuses on aligning energy efficiency with decarbonisation goals by embracing innovative technologies, alternative raw materials and renewable energy solutions.
We are making strategic investments to scale up solar power installations and enhance our renewable energy mix significantly by 2028. These initiatives are a key part of our broader vision to reduce Scope 2 emissions and strengthen our contribution to India’s net-zero journey, while continuing to deliver innovative and sustainable solutions to our customers.
How do you measure and benchmark energy performance across different plants?
We adopt a comprehensive approach to measure and benchmark energy performance across our plants. Key metrics include Specific Heat Consumption (kCal/kg of clinker) and Specific Power Consumption (kWh/tonne of cement), which are continuously tracked against Best Available Technology (BAT) benchmarks, industry peers and global standards such as the WBCSD-CSI and CII benchmarks.
To ensure consistency and drive improvements, we conduct regular internal energy audits, leverage real-time dashboards and implement robust KPI tracking systems. These tools enable us to compare performance across plants effectively, identify optimisation opportunities and set actionable targets for energy efficiency and sustainability.
What are the key challenges in adopting energy-efficient equipment in brownfield cement plants?
Adopting energy-efficient technologies in brownfield cement plants presents a unique set of challenges due to the constraints of working within existing infrastructure. Firstly, the high capital expenditure and relatively long payback periods often require careful evaluation before investments are made. Additionally, integrating new technologies with legacy equipment can be complex, requiring significant customisation to ensure seamless compatibility and performance.
Another major challenge is minimising production disruptions during installation. Since brownfield plants are already operational, upgrades must be planned meticulously to avoid affecting output. In many cases, space constraints in older facilities add to the difficulty of accommodating advanced equipment without compromising existing layouts.
At Nuvoco, we address these challenges through a phased implementation approach, detailed project planning and by fostering a culture of innovation and collaboration across our plants. This helps us balance operational continuity with our commitment to driving energy efficiency and sustainability.
Concrete
Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport
The airport is set to become Asia’s largest air connectivity hub.
Published
2 days agoon
October 10, 2025By
admin
Enlight Metals has supplied 3,200 metric tonne of steel for the newly inaugurated Navi Mumbai International Airport, marking a major contribution to one of India’s largest infrastructure projects and reinforcing the company’s commitment to supporting national development.
The Navi Mumbai International Airport, developed under a Public-Private Partnership led by the Adani Group, was inaugurated today by Prime Minister Narendra Modi. The airport is set to become Asia’s largest air connectivity hub, enhancing regional connectivity, boosting economic growth, and expanding trade opportunities. Prime Minister Modi described the project as a “glimpse of Viksit Bharat,” highlighting its transformative impact on infrastructure and development in the region.
“The supply of 3,200 metric tonne of steel for this key project aligns with our focus on supporting critical infrastructure development through reliable and timely metal sourcing. Enlight Metals is committed to enhancing transparency and efficiency in the steel supply chain, contributing to projects integral to India’s growth objectives,” said Vedant Goel, Director, Enlight Metals.
Enlight Metals has implemented technology-driven solutions to strengthen supply chain efficiency, ensuring consistent availability of construction materials for large-scale projects nationwide. Its contribution to the Navi Mumbai International Airport underscores the company’s growing role in supporting India’s infrastructure development initiatives.
This milestone reflects Enlight Metals’ ongoing engagement in delivering quality materials and timely services for major national projects, further cementing its position as a reliable partner in India’s infrastructure sector

The primary high-power applications are fans and mills

We conduct regular internal energy audits

Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport

World of Concrete India 2025 Showcases Global Expertise and Green Solutions

JSW Cement Opens Rs 1 Billion Plant in Odisha

The primary high-power applications are fans and mills

We conduct regular internal energy audits

Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport

World of Concrete India 2025 Showcases Global Expertise and Green Solutions

JSW Cement Opens Rs 1 Billion Plant in Odisha
Trending News
-
Concrete4 weeks ago
Adani’s Strategic Emergence in India’s Cement Landscape
-
Concrete2 weeks ago
Cement Margins Seen Rising 12–18 per cent in FY26
-
Uncategorized1 week ago
Jindal Steel Commissions 5 MTPA Blast Furnace At Angul
-
Uncategorized1 week ago
Nippon Steel Buys 30% Stake In Canada’s Kami Iron Ore Project