Connect with us

Concrete

Innovations in Sustainability

Published

on

Shares

Dr SB Hegde, Professor, Jain University, Bangalore, and Visiting Professor, Pennsylvania State University, USA, discusses how the cement sector is battling substantial carbon emissions and resource depletion, and embracing advanced technologies to mitigate its environmental impact.

In the relentless pursuit of urbanisation and infrastructure development, the cement industry finds itself at a pivotal intersection of ambition and responsibility. This foundational sector has long been synonymous with progress and growth, providing the bedrock for modern cities and industries. Yet, beneath its seemingly unyielding façade lies a profound challenge – the environmental footprint it leaves behind. Cement production, for its high carbon emissions and resource consumption, is now compelled to rewrite its narrative. The cement industry needs to become more sustainable using advanced technology. In this article, we will explore the world of cement production and discover new solutions that can change its future.

Considering traditional cement production is a major emitter of CO2, accounting for around 8 per cent of global greenhouse gas emissions. It consumes a vast amount of limestone, a finite resource, and contributes to deforestation and habitat destruction in limestone-rich regions.

Supplementary cement materials (SCMs) and creative ideas like Calcined Clay Clinker (LC3) are making a big difference. These different materials are transforming the way things are done. For example, in India, where the cement industry is one of the largest carbon emitters, LC3 technology, which incorporates calcined clays into cement, has been demonstrated to reduce CO2 emissions by up to 30 per cent and substantially decrease energy consumption during the clinker production process. By 2050, it is estimated that the implementation of such alternative materials could help the cement sector reduce its global CO2 emissions by up to 16 per cent.

The cement industry because of its energy-intensive processes, consuming approximately 5 per cent of the world’s total energy and contributing significantly to greenhouse gas emissions.

Waste heat recovery systems, a pivotal technology, are setting an example for sustainability. A case study from a cement plant in Germany showed that waste Innovations in Sustainability Dr SB Hegde, Professor, Jain University, Bangalore, and Visiting Professor, Pennsylvania State University, USA, discusses how the cement sector is battling substantial carbon emissions and resource depletion, and embracing advanced technologies to mitigate its environmental impact. heat recovery reduced energy consumption by approximately 20 per cent and cut CO2 emissions by 1.6 million tons annually. This not only demonstrates the environmental benefits but also underscores the economic advantages of such innovations.

Furthermore, the industry is adopting alternative fuels, often derived from waste materials. Lafarge Holcim, one of the world’s largest cement producers now utilizes alternative fuels in 37 per cent of its cement plants. This has resulted in an estimated reduction of 2.2 million tonnes of CO2 emissions annually, showcasing the transformative potential of sustainable fuel sources.

The electrification of kiln systems is a transformative step towards sustainability. While the shift to electrification is in its nascent stages, there are promising examples. Heidelberg Cement, a global leader in building materials, has set ambitious targets to electrify its cement production processes. By leveraging renewable energy sources, such as wind and solar, the company aims to reduce CO2 emissions by 30 per cent within the next decade. These concrete numbers underscore the industry’s commitment to low-carbon electrification.

Hybrid and flash calcination technologies offer compelling statistics as well. For instance, a pilot project using flash calcination technology in the Netherlands yielded a 25 per cent reduction in CO2 emissions compared to traditional rotary kilns. These numbers highlight the potential of disruptive technologies to reshape the cement industry.

This article is like a clear road map with real examples, explaining how the cement industry is becoming greener and more sustainable. By using technology, the cement industry wants to find a balance between moving forward and taking care of the environment. It’s showing how an industry can change to become more sustainable, strong and responsible for the future.

CURRENT TECHNOLOGIES


1. Alternative raw materials: The cement industry’s traditional reliance on limestone as a raw material is undergoing a transformation. The incorporation of alternative materials like fly ash, slag or pozzolans is a sustainable approach. For example, the use of fly ash in cement production can reduce CO2 emissions by up to 50 per cent compared to traditional Portland cement.

2. Energy efficiency: Improving energy efficiency is crucial. Waste heat recovery systems can significantly reduce energy consumption. For instance, waste heat recovery in cement plants can lead to a 20-30 per cent reduction in energy consumption.

3. Carbon Capture and Storage (CCS): CCS is a promising technology. In Norway, the Norcem Brevik cement plant has successfully demonstrated the capture of CO2 emissions, which are then transported and stored offshore. This technology can capture up to 400,000 tonnes of CO2 annually.

4. Use of alternative fuels: The shift towards alternative fuels can significantly reduce carbon emissions. For example, the use of alternative fuels in the European cement industry results in an average substitution rate of about 40 per cent of conventional fuels.

5. Blended cements: Blended cements, combining clinker with supplementary cementitious materials, can lead to lower emissions. For example, the use of slag and fly ash can reduce CO2 emissions by up to 40 per cent.

INNOVATION FOR THE FUTURE
1. Carbon Capture and Utilisation (CCU): CCU technology is still emerging, but it shows great potential. Innovations like carbon mineralisation can convert CO2 into stable mineral forms. Carbon Engineering, a Canadian company, is working on a direct air capture system that can capture one million tons of CO2 annually.

Feasible CCS technologies for the cement industry include:

a. Post-combustion capture: Capturing CO2 emissions after combustion during clinker production using solvents or adsorbents.
b. Pre-combustion capture: Capturing CO2 before combustion, often used with alternative fuels.
c. Oxy-fuel combustion: Burning fuel in an oxygenrich environment to facilitate CO2 capture.
d. Chemical looping combustion: Using metal oxides to capture CO2 during the calcination process.
e. Carbonation of alkaline residues: Capturing CO2 using alkaline residues from other industrial processes.
f. Integrated Carbon Capture and Storage (ICCS): Directly capturing CO2 from the cement production process.
g. Underground storage: Transporting and storing CO2 underground in geological formations.
h. Enhanced Oil Recovery (EOR): Injecting captured CO2 into depleted oil reservoirs.
i. Mineralisation: Converting CO2 into stable mineral forms for potential use or storage.

The cement industry can reduce emissions by adopting these technologies, but cost, energy, and infrastructure challenges must be addressed for widespread implementation. Collaboration among stakeholders is crucial for successful CCS integration.
2. Biomimicry in cement design: Researchers are exploring biomimetic materials inspired by nature. For example, a company called BioMason uses microorganisms to grow cement-like building materials, reducing energy use and emissions.
3. 3D printing of cement: 3D printing technology offers precise and efficient construction, reducing material waste. In a study, 3D-printed concrete structures used 40-70 per cent less material compared to traditional construction methods.
4. Blockchain for supply chain transparency: Blockchain technology ensures transparency and traceability. It is already being used in supply chains for various industries, including cement. By tracing the origin of raw materials and tracking production processes, it ensures sustainability compliance.

EVALUATING AND IMPLEMENTING SUSTAINABLE TECHNOLOGIES
1. Life Cycle Assessment (LCA): LCAs assess environmental impacts. For instance, a comparative LCA study found that geopolymer concrete (an alternative to traditional concrete) had 36 per cent lower carbon emissions compared to Portland cement.
2. Cost-benefit analysis: Considerations of initial investments and ongoing operational costs are paramount. Studies show that the implementation of waste heat recovery systems can pay back their initial costs in as little as two years, leading to long-term savings.
3. Regulatory compliance: Stricter emissions standards are being enforced globally. The European Union, for instance, has set ambitious emissions targets for the cement industry, mandating a 55 per cent reduction in CO2 emissions by 2030
4. Scalability: The scalability of technologies is critical for industry-wide adoption. Technologies like blended cements and waste heat recovery systems are already scalable, with global cement companies actively implementing them.
5. Stakeholder engagement: Engaging stakeholders is essential. For example, Holcim, a leading cement manufacturer, has partnered with NGOs and local communities to ensure sustainable practices and community involvement in their projects.

In conclusion, the cement industry is on a transformative path towards sustainability, driven by technological innovations. By embracing alternative raw materials, enhancing energy efficiency, and exploring cutting-edge solutions like carbon capture and utilization, the industry is reducing its environmental impact. The future holds even more promise, with biomimetic materials, 3D printing and blockchain enhancing sustainability.

Evaluating and implementing these technologies necessitates comprehensive assessments, cost-benefit analyses, regulatory compliance, scalability and stakeholder engagement. The industry’s commitment to sustainability not only addresses environmental concerns but also aligns with societal values and expectations, setting the stage for a greener and more responsible future for cement production.

REFERENCES:
1. NIST. (National Institute of Standards and Technology) Role of NIST in Sustainable Cements.
2. International Energy Agency. Cement Technology Roadmap 2018.
3. Gassnova. Longship – CO2 Capture, Transport, and Storage.
4. European Cement Association. Cembureau.
5. CSI. (Cement Sustainability Initiative) Slag Cement and Concrete.
6. Carbon Engineering. Direct Air Capture and Air To Fuels.
7. The University of New South Wales. Alternative Cement Discovery Set to Reduce Carbon Emissions.
8. BioMason. BioMason Technology.
9. NCCR Digital Fabrication. DFAB House Project.
10. IBM Blockchain. IBM Blockchain Solutions for Supply Chain.
11. ScienceDirect. Life Cycle Assessment of Geopolymer Concrete.
12. Energy.gov. Heat Recovery Technologies.
13. EU Climate Action. EU Climate Action: Climate Targets for Cement Industry.

ABOUT THE AUTHOR:


Dr SB Hegde is an industrial leader with expertise in cement plant operation and optimisation, plant commissioning, new cement plant establishment, etc. His industry knowledge cover manufacturing, product development, concrete technology and technical services.

Concrete

Construction Costs Rise 11% in 2024, Driven by Labour Expenses

Cement Prices Decline 15%, But Labour Costs Surge by 25%

Published

on

By

Shares



The cost of construction in India increased by 11% over the past year, primarily driven by a 25% rise in labour expenses, according to Colliers India. While prices of key materials like cement dropped by 15% and steel saw a marginal 1% decrease, the surge in labour costs stretched construction budgets across sectors.

“Labour, which constitutes over a quarter of construction costs, has seen significant inflation due to the demand for skilled workers and associated training and compliance costs,” said Badal Yagnik, CEO of Colliers India.

The residential segment experienced the sharpest cost escalation due to a growing focus on quality construction and demand for gated communities. Meanwhile, commercial and industrial real estate remained resilient, with 37 million square feet of office space and 22 million square feet of warehousing space completed in the first nine months of 2024.

“Despite rising costs, investments in automation and training are helping developers address manpower challenges and streamline project timelines,” said Vimal Nadar, senior director at Colliers India.

With labour costs continuing to influence overall construction expenses, developers are exploring strategies to optimize operations and mitigate rising costs.

Continue Reading

Concrete

Swiss Steel to Cut 800 Jobs

Job cuts due to weak demand

Published

on

By

Shares



Swiss Steel has announced plans to cut 800 jobs as part of a restructuring effort, triggered by weak demand in the global steel market. The company, a major player in the European steel industry, cited an ongoing slowdown in demand as the primary reason behind the workforce reduction. These job cuts are expected to impact various departments across its operations, including production and administrative functions.

The steel industry has been facing significant challenges due to reduced demand from key sectors such as construction and automotive manufacturing. Additionally, the broader economic slowdown in Europe, coupled with rising energy costs, has further strained the profitability of steel producers like Swiss Steel. In response to these conditions, the company has decided to streamline its operations to ensure long-term sustainability.

Swiss Steel’s decision to cut jobs is part of a broader trend in the steel industry, where companies are adjusting to volatile market conditions. The move is aimed at reducing operational costs and improving efficiency, but it highlights the continuing pressures faced by the manufacturing sector amid uncertain global economic conditions.

The layoffs are expected to occur across Swiss Steel’s production facilities and corporate offices, as the company focuses on consolidating its workforce. Despite these cuts, Swiss Steel plans to continue its efforts to innovate and adapt to market demands, with an emphasis on high-value, specialty steel products.

Continue Reading

Concrete

UltraTech Cement to raise Rs 3,000 crore via NCDs to boost financial flexibility

UltraTech reported a 36% year-on-year (YoY) decline in net profit, dropping to Rs 825 crore

Published

on

By

Shares



UltraTech Cement, the Aditya Birla Group’s flagship company, has announced plans to raise up to Rs 3,000 crore through the private placement of non-convertible debentures (NCDs) in one or more tranches. The move aims to strengthen the company’s financial position amid increasing competition in the cement sector.

UltraTech’s finance committee has approved the issuance of rupee-denominated, unsecured, redeemable, and listed NCDs. The company has experienced strong stock performance, with its share price rising 22% over the past year, boosting its market capitalization to approximately Rs 3.1 lakh crore.

For Q2 FY2025, UltraTech reported a 36% year-on-year (YoY) decline in net profit, dropping to Rs 825 crore, below analyst expectations. Revenue for the quarter also fell 2% YoY to Rs 15,635 crore, and EBITDA margins contracted by 300 basis points. Despite this, the company saw a 3% increase in domestic sales volume, supported by lower energy costs.

In a strategic move, UltraTech invested Rs 3,954 crore for a 32.7% equity stake in India Cements, further solidifying its position in South India. UltraTech holds an 11% market share in the region, while competitor Adani holds 6%. UltraTech also secured $500 million through a sustainability-linked loan, underscoring its focus on sustainable growth driven by infrastructure and housing demand.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds