Concrete
Revolutionising Material Movement
Published
2 years agoon
By
admin
Streamlining material transportation at cement plants vastly affects productivity, cost-effectiveness and environmental compliance. ICR looks at how automation has transformed the way cement plants manage, store and transport materials, as a vital step towards modernising the manufacturing process.
Material handling in a cement manufacturing plant setup refers to the various processes and equipment used to transport, store, control, and manage raw materials, intermediate products, and finished cement within the plant. Effective material handling is crucial for ensuring the efficient and safe operation of the cement manufacturing process.
In the process of cement manufacturing, materials go through several touch points as they are transformed from raw materials into the final product.
The process begins with the extraction of raw materials, primarily limestone, clay and silica, from quarries or mines. Large equipment such as bulldozers and dump trucks are used to handle and transport these materials from the quarry to the cement plant. Once the raw materials are extracted, they are transported to crushers where they are crushed
into smaller pieces to facilitate further processing. The crushed materials are then blended in
precise proportions to create a raw mix, ensuring a consistent composition.
The raw mix is conveyed to a raw mill, where it is finely ground into a powder. The mill may use rollers, ball mills, or other grinding equipment to achieve the desired particle size. The finely ground raw meal is then preheated and pre-calcined in a preheater tower or cyclone system. This reduces the moisture content and initiates the chemical reactions necessary for cement production. The preheated and pre-calcined raw meal is fed into a rotary kiln, where it is heated to extremely high temperatures, typically around 1,450o C. This process transforms the raw materials into clinker, a nodular material.
After exiting the rotary kiln, the clinker is cooled and then finely ground in a cement mill. Gypsum is often added to control the setting time of the resulting cement. The ground clinker and gypsum mixture is known as Portland cement. The final cement product is stored in silos or bins before being packaged in bags or bulk containers for distribution to customers. Material handling equipment like conveyors, bucket elevators, and packing machines are used at this stage. Cement products are transported by trucks, rail, or ships to distribution centers or directly to construction sites, where they are used in various construction applications.
Throughout the entire cement manufacturing process, careful control and handling of materials are essential to ensure the quality and consistency of the final product. Automation and monitoring systems are often employed to maintain precise control over these touchpoints and optimise the efficiency of the process.
“Cement plants are notorious for clogging problems. Accumulations in ducts, chutes, and vessels often choke the movement of materials, causing bottlenecks that create expensive impediments to plant performance, process efficiency, productivity, and profitability. This means build-ups need to be manually cleared with alarming regularity unless the right technology is employed to keep things flowing smoothly,”
says Anup Nair, Managing Director, Martin Engineering India.
“The biggest single improvement when it comes to safety and efficiency in preheater performance is the use of air cannons, employed in a number of applications in cement production, from unclogging chutes and hoppers to moving super-heated material through the cooling process,” he adds.
MATERIAL TRANSPORTATION ENABLERS
In a cement manufacturing plant, various types of equipment and systems are used for the transportation of materials from quarries to the plant, within the plant, and for moving finished products from the plant to the dispatch points. Here are the key equipment and systems used at each stage of material transportation:
- Quarry to plant transportation
Heavy-duty trucks and haulage equipment are commonly used to transport raw materials from quarries or mines to the cement plant. These vehicles can carry bulk quantities of materials such as limestone, clay, and shale. - Within the plant transportation
• Conveyor belts: Conveyor systems are extensively used within the plant to move raw materials from one process to another. They are especially critical for transporting raw materials from storage areas to processing equipment.
• Bucket elevators: Bucket elevators are used to vertically transport bulk materials such as clinker, cement, and additives within the plant. They consist of buckets attached to a rotating belt.
• Pneumatic conveying systems: These systems use air pressure to transport powdered or granular materials through pipelines. They are often used for transporting cement and fly ash.
• Screw conveyors: Screw conveyors are used for transporting materials horizontally or at an incline. They are commonly employed in cement
plants to move materials like cement clinker and granular additives.
• Palletisers and robotic systems: Automated systems are used for palletising cement bags or other packaging containers before dispatch.
• Rail and Tram Systems: In larger plants, railroads or trams may be used to transport materials over longer distances within the facility. - Finished product from plant to despatch
• Belt conveyors: Conveyor belts are used to transport the final cement product from the cement
mill to storage silos and from silos to the
packaging area.
• Silo storage: Silos are used to store cement before packaging or dispatch. They often have aeration systems to prevent material caking.
• Truck loadout systems: Loading systems are used to load cement into trucks for distribution. These systems often have weighing scales to ensure accurate loading.
• Railcar loadout systems: In some cases, cement may be transported in railcars. Loadout systems for railcars are used to fill them efficiently.
• Bulk handling equipment: For bulk cement transport, specialised equipment like bulk tanker trucks, bulk ship loaders and pneumatic conveyors may be used for large-scale transportation.
MATERIAL TRANSPORTATION AND EFFICIENCY
Efficient material transportation is integral to the effectiveness and production output of a cement plant. It exerts a direct influence on various facets of plant operations, and its proficiency can have a ripple effect on overall production. Firstly, the timely and dependable supply of raw materials from quarries or mines to the plant ensures a steady production flow. Any disruptions or delays in material delivery can disrupt production schedules, leading to downtime and a decrease in efficiency. Furthermore, material transportation is instrumental in preserving the quality and uniformity of raw materials, a critical factor in achieving the desired properties of the cement product. Proper blending and mixing of these materials, made feasible by streamlined transport systems, are essential.
“We have a process of quality checking for every belt that is manufactured at our end. The key to maintaining quality is inspection of every belt that is dispatched from our company. Our in-house laboratory helps us keep a check on quality maintenance,” says AP Singh, Executive Director, Continental Conveyors Private Limited.
“Maintenance of the belts or requirement of change depends from plant to plant. If the establishment is good and follows all protocols, the requirement for changing the belts is lesser. If the maintenance of systems and processes are not good, then the requirement of changing or getting maintenance done for the belts is high as they are made of softer materials and may be classified as one of the weakest materials in the cement plants,” he adds.
Energy consumption also ties closely to material transportation efficiency. Inefficient systems, such as long conveyor belts with excessive friction or poorly designed pneumatic conveying setups, can lead to wasteful energy consumption and increased operational costs. Additionally, the time it takes for raw materials to traverse various processing stages within the plant hinges on effective material transportation. Faster, more dependable transport systems can shorten processing times, increase throughput, and enhance overall production efficiency. Efficient material handling also ensures that processing equipment, including crushers, mills, and kilns, receive a consistent supply of raw materials at the required rates, minimising equipment downtime due to shortages or blockages.
Effective material transport also facilitates inventory management, reducing the likelihood of excess or insufficient stockpiles of raw materials, which can lead to inefficiencies, storage complications, and extra expenses. Quality control is another key aspect, as material transportation impacts the quality of the final cement product. Proper handling,
blending, and storage of clinker and additives are vital for achieving the desired cement quality and minimising waste. Furthermore, efficient dust and emission control measures are necessary for environmental compliance and avoiding regulatory issues.
Lastly, operational costs, encompassing maintenance, energy and labour expenses, are profoundly affected by material transportation efficiency. Optimising these processes can reduce these costs and bolster overall operational efficiency. Additionally, a well-designed and maintained material handling system contributes to a safe working environment, promoting plant safety.
AUTOMATION IN MATERIAL TRANSPORTATION
The implementation of material transportation and handling automation in cement plants offers a multitude of benefits that contribute to the overall efficiency and effectiveness of operations.
Firstly, automation significantly enhances efficiency by eliminating human errors and optimising processes, resulting in increased operational efficiency and higher throughput rates. Secondly, it leads to substantial cost reductions as it reduces labour costs,
minimises energy consumption, and lowers maintenance expenses, thus improving the plant’s financial viability.
Furthermore, automation prioritises safety by removing workers from potentially hazardous environments and minimising the risk of accidents. This not only ensures the well-being of plant personnel but also safeguards the plant’s reputation and productivity. Additionally, automation plays a pivotal role in maintaining consistent product quality.
Precise control over material handling processes guarantees that the final cement product adheres to stringent quality standards, ultimately satisfying customer expectations.
Lastly, automation in material transportation and handling aligns with environmental compliance efforts. By effectively controlling emissions and mitigating dust, it helps cement plants adhere to environmental regulations, contributing to sustainability and minimising the plant’s environmental
footprint. In essence, these benefits underscore the significance of material transportation and handling automation as a fundamental aspect of modern cement plant operations.
CONCLUSION
The efficient handling and transportation of materials in cement manufacturing plants are vital for their productivity, cost-effectiveness and environmental compliance. Automation technologies have emerged as key enablers in this context, offering a range of benefits. These include improved operational efficiency, cost reduction, enhanced safety, consistent product quality and environmental compliance. Automation has revolutionised the way cement plants manage materials, making them more competitive, sustainable, and efficient in an increasingly demanding industry. Embracing automation in material handling is not just a trend; it is a necessity for cement plants to thrive in the modern era.
–Kanika Mathur
Concrete
Adani’s Strategic Emergence in India’s Cement Landscape
Published
5 days agoon
September 16, 2025By
admin
Milind Khangan, Marketing Head, Vertex Market Research, sheds light on Adani’s rapid cement consolidation under its ‘One Business, One Company’ strategy while positioning it to rival UltraTech, and thus, shaping a potential duopoly in India’s booming cement market.
India is the second-largest cement-producing country in the world, following China. This expansion is being driven by tremendous public investment in the housing and infrastructure sectors. The industry is accelerating, with a boost from schemes such as PM Gati Shakti, Bharatmala, and the Vande Bharat corridors. An upsurge in affordable housing under the Pradhan Mantri Awas Yojana (PMAY) further supports this expansion. In May 2025, local cement production increased about 9 per cent from last year to about 40 million metric tonnes for the month. The combined cement capacity in India was recorded at 670 million metric tonnes in the 2025 fiscal year, according to the Cement Manufacturers’ Association (CMA). For the financial year 2026, this is set to grow by another 9 per cent.
In spite of the growing demand, the Indian cement industry is highly competitive. UltraTech Cement (Aditya Birla Group) is still the market leader with domestic installed capacity of more than 186 MTPA as on 2025. It is targeted to achieve 200 MTPA. Adani Cement recently became a major player and is now India’s second-largest cement company. It did this through aggressive consolidation, operational synergies, and scale efficiencies. Indian players in the cement industry are increasingly valuing operational efficiency and sustainability. Some of the strategies with high impact are alternative fuels and materials (AFR) adoption, green cement expansion, and digital technology investments to offset changing regulatory pressure and increasing energy prices.
Building Adani Cement brand
Vertex Market Research explains that the Adani Group is executing a comprehensive reorganisation and consolidation of its cement business under the ‘One Business, One Company’ strategy. The plan is to integrate its diversified holdings into one consolidated corporate entity named Adani Cement. The focus is on operating integration, governance streamlining, and cost reduction in its expanding cement business.
Integration roadmap and key milestones:
- September 2022: The consolidation process started with the $6.4 billion buyout of Holcim’s majority stakes in Ambuja Cements and ACC, with Ambuja becoming the focal point of the consolidation.
- December 2023: Bought Sanghi Industries to strengthen the firm’s presence in western India.
- August 2024: Added Penna Cement to the portfolio, improving penetration of the southern market of India.
- April 2025: Further holding addition in Orient Cement to 46.66 per cent by purchasing the same from CK Birla Group, becoming the promoter with control.
- Ambuja Cements amalgamated with Adani Cement: This was sanctioned by the NCLT on 18th July 2025 with effect from April 1, 2024. This amalgamation brings in limestone reserves and fresh assets into Ambuja.
- Subject to Sanghi and Penna merger with Ambuja: Board approvals in December 2024 with the aim to finish between September to December 2025.
- Ambuja-ACC future integration: The latter is being contemplated as the final step towards consolidation.
- Orient Cement: It would serve as a principal manufacturing facility following the merger.
Scale, capacity expansion and market position
In financial year-2025, Adani Cement, including Ambuja, surpassed 100 MTPA. This makes it one of the world’s top ten cement companies. Along with ACC’s operations, it is now firmly placed as India’s second-largest cement company. In FY25, the Adani group’s sales volume per annum clocked 65 million metric tonnes. Adani Group claims that it now supplies close to 30 per cent of the cement consumed in India’s homes and infrastructure as of June 2025.
The organisation is pursuing aggressive brownfield expansion:
- By FY 2026: Reach 118 MTPA
- By FY 2028: Target 140 MTPA
These goals will be driven by commissioning new clinker and grinding units at key sites, with civil and mechanical works underway.
As of 2024, Adani Cement had its market share pegged at around 14 to 15 per cent, with an ambition to scale this up to 20 per cent by FY?2028, emerging as a potent competitor to UltraTech’s 192?MTPA capacity (186 domestic and overseas).
Strategic advantages and competitive benefits
The consolidation simplifies decision-making by reducing legal entities, centralising oversight, and removing redundant functions. This drives compliance efficiency and transparent reporting. Using procurement power for raw materials and energy lowers costs per ton. Integrated logistics with Adani Ports and freight infrastructure has resulted in an estimated 6 per cent savings in logistics. The group aims for additional savings of INR 500 to 550 per tonne by FY 2028 by integrating green energy, using alternative fuel resources, and improving sourcing methods.
Market coverage and brand consistency
Brand integration under one strategy will provide uniform product quality and easier distribution networks. Integration with Orient Cement’s dealer base, 60 per cent of which already distributes Ambuja/ACC products, enhances outreach and responsiveness.
By having captive limestone reserves at Lakhpat (approximately 275 million tonnes) and proposed new manufacturing facilities in Raigad, Maharashtra, Adani Cement derives cost advantage, raw material security, and long-term operational robustness.
Strategic implications and risks
Consolidation at Adani Cement makes it not just a capacity leader but also an operationally agile competitor with the ability to reap digital and sustainability benefits. Its vertically integrated platform enables cost leadership, market responsiveness, and scalability.
Challenges potentially include:
- Integration challenges across systems, corporate cultures, and plant operations
- Regulatory sanctions for pending mergers and new capacity additions
- Environmental clearances in environmentally sensitive areas and debt management with input price volatility
When materialised, this revolution would create a formidable Adani–UltraTech duopoly, redefining Indian cement on the basis of scale, innovation, and sustainability. India’s leading four cement players such as Adani (ACC and Ambuja), Dalmia Cement, Shree Cement, and UltraTech are expected to dominate the cement market.
Conclusion
Adani’s aggressive consolidation under the ‘One Business, One Company’ strategy signals a decisive shift in the Indian cement industry, positioning the group as a formidable challenger to UltraTech and setting the stage for a potential duopoly that could dominate the sector for years to come. By unifying operations, leveraging economies of scale, and securing vertical integration—from raw material reserves to distribution networks—Adani Cement is building both capacity and resilience, with clear advantages in cost efficiency, market reach, and sustainability. While integration complexities, regulatory hurdles, and environmental approvals remain key challenges, the scale and strategic alignment of this consolidation promise to redefine competition, pricing dynamics, and operational benchmarks in one of the world’s fastest-growing cement markets.
About the author:
Milind Khangan is the Marketing Head at Vertex Market Research and comes with over five years of experience in market research, lead generation and team management.
Concrete
Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series
Published
1 month agoon
August 16, 2025By
admin
PowerBuild’s flagship Series M, C, F, and K geared motors deliver robust, efficient, and versatile power transmission solutions for industries worldwide.
Products – M, C, F, K: At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. PowerBuild answers this need with its flagship geared motor series: M, C, F, and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.
Series M – Helical Inline Geared Motors: Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.
Series C – Right Angled Heli-Worm Geared Motors: Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.
Series F – Parallel Shaft Mounted Geared Motors: Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes, and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.
Series K – Right Angle Helical Bevel Geared Motors: For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining, and material handling. Its flexibility in mounting and broad motor options offer engineers’ freedom in design and reliability in execution.
Together, these four series reflect PowerBuild’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design, and field-tested reliability. Whether the requirement is speed control, torque multiplication, or space efficiency, Radicon’s Series M, C, F, and K stand as trusted powerhouses for global industries.

Klüber Lubrication India’s Klübersynth GEM 4-320 N upgrades synthetic gear oil for energy efficiency.
Klüber Lubrication India has introduced a strategic upgrade for the tyre manufacturing industry by retrofitting its high-performance synthetic gear oil, Klübersynth GEM 4-320 N, into Barrel Cold Feed Extruder gearboxes. This smart substitution, requiring no hardware changes, delivered energy savings of 4-6 per cent, as validated by an internationally recognised energy audit firm under IPMVP – Option B protocols, aligned with
ISO 50015 standards.
Beyond energy efficiency, the retrofit significantly improved operational parameters:
- Lower thermal stress on equipment
- Extended lubricant drain intervals
- Reduction in CO2 emissions and operational costs
These benefits position Klübersynth GEM 4-320 N as a powerful enabler of sustainability goals in line with India’s Business Responsibility and Sustainability Reporting (BRSR) guidelines and global Net Zero commitments.
Verified sustainability, zero compromise
This retrofit case illustrates that meaningful environmental impact doesn’t always require capital-intensive overhauls. Klübersynth GEM 4-320 N demonstrated high performance in demanding operating environments, offering:
- Enhanced component protection
- Extended oil life under high loads
- Stable performance across fluctuating temperatures
By enabling quick wins in efficiency and sustainability without disrupting operations, Klüber reinforces its role as a trusted partner in India’s evolving industrial landscape.
Klüber wins EcoVadis Gold again
Further affirming its global leadership in responsible business practices, Klüber Lubrication has been awarded the EcoVadis Gold certification for the fourth consecutive year in 2025. This recognition places it in the top three per cent
of over 150,000 companies worldwide evaluated for environmental, ethical and sustainable procurement practices.
Klüber’s ongoing investments in R&D and product innovation reflect its commitment to providing data-backed, application-specific lubrication solutions that exceed industry expectations and support long-term sustainability goals.
A trusted industrial ally
Backed by 90+ years of tribology expertise and a global support network, Klüber Lubrication is helping customers transition toward a greener tomorrow. With Klübersynth GEM 4-320 N, tyre manufacturers can take measurable, low-risk steps to boost energy efficiency and regulatory alignment—proving that even the smallest change can spark a significant transformation.

Adani’s Strategic Emergence in India’s Cement Landscape

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Driving Measurable Gains

Reshaping the Competitive Landscape

CCU testbeds in Tamil Nadu

Adani’s Strategic Emergence in India’s Cement Landscape

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Driving Measurable Gains

Reshaping the Competitive Landscape
