Concrete
Strength of a refractory material changes with temperature
Published
2 years agoon
By
admin
Tushar Khandhadia, General Manager – Production, Udaipur Cement Works Limited, takes us through the workings of refractories at a cement plant while giving important inputs about their maintenance.
Tell us about the types of refractoriesused in your organisation and their respective purposes.
In our organisation, various types of refractories are utilised to withstand the extreme conditions present in the production of cement. These refractories are chosen based on their properties and suitability for specific areas within the cement manufacturing process. Here are common types of refractories used in our plant and their respective purposes:
Alumina refractories: Alumina refractories, typically made from alumina (Al2O3), are used in the kiln and cooler areas of the cement plant due to their high refractoriness and resistance to alkalis and abrasion.
Magnesia (magnesite) refractories: Magnesia refractories, made from magnesite (MgO), are used in the burning zone of the rotary kiln where temperatures are extremely high. They exhibit excellent resistance to alkaline materials present in the cement process.
Silica refractories: Silica refractories, composed primarily of silica (SiO2), are utilised in the lower temperature zones of the cement kiln and preheater. They provide good resistance to acidic materials and thermal shock.
Basic refractories (such as magnesia-chrome and magnesia-spinel): Basic refractories containing magnesia or chrome are employed in cement plant areas where the conditions are more basic (alkaline). They are used in high-temperature zones and exhibit resistance to alkaline materials.
Chrome-magnesia refractories: Chrome-magnesia refractories, combining chrome and magnesia, are utilised in areas exposed to higher temperatures and wear, such as cement kiln burners and coolers.
Insulating refractories (lightweight insulating bricks, ceramic fibres): Insulating refractories are used to reduce heat loss and improve energy efficiency in cement plant applications. They are employed in areas like the preheater and cooler to minimise thermal conductivity and conserve energy.
High-alumina refractories: High-alumina refractories, containing high levels of alumina, are used in areas where both high refractoriness and resistance to abrasive materials are needed, such as the transition zone of the cement kiln.
What are the key materials used in building a refractory lining to the kiln?
The key materials used during the refractory lining in a kiln include:
Alumina bricks – purpose: Alumina bricks, made of alumina (aluminum oxide), are crucial for high-temperature resistance in critical areas of the kiln, providing durability and thermal stability.
Basic bricks – purpose: Basic bricks, typically made from materials like magnesia or dolomite, are resistant to alkaline conditions. They are used in high-temperature zones of the kiln.
Key bricks – purpose: Key bricks are special bricks used to secure the refractory lining with closing each ring, providing stability and structural integrity to the overall refractory structure within the kiln.
Ceramic fibbers – purpose: Ceramic fibres, made from alumina-silicate or other compositions, serve as effective insulation in the refractory lining. They reduce heat loss and improve energy efficiency in the kiln.
Sodium silicate and mortar solution – purpose: Used as a binder or for coating refractory materials to enhance their properties and adhesion, improving the integrity and longevity of the refractory lining. The physical and chemical properties of mortars must be matched to the type of brick being installed.
Shim – purpose: Shims are thin, flat pieces of material used to fill small gaps or adjust the alignment of refractory bricks, ensuring a snug fit and proper construction of the refractory lining.
What are the key properties of a refractory that support the cement making process?
The key properties of a refractory that support the cement making process are:
- High refractoriness
- Chemical inertness and resistance
- Thermal shock resistance
- Abrasion and erosion resistance
- Porosity and permeability
- Mechanical strength and load-bearing capacity
- Resistance to alkali and alkali vapours
- Chemical composition and raw materials selection
Tell us more about the porosity and permeability of the refractory.
The porosity and permeability of refractories are important properties that influence their performance in high-temperature applications such as furnaces, kilns and other thermal processing equipment.
- Porosity in refractories refers to the volume percentage of voids or pores within the material. It affects the refractory’s ability to retain and release gases, liquids and thermal conductivity. Low porosity is generally desirable in refractories as it leads to better thermal and chemical resistance. High porosity can result in reduced strength and thermal conductivity.
- Permeability is the ability of a refractory material to allow the flow of gases or liquids through its pores or interconnected voids. It is influenced by the porosity and the connectivity of the pores within the material. Permeability is an essential property for refractories used in applications where gases or liquids need to flow through the refractory material, such as cement kiln.
The specific values of porosity and permeability for refractories can vary widely depending on the type of refractory material, its composition, manufacturing process, and intended application. Refractories can range from low-porosity dense materials to highly porous insulating materials, each designed for specific use cases.
What is the maximum temperature that a refractory can withhold? How does its strength differ from ambient temperature to high temperature?
Name of the spinel group mineral Composition Melting point. (oC)
Spinel MgAl2O4 (MgO. Al2O3) 2135
Hercynite FeAl2O4 (FeO. Al2O3) 1780
Picro-chromite MgCr2O4 (MgO. Cr2O3) 2350
Chromite FeCr2O4 (FeO. Cr2O3) 2075
Magnetite Fe3O4 (FeO.Fe2O3) 1591
- silica bricks: 1400-1500°C
- fireclay bricks: 1100-1400°C
- high-alumina bricks: 1400-1700°C
- magnesia/ doloma bricks: 1500-1800°C
The maximum temperature that a refractory can withstand is known as its refractoriness. Refractories are generally categorised into three main types based on their refractoriness:
- Fireclay refractories: These have a refractoriness of around 1600oC to 1800oC.
- High alumina refractories: They have a refractoriness ranging from about 1750oC to 1900oC.
- Basic refractories: Spinel, Hercynite, Chromite etc. They have a refractoriness ranging from about 1750oC to 2100oC.
- Silica refractories: Silica refractories have a refractoriness of approximately 1800oC to 1950oC
Strength of a refractory material changes with temperature. At ambient or room temperature, refractories generally have their highest mechanical strength. As the temperature increases, the strength of the refractory typically decreases due to thermal expansion, softening and possible chemical reactions. The rate and extent of this strength reduction vary based on the type of refractory and its composition.
Tell us about the installation and operating process of refractories in the kiln.
Here’s an overview of the installation and operating process of refractories in a cement kiln:
Installation of refractories
- Preparation and inspection: Before installation, inspect the kiln’s interior to assess the condition of the existing refractory lining and identify any areas requiring repair or replacement. After selection of area clean the kiln shell area properly for fixing of bricks lining.
- Material selection: Choose appropriate refractory materials based on the specific zone of the kiln (e.g., calcination, upper transition, burning zone, lower transition and cooling). Different
- zones have varying temperature and chemical exposure requirements.
- Laying the refractory bricks: Use skilled masons or technicians to install the refractories according to the design specifications. Refractory materials are laid in specific patterns to create the desired lining by using brick lining machine or kiln jack. Using of mortar are optional depend on past experience and kiln shell condition
- Sim fastening and inspection: To tighten each ring of bricks lining use sim fastening specially in alumina bricks lining, tab each line with wooden or rubber hammer for checking tightness of ring if it is found loose reapply sim.
- Drying and curing: Allow the refractory lining to dry and cure according to the manufacturer’s guidelines. Controlled heating and drying help to prevent cracking and ensure proper bonding.
Operating Process
• Start-up and warm-up: Gradually heat up the kiln to the desired operating temperature to avoid thermal shock to the refractories. The start-up process involves slowly increasing the temperature over few hours or days for drying out the refractories and ring tighten after expansion of the bricks.
• Monitoring and Control: Use advanced monitoring (shell scanner) systems to measure and controls the temperature and other critical parameters. Monitoring helps optimise the firing process and prevent damage to the refractory lining.
• Refractory maintenance: Regularly inspect the refractory lining through shell temperature for signs of wear, erosion, cracks or hot spots. Start a proactive maintenance programme to repair or replace damaged refractory sections promptly.
• Refractory repair and replacement: When necessary, schedule shut-downs for refractory repair or replacement. Use skilled personnel to execute repairs and ensure the new refractories are properly anchored and cured before restarting the kiln.
• Cool-down: After the cement production process or maintenance activities, gradually cool down the kiln to avoid thermal stress on the refractories. Controlled cooling is essential for prolonging the refractory life.
• Quality Control: Regularly assess the performance of the refractories, analyse their wear patterns, and gather data to optimise the refractory selection for future installations.
Efficient installation and careful operation of refractories in a cement kiln are vital for achieving optimal productivity, reducing downtime and extending the service life of the refractory lining. Properly maintained and installed refractories contribute to cost-effective and sustainable cement production.
What are the standards set for refractories in a cement kiln?
There are two standard shapes used in kiln for straight portion, viz. ISO shape and VDZ shape. ISO (International Organisation for Standardisation) is as per international standard and VDZ (Verein Deutsche Zementwerke) is German standard. In case of ISO brick, cold face thickness is fixed, i.e., 103 mm and in case of VDZ shape it is less than 80 mm. The average thickness for VDZ shape is fixed for all shape, i.e., 71.5 mm, that means weight for both combination shape used during lining will be same. But in case of ISO shape weight of the two types of bricks used in combination are different.
VDZ shape is prefixed with B, whereas ISO series bricks are prefixed with 3K. The last two digit represents the height of the brick or thickness of the lining in cm. e.g., B 322 means it is VDZ series brick (as B is prefix) and is having lining thickness 22 cm.
In case of basic bricks, VDZ shape is used in most of the kilns except for large kiln diameter like 6 M, where ISO shape is used for basic brick also. In case of alumina bricks, ISO shape is used in most of the kilns. However, up to 5 M dia kiln it is better to use VDZ shape for the entire length because of the following advantages:
- Better contact / arch effect with kiln shell for VDZ shape.
- Weight of VDZ shape brick is lower, hence easier to handle.
- Average thickness of VDZ shape is ~20 – 25 mm lower than ISO shape.
- Uniform compactness is achieved during green pressing of VDZ shape.
- Uniform burning condition in case of VDZ shape during manufacturing.
- Easier to install and minimum handing damage in case of VDZ shape.
The thickness of the lining is typical function of the kiln diameter. Recommended thickness of brick linings according to the shell diameter of rotary furnaces:
Kiln diameter Refractory thickness
up to 3.6 m 180 mm
3.6 to 4.2 m 200 mm
4.2 to 5.2 m 220 mm
Above 5.2 m 250 mm
The above table indicates the length of different zone and kiln environment at corresponding area.
• Discharge zone: This is also known as cooling zone. The length of discharge zone depends on the position of burner pipe tip. Generally, it is 0 -1 times of kiln diameter i.e., for 4-meter dia. kiln, the length of this zone would be approximately 4 m. There will not be coating in this area. The brick used for this area should have high abrasion resistance. High alumina brick or spinel bonded magnesia brick is suitable for this area.
• Lower transition zone: The area in between cooling and burning zone is called lower transition zone. The length varies from 1 – 2 times of kiln diameter. In this zone the coating formation on brick is unstable. Hence the brick used in this zone should have high resistance against spalling, abrasion, and chemical corrosion. Spinel bonded or hercynite bonded magnesia brick can be considered suitable for this zone. In case of very severe kiln condition (high redox condition and high chemical corrosion) zirconia-based magnesia brick may be considered.
• Burning zone: The most important area of kiln where stable coating is observed is called burning or sintering zone. The length of this zone varies from three times the kiln diameter up to five times the kiln diameter. The refractory used for this area should have high temperature resistance and high chemical corrosion resistance. In low the alkali environment mag-chrome brick is apt, but in high alkali environment hercynite bonded or spinel bonded magnesia brick is suitable.
• Upper transition zone: The area in between burning and calcining zone, where unstable coating is formed, is denoted as upper transition zone. The length of this zone can be 2-3 times of kiln diameter. Due to instability of coating in this zone, bricks having high thermal shock resistance should be used. Hercynite bonded or spinel bonded magnesia bricks are suitable.
• Calcining zone: The area between upper transition and kiln inlet is named as calcining zone. When the calcined raw meal enters the kiln, it is usually calcined up to 92-96 per cent. Rest of the calcination of kiln feed takes place in this area. The length of this zone is 7-8 times of kiln diameter. Generally, no coating is found in this area. The brick used for this area should have high spalling resistance and resistance against alkali sulfates and chlorides. Clog shape high alumina brick having 60 and 50 per cent alumina is suitable for this area.
While using high alkali loading in kiln, phosphate bonded alkali resistant bricks are
also recommended.
Concrete
Refractory demands in our kiln have changed
Published
3 days agoon
February 20, 2026By
admin
Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, points out why performance, predictability and life-cycle value now matter more than routine replacement in cement kilns.
As Indian cement plants push for higher throughput, increased alternative fuel usage and tighter shutdown cycles, refractory performance in kilns and pyro-processing systems is under growing pressure. In this interview, Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, shares how refractory demands have evolved on the ground and how smarter digital monitoring is improving kiln stability, uptime and clinker quality.
How have refractory demands changed in your kiln and pyro-processing line over the last five years?
Over the last five years, refractory demands in our kiln and pyro line have changed. Earlier, the focus was mostly on standard grades and routine shutdown-based replacement. But now, because of higher production loads, more alternative fuels and raw materials (AFR) usage and greater temperature variation, the expectation from refractory has increased.
In our own case, the current kiln refractory has already completed around 1.5 years, which itself shows how much more we now rely on materials that can handle thermal shock, alkali attack and coating fluctuations. We have moved towards more stable, high-performance linings so that we don’t have to enter the kiln frequently for repairs.
Overall, the shift has been from just ‘installation and run’ to selecting refractories that give longer life, better coating behaviour and more predictable performance under tougher operating conditions.
What are the biggest refractory challenges in the preheater, calciner and cooler zones?
• Preheater: Coating instability, chloride/sulphur cycles and brick erosion.
• Calciner: AFR firing, thermal shock and alkali infiltration.
• Cooler: Severe abrasion, red-river formation and mechanical stress on linings.
Overall, the biggest challenge is maintaining lining stability under highly variable operating conditions.
How do you evaluate and select refractory partners for long-term performance?
In real plant conditions, we don’t select a refractory partner just by looking at price. First, we see their past performance in similar kilns and whether their material has actually survived our operating conditions. We also check how strong their technical support is during shutdowns, because installation quality matters as much as the material itself.
Another key point is how quickly they respond during breakdowns or hot spots. A good partner should be available on short notice. We also look at their failure analysis capability, whether they can explain why a lining failed and suggest improvements.
On top of this, we review the life they delivered in the last few campaigns, their supply reliability and their willingness to offer plant-specific custom solutions instead of generic grades. Only a partner who supports us throughout the life cycle, which includes selection, installation, monitoring and post-failure analysis, fits our long-term requirement.
Can you share a recent example where better refractory selection improved uptime or clinker quality?
Recently, we upgraded to a high-abrasion basic brick at the kiln outlet. Earlier we had frequent chipping and coating loss. With the new lining, thermal stability improved and the coating became much more stable. As a result, our shutdown interval increased and clinker quality remained more consistent. It had a direct impact on our uptime.
How is increased AFR use affecting refractory behaviour?
Increased AFR use is definitely putting more stress on the refractory. The biggest issue we see daily is the rise in chlorine, alkalis and volatiles, which directly attack the lining, especially in the calciner and kiln inlet. AFR firing is also not as stable as conventional fuel, so we face frequent temperature fluctuations, which cause more thermal shock and small cracks in the lining.
Another real problem is coating instability. Some days the coating builds too fast, other days it suddenly drops, and both conditions impact refractory life. We also notice more dust circulation and buildup inside the calciner whenever the AFR mix changes, which again increases erosion.
Because of these practical issues, we have started relying more on alkali-resistant, low-porosity and better thermal shock–resistant materials to handle the additional stress coming from AFR.
What role does digital monitoring or thermal profiling play in your refractory strategy?
Digital tools like kiln shell scanners, IR imaging and thermal profiling help us detect weakening areas much earlier. This reduces unplanned shutdowns, helps identify hotspots accurately and allows us to replace only the critical sections. Overall, our maintenance has shifted from reactive to predictive, improving lining life significantly.
How do you balance cost, durability and installation speed during refractory shutdowns?
We focus on three points:
• Material quality that suits our thermal profile and chemistry.
• Installation speed, in fast turnarounds, we prefer monolithic.
• Life-cycle cost—the cheapest material is not the most economical. We look at durability, future downtime and total cost of ownership.
This balance ensures reliable performance without unnecessary expenditure.
What refractory or pyro-processing innovations could transform Indian cement operations?
Some promising developments include:
• High-performance, low-porosity and nano-bonded refractories
• Precast modular linings to drastically reduce shutdown time
• AI-driven kiln thermal analytics
• Advanced coating management solutions
• More AFR-compatible refractory mixes
These innovations can significantly improve kiln stability, efficiency and maintenance planning across the industry.
Concrete
Digital supply chain visibility is critical
Published
3 days agoon
February 20, 2026By
admin
MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, discusses how data, discipline and scale are turning Industry 4.0 into everyday business reality.
Over the past five years, digitalisation in Indian cement manufacturing has moved decisively beyond experimentation. Today, it is a strategic lever for cost control, operational resilience and sustainability. In this interview, MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, explains how integrated digital foundations, advanced analytics and real-time visibility are helping deliver measurable business outcomes.
How has digitalisation moved from pilot projects to core strategy in Indian cement manufacturing over the past five years?
Digitalisation in Indian cement has evolved from isolated pilot initiatives into a core business strategy because outcomes are now measurable, repeatable and scalable. The key shift has been the move away from standalone solutions toward an integrated digital foundation built on standardised processes, governed data and enterprise platforms that can be deployed consistently across plants and functions.
At Shree Cement, this transition has been very pragmatic. The early phase focused on visibility through dashboards, reporting, and digitisation of critical workflows. Over time, this has progressed into enterprise-level analytics and decision support across manufacturing and the supply chain,
with clear outcomes in cost optimisation, margin protection and revenue improvement through enhanced customer experience.
Equally important, digital is no longer the responsibility of a single function. It is embedded into day-to-day operations across planning, production, maintenance, despatch and customer servicing, supported by enterprise systems, Industrial Internet of Things (IIoT) data platforms, and a structured approach to change management.
Which digital interventions are delivering the highest ROI across mining, production and logistics today?
In a capital- and cost-intensive sector like cement, the highest returns come from digital interventions that directly reduce unit costs or unlock latent capacity without significant capex.
Supply chain and planning (advanced analytics): Tools for demand forecasting, S&OP, network optimisation and scheduling deliver strong returns by lowering logistics costs, improving service levels, and aligning production with demand in a fragmented and regionally diverse market.
Mining (fleet and productivity analytics): Data-led mine planning, fleet analytics, despatch discipline, and idle-time reduction improve fuel efficiency and equipment utilisation, generating meaningful savings in a cost-heavy operation.
Manufacturing (APC and process analytics): Advanced Process Control, mill optimisation, and variability reduction improve thermal and electrical efficiency, stabilise quality and reduce rework and unplanned stoppages.
Customer experience and revenue enablement (digital platforms): Dealer and retailer apps, order visibility and digitally enabled technical services improve ease of doing business and responsiveness. We are also empowering channel partners with transparent, real-time information on schemes, including eligibility, utilisation status and actionable recommendations, which improves channel satisfaction and market execution while supporting revenue growth.
Overall, while Artificial Intelligence (AI) and IIoT are powerful enablers, it is advanced analytics anchored in strong processes that typically delivers the fastest and most reliable ROI.
How is real-time data helping plants shift from reactive maintenance to predictive and prescriptive operations?
Real-time and near real-time data is driving a more proactive and disciplined maintenance culture, beginning with visibility and progressively moving toward prediction and prescription.
At Shree Cement, we have implemented a robust SAP Plant Maintenance framework to standardise maintenance workflows. This is complemented by IIoT-driven condition monitoring, ensuring consistent capture of equipment health indicators such as vibration, temperature, load, operating patterns and alarms.
Real-time visibility enables early detection of abnormal conditions, allowing teams to intervene before failures occur. As data quality improves and failure histories become structured, predictive models can anticipate likely failure modes and recommend timely interventions, improving MTBF and reducing downtime. Over time, these insights will evolve into prescriptive actions, including spares readiness, maintenance scheduling, and operating parameter adjustments, enabling reliability optimisation with minimal disruption.
A critical success factor is adoption. Predictive insights deliver value only when they are embedded into daily workflows, roles and accountability structures. Without this, they remain insights without action.
In a cost-sensitive market like India, how do cement companies balance digital investment with price competitiveness?
In India’s intensely competitive cement market, digital investments must be tightly linked to tangible business outcomes, particularly cost reduction, service improvement, and faster decision-making.
This balance is achieved by prioritising high-impact use cases such as planning efficiency, logistics optimisation, asset reliability, and process stability, all of which typically deliver quick payback. Equally important is building scalable and governed digital foundations that reduce the marginal cost of rolling out new use cases across plants.
Digitally enabled order management, live despatch visibility, and channel partner platforms also improve customer centricity while controlling cost-to-serve, allowing service levels to improve without proportionate increases in headcount or overheads.
In essence, the most effective digital investments do not add cost. They protect margins by reducing variability, improving planning accuracy, and strengthening execution discipline.
How is digitalisation enabling measurable reductions in energy consumption, emissions, and overall carbon footprint?
Digitalisation plays a pivotal role in improving energy efficiency, reducing emissions and lowering overall carbon intensity.
Real-time monitoring and analytics enable near real-time tracking of energy consumption and critical operating parameters, allowing inefficiencies to be identified quickly and corrective actions to be implemented. Centralised data consolidation across plants enables benchmarking, accelerates best-practice adoption, and drives consistent improvements in energy performance.
Improved asset reliability through predictive maintenance reduces unplanned downtime and process instability, directly lowering energy losses. Digital platforms also support more effective planning and control of renewable energy sources and waste heat recovery systems, reducing dependence on fossil fuels.
Most importantly, digitalisation enables sustainability progress to be tracked with greater accuracy and consistency, supporting long-term ESG commitments.
What role does digital supply chain visibility play in managing demand volatility and regional market dynamics in India?
Digital supply chain visibility is critical in India, where demand is highly regional, seasonality is pronounced, and logistics constraints can shift rapidly.
At Shree Cement, planning operates across multiple horizons. Annual planning focuses on capacity, network footprint and medium-term demand. Monthly S&OP aligns demand, production and logistics, while daily scheduling drives execution-level decisions on despatch, sourcing and prioritisation.
As digital maturity increases, this structure is being augmented by central command-and-control capabilities that manage exceptions such as plant constraints, demand spikes, route disruptions and order prioritisation. Planning is also shifting from aggregated averages to granular, cost-to-serve and exception-based decision-making, improving responsiveness, lowering logistics costs and strengthening service reliability.
How prepared is the current workforce for Industry 4.0, and what reskilling strategies are proving most effective?
Workforce preparedness for Industry 4.0 is improving, though the primary challenge lies in scaling capabilities consistently across diverse roles.
The most effective approach is to define capability requirements by role and tailor enablement accordingly. Senior leadership focuses on digital literacy for governance, investment prioritisation, and value tracking. Middle management is enabled to use analytics for execution discipline and adoption. Frontline sales and service teams benefit from
mobile-first tools and KPI-driven workflows, while shop-floor and plant teams focus on data-driven operations, APC usage, maintenance discipline, safety and quality routines.
Personalised, role-based learning paths, supported by on-ground champions and a clear articulation of practical benefits, drive adoption far more effectively than generic training programmes.
Which emerging digital technologies will fundamentally reshape cement manufacturing in the next decade?
AI and GenAI are expected to have the most significant impact, particularly when combined with connected operations and disciplined processes.
Key technologies likely to reshape the sector include GenAI and agentic AI for faster root-cause analysis, knowledge access, and standardisation of best practices; industrial foundation models that learn patterns across large sensor datasets; digital twins that allow simulation of process changes before implementation; and increasingly autonomous control systems that integrate sensors, AI, and APC to maintain stability with minimal manual intervention.
Over time, this will enable more centralised monitoring and management of plant operations, supported by strong processes, training and capability-building.
Concrete
Redefining Efficiency with Digitalisation
Published
3 days agoon
February 20, 2026By
admin
Professor Procyon Mukherjee discusses how as the cement industry accelerates its shift towards digitalisation, data-driven technologies are becoming the mainstay of sustainability and control across the value chain.
The cement industry, long perceived as traditional and resistant to change, is undergoing a profound transformation driven by digital technologies. As global infrastructure demand grows alongside increasing pressure to decarbonise and improve productivity, cement manufacturers are adopting data-centric tools to enhance performance across the value chain. Nowhere is this shift more impactful than in grinding, which is the energy-intensive final stage of cement production, and in the materials that make grinding more efficient: grinding media and grinding aids.
The imperative for digitalisation
Cement production accounts for roughly 7 per cent to 8 per cent of global CO2 emissions, largely due to the energy intensity of clinker production and grinding processes. Digital solutions, such as AI-driven process controls and digital twins, are helping plants improve stability, cut fuel use and reduce emissions while maintaining consistent product quality. In one deployment alongside ABB’s process controls at a Heidelberg plant in Czechia, AI tools cut fuel use by 4 per cent and emissions by 2 per cent, while also improving operational stability.
Digitalisation in cement manufacturing encompasses a suite of technologies, broadly termed as Industrial Internet of Things (IIoT), AI and machine learning, predictive analytics, cloud-based platforms, advanced process control and digital twins, each playing a role in optimising various stages of production from quarrying to despatch.
Grinding: The crucible of efficiency and cost
Of all the stages in cement production, grinding is among the most energy-intensive, historically consuming large amounts of electricity and representing a significant portion of plant operating costs. As a result, optimising grinding operations has become central to digital transformation strategies.
Modern digital systems are transforming grinding mills from mechanical workhorses into intelligent, interconnected assets. Sensors throughout the mill measure parameters such as mill load, vibration, mill speed, particle size distribution, and power consumption. This real-time data, fed into machine learning and advanced process control (APC) systems, can dynamically adjust operating conditions to maintain optimal throughput and energy usage.
For example, advanced grinding systems now predict inefficient conditions, such as impending mill overload, by continuously analysing acoustic and vibration signatures. The system can then proactively adjust clinker feed rates and grinding media distribution to sustain optimal conditions, reducing energy consumption and improving consistency.
Digital twins: Seeing grinding in the virtual world
One of the most transformative digital tools applied in cement grinding is the digital twin, which a real-time virtual replica of physical equipment and processes. By integrating sensor data and
process models, digital twins enable engineers to simulate process variations and run ‘what-if’
scenarios without disrupting actual production. These simulations support decisions on variables such as grinding media charge, mill speed and classifier settings, allowing optimisation of energy use and product fineness.
Digital twins have been used to optimise kilns and grinding circuits in plants worldwide, reducing unplanned downtime and allowing predictive maintenance to extend the life of expensive grinding assets.
Grinding media and grinding aids in a digital era
While digital technologies improve control and prediction, materials science innovations in grinding media and grinding aids have become equally crucial for achieving performance gains.
Grinding media, which comprise the balls or cylinders inside mills, directly influence the efficiency of clinker comminution. Traditionally composed of high-chrome cast iron or forged steel, grinding media account for nearly a quarter of global grinding media consumption by application, with efficiency improvements translating directly to lower energy intensity.
Recent advancements include ceramic and hybrid media that combine hardness and toughness to reduce wear and energy losses. For example, manufacturers such as Sanxin New Materials in China and Tosoh Corporation in Japan have developed sub-nano and zirconia media with exceptional wear resistance. Other innovations include smart media embedded with sensors to monitor wear, temperature, and impact forces in real time, enabling predictive maintenance and optimal media replacement scheduling. These digitally-enabled media solutions can increase grinding efficiency by as much as 15 per cent.
Complementing grinding media are grinding aids, which are chemical additives that improve mill throughput and reduce energy consumption by altering the surface properties of particles, trapping air, and preventing re-agglomeration. Technology leaders like SIKA AG and GCP Applied Technologies have invested in tailored grinding aids compatible with AI-driven dosing platforms that automatically adjust additive concentrations based on real-time mill conditions. Trials in South America reported throughput improvements nearing 19 per cent when integrating such digital assistive dosing with process control systems.
The integration of grinding media data and digital dosing of grinding aids moves the mill closer to a self-optimising system, where AI not only predicts media wear or energy losses but prescribes optimal interventions through automated dosing and operational adjustments.
Global case studies in digital adoption
Several cement companies around the world exemplify digital transformation in practice.
Heidelberg Materials has deployed digital twin technologies across global plants, achieving up to 15 per cent increases in production efficiency and 20 per cent reductions in energy consumption by leveraging real-time analytics and predictive algorithms.
Holcim’s Siggenthal plant in Switzerland piloted AI controllers that autonomously adjusted kiln operations, boosting throughput while reducing specific energy consumption and emissions.
Cemex, through its AI and predictive maintenance initiatives, improved kiln availability and reduced maintenance costs by predicting failures before they occurred. Global efforts also include AI process optimisation initiatives to reduce energy consumption and environmental impact.
Challenges and the road ahead
Despite these advances, digitalisation in cement grinding faces challenges. Legacy equipment may lack sensor readiness, requiring retrofits and edge-cloud connectivity upgrades. Data governance and integration across plants and systems remains a barrier for many mid-tier producers. Yet, digital transformation statistics show momentum: more than half of cement companies have implemented IoT sensors for equipment monitoring, and digital twin adoption is growing rapidly as part of broader Industry 4.0 strategies.
Furthermore, as digital systems mature, they increasingly support sustainability goals: reduced energy use, optimised media consumption and lower greenhouse gas emissions. By embedding intelligence into grinding circuits and material inputs like grinding aids, cement manufacturers can strike a balance between efficiency and environmental stewardship.
Conclusion
Digitalisation is not merely an add-on to cement manufacturing. It is reshaping the competitive and sustainability landscape of an industry often perceived as inertia-bound. With grinding representing a nexus of energy intensity and cost, digital technologies from sensor networks and predictive analytics to digital twins offer new levers of control. When paired with innovations in grinding media and grinding aids, particularly those with embedded digital capabilities, plants can achieve unprecedented gains in efficiency, predictability and performance.
For global cement producers aiming to reduce costs and carbon footprints simultaneously, the future belongs to those who harness digital intelligence not just to monitor operations, but to optimise and evolve them continuously.
About the author:
Professor Procyon Mukherjee, ex-CPO Lafarge-Holcim India, ex-President Hindalco, ex-VP Supply Chain Novelis Europe, has been an industry leader in logistics, procurement, operations and supply chain management. His career spans 38 years starting from Philips, Alcan Inc (Indian Aluminum Company), Hindalco, Novelis and Holcim. He authored the book, ‘The Search for Value in Supply Chains’. He serves now as Visiting Professor in SP Jain Global, SIOM and as the Adjunct Professor at SBUP. He advises leading Global Firms including Consulting firms on SCM and Industrial Leadership and is a subject matter expert in aluminum and cement. An Alumnus of IIM Calcutta and Jadavpur University, he has completed the LH Senior Leadership Programme at IVEY Academy at Western University, Canada.
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Refractory demands in our kiln have changed
Digital supply chain visibility is critical
Redefining Efficiency with Digitalisation
Cement Additives for Improved Grinding Efficiency
Digital Pathways for Sustainable Manufacturing
Trending News
-
Concrete4 weeks agoAris Secures Rs 630 Million Concrete Supply Order
-
Concrete4 weeks agoNITI Aayog Unveils Decarbonisation Roadmaps
-
Concrete3 weeks agoJK Cement Commissions 3 MTPA Buxar Plant, Crosses 31 MTPA
-
Economy & Market3 weeks agoBudget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook


