Connect with us

Concrete

A Quest for Green Energy

Published

on

Shares

Efforts to mitigate the environmental impact of cement production have led companies to look for innovative solutions. ICR delves into challenges and opportunities of energy-efficiency in the cement industry, and the pivotal role it plays in the broader drive towards a greener future.

The world is in a transition phase and energy is central to it. India has been responsible for almost 10 per cent of the increase in global energy demand since the year 2000. India’s energy demand in this period has almost doubled, pushing the country’s share in global demand up to 5.7 per cent in 2013 from 4.4 per cent at the beginning of the century.
The demand is expected to increase to about 1250 million tonnes of oil equivalent (Mtoe), as estimated by the International Energy Agency, to 1500 Mtoe (estimated in the Integrated Energy Policy Report) in 2030. India’s energy consumption is expected to grow rapidly.
Yet the increase in domestic energy production is far below India’s consumption needs. By 2040, more than 40 per cent of primary energy supply will be imported, up from 32 per cent in 2030. It may also be noted that no country in the world has been able to achieve a Human Development Index of 0.9 or more without an annual energy supply of at least 4 toe per capita. Consequently, there is a large latent demand for energy services that needs to be fulfilled in order for people to have reasonable incomes and a decent quality of life.
As per the Central Electricity Authority (CEA) as on May 2023, the Installed Generation Capacity is 4,17,668 MW of which 56.8 per cent is derived from fossil fuels and 43 per cent is derived from non-fossil fuel sources. The electricity generation target for the year 2023-24 was fixed at 1750 BU consisting of 1324.110 BU Thermal; 156.700 BU Hydro; 46.190 Nuclear; 8 BU Import from Bhutan and 215 BU RES (Excl. Large Hydro).
The Government of India has undertaken a two-pronged approach to cater to the energy demand of its citizens while ensuring minimum growth in CO2 emissions, so that the global emissions do not lead to irreversible damage to the earth system. The Energy Conservation Act (EC Act) was enacted in 2001 with the goal of reducing the energy intensity of the Indian economy. The Bureau of Energy Efficiency (BEE), a statutory body under the Ministry of Power, is responsible for spearheading the improvement of energy efficiency in the economy through various regulatory and promotional instruments.
Sanjay Joshi, Chief Manufacturing Officer, Nuvoco Vistas Corp, says, “Nuvoco’s Integrated cement plants are covered under the Perform, Achieve, and Trade (PAT) scheme of the Bureau of Energy Efficiency (BEE) by the Ministry of Power, Government of India for reducing its specific energy consumption year on year. We have a dedicated energy manager in each of our units who is certified to monitor the plant’s energy use and continuously improve it.”
“Nuvoco is committed to adherence to rigorous compliance and standards that prioritise energy use and efficiency, exemplified by our sustainability agenda – Protect Our Planet,” he adds.

ENERGY IN THE CEMENT INDUSTRY
The cement industry is known for its high energy consumption, primarily due to the energy-intensive processes involved in manufacturing cement. Energy is used in various stages of cement production, and its efficient utilisation is crucial for both economic and environmental reasons.
It starts with the energy required for mining and quarrying raw materials like limestone and clay. Subsequent stages involve crushing, grinding, and preheating the raw materials, all of which demand significant electrical energy. The most energy-intensive step is clinker production, where raw materials are heated to extremely high temperatures in rotary kilns, necessitating the use of fossil fuels like coal or natural gas. Cement grinding, another electricity-intensive phase, involves finely grinding clinker with gypsum.
“We use fossil fuels as the energy source for manufacturing needs. This includes coal, oil, and natural gas, which are burned in kilns to generate the heat necessary for the production process. We are also utilising alternative fuels to reduce usage of fossil fuels and promote sustainable practices. These alternative fuels can include RDF, biomass, such as rice/mustard husk or agricultural waste as well as waste materials like shredded tires or sewage sludge. By using these alternative fuels, we are not only progressing towards carbon neutrality but also contributing to waste management efforts,” said Sameer Kumar Pujari, Senior General Manager,JK Cement.
Even the packing and shipping stages require energy for material handling and transportation. To mitigate its environmental impact and operational costs, the cement industry is actively adopting strategies such as the use of alternative fuels, energy-efficient equipment, waste heat recovery and process optimisation to reduce energy consumption and carbon emissions while maintaining product quality.
In 2022, the size of the global cement market reached US$ 363.4 billion, and it is expected to grow at a CAGR of 5.4 per cent during 2023 – 2028 to reach US$ 498.23 billion by 2028. Being the second largest cement producer in the world after China, India contributes over 8 per cent to the global installed capacity in cement production. India has potentially rich deposits of limestones in different regions of the country essentially required for cement production. In terms of installed capacity, India’s Southern region (33 per cent) has the largest market share in cement production followed by North (22 per cent), East (19 per cent), West (13 per cent) and Central (13 per cent).
The energy sector aims to achieve an ambitious target of 450 GW of solar and wind in 2030 as it has pledged to reach carbon neutrality by 2070. What makes this target seem achievable is that the renewable capacity of the Indian energy sector (excluding large hydro) overtook 100 GW in 2021. While three quarters of the energy requirement is still met by fossil fuels, the overall consumption of energy has gone down by 5 per cent in 2021.
Cement plays a vital role in building the economy of a nation. The sector is largely dominated by players with large manufacturing capacities, making the cement industry one of the largest in the country and one that is energy intensive. The Perform Achieve and Trade (PAT) scheme of the Ministry of Power, Government of India has so far covered 126 numbers of cement plants in India targeting to reduce specific energy consumption since its inception from 2012 onwards.
The Bureau of Energy Efficiency states that based on the threshold defined, 85 numbers of cement plants were included as DCs and their cumulative energy consumption was 15.01 million Mtoe in PAT Cycle-1. Based on their specific energy consumption level, these DCs were given SEC target reduction of an average 5.43 per cent resulting in 0.815 Mtoe energy consumption reduction in absolute terms. The cement sector constituted 12.19 per cent of the overall energy saving target under PAT Cycle-1.
The total savings achieved by the cement sector covering 75 numbers of designated consumers in PAT Cycle-1 is 1.48 Mtoe, which is 0.665 Mtoe in excess of the target. At present, the energy consumption of these cement units as designated consumers is 23.246 Mtoe. The target given for them from PAT Cycle –II onwards is 0.94 million tonnes of oil equivalent.

AUTOMATION AND TECHNOLOGY
Automation and technology play a pivotal role in the cement sector’s pursuit of energy efficiency. These innovations are instrumental in optimising processes, reducing energy consumption and enhancing overall sustainability. Technology works in many ways to help the cement industry achieve energy efficiency.
Advanced process control (APC) systems use sensors, data analytics, and machine learning algorithms to continuously monitor and adjust production processes in real-time. These systems optimise parameters like kiln temperature, fuel combustion, and material flow to ensure efficient clinker production while minimising energy waste.
Internet of Things (IoT) technology is employed to gather data from various sensors placed throughout the production line. This data is then analysed to identify energy inefficiencies and areas for improvement. For instance, temperature and pressure sensors help maintain optimal conditions, reducing energy consumption during the clinker production process.
Energy Management Systems (EMS) and software helps cement plants monitor and manage their energy consumption. It provides insights into energy use patterns, identifies anomalies, and enables proactive energy-saving measures. EMS can also forecast energy demand and integrate renewable energy sources into the grid.
Predictive maintenance systems utilise sensors and data analysis to predict equipment failures before they occur. By preventing unexpected breakdowns and optimising maintenance schedules, these systems reduce downtime and ensure that machinery operates at peak energy efficiency.
Automation assists in the efficient management of alternative fuels and raw materials. Automated systems control the feeding and combustion of alternative fuels like biomass or waste-derived fuels, ensuring a stable and efficient energy source while reducing reliance on fossil fuels.
The adoption of energy-efficient machinery, such as high-efficiency motors, variable frequency drives (VFDs) and advanced kiln designs, significantly reduces energy consumption during the cement production process.
Automated waste heat recovery systems capture and reuse excess heat generated during clinker production. This recovered heat can be used for preheating raw materials or generating electricity, further improving energy efficiency.
Cement plants are increasingly adopting digital twin technology, which creates a virtual replica of the physical plant. This allows for simulations and testing of process improvements before implementation, reducing the risk of energy-inefficient changes.
Automation can manage the integration of renewable energy sources like solar panels and wind turbines into cement plant operations, maximising the use of clean energy and reducing dependence on fossil fuels.
Automation provides real-time energy monitoring and reporting tools that enable cement plants to track energy performance and identify opportunities for optimisation. This data-driven approach facilitates continuous improvement in energy efficiency. By embracing these technological advancements and incorporating automation into their operations, cement plants can achieve substantial energy savings, reduce greenhouse gas emissions.
According to the details on energy efficiency shared by Adani Cement, automation and technology play an instrumental role in optimising energy utilisation within cement plants. These advancements contribute to enhanced productivity and heightened system reliability, creating a stable manufacturing environment. The harmonious synergy between automation and technology facilitates the most efficient allocation of energy resources, minimising wastage and enhancing overall energy efficiency. In line with this, Adani Cement has implemented High-Level Control (HLC) systems for each kiln and cement mill circuit. These technologies not only streamline operations but also empower the company to respond proactively to energy consumption patterns.

EFFICIENCY IN ENERGY USE
Efficiency improvements in the cement industry are diverse and crucial for both sustainability and competitiveness. Energy management is a
primary focus, achieved through alternative fuels like biomass and waste-derived sources, coupled
with waste heat recovery during clinker production. Process optimisation, enabled by advanced control systems and predictive maintenance, fine-tunes operations like kiln and grinding processes, while upgrading to energy-efficient equipment further curtails energy consumption.
The adoption of alternative energy sources in the cement industry reduces carbon emissions but also enhances sustainability and helps cement companies meet environmental regulations and industry sustainability goals. However, the feasibility of using specific alternative energy sources may vary depending on the location, available resources and regulatory constraints.
Srivatsan Iyer, Global CEO, Hero Future Energies, presented his thoughts on the expectations from the G20 Summit in terms of Energy Transition Outlook: “At the upcoming G20 summit, we anticipate the reinforcement of a collective determination to quicken the pace of energy transition globally. It is absolutely critical that the G20 nations accelerate efforts in sharing advanced technologies and ensuring access to affordable financing from multilateral development banks and international finance institutions, especially for emerging economies. As we move towards a net-zero future, the critical role of new technologies like electrolysers, battery storage and carbon capture will become even more apparent.”
“We look forward to increased technological collaboration among G20 nations, establishing more resilient and open global markets, particularly in the emerging sector of green hydrogen. Our hope is for consensus, actionable strategies and a commitment to these crucial imperatives.”

CONCLUSION
The journey toward achieving energy efficiency in the cement industry is not merely a pursuit of environmental responsibility; it is a pathway to long-term sustainability and economic viability. As we confront the challenges posed by climate change and the imperative to reduce carbon emissions, the cement sector stands at a critical crossroads.
As the world moves toward a greener, more sustainable future, the cement industry’s dedication to energy efficiency not only safeguards the environment but also secures its place as a responsible and forward-thinking player in the global industrial landscape. It is a commitment that benefits not only the industry itself but also future generations and the planet we all call home.

  • Kanika Mathur

Concrete

Cement Industry Backs Co-Processing to Tackle Global Waste

Industry bodies recently urged policy support for cement co-processing as waste solution

Published

on

By

Shares



Leading industry bodies, including the Global Cement and Concrete Association (GCCA), European Composites Industry Association, International Solid Waste Association – Africa, Mission Possible Partnership and the Global Waste-to-Energy Research and Technology Council, have issued a joint statement highlighting the cement industry’s potential role in addressing the growing global challenge of non-recyclable and non-reusable waste. The organisations have called for stronger policy support to unlock the full potential of cement industry co-processing as a safe, effective and sustainable waste management solution.
Co-processing enables both energy recovery and material recycling by using suitable waste to replace fossil fuels in cement kilns, while simultaneously recycling residual ash into the cement itself. This integrated approach delivers a zero-waste solution, reduces landfill dependence and complements conventional recycling by addressing waste streams that cannot be recycled or are contaminated.
Already recognised across regions including Europe, India, Latin America and North America, co-processing operates under strict regulatory and technical frameworks to ensure high standards of safety, emissions control and transparency.
Commenting on the initiative, Thomas Guillot, Chief Executive of the GCCA, said co-processing offers a circular, community-friendly waste solution but requires effective regulatory frameworks and supportive public policy to scale further. He noted that while some cement kilns already substitute over 90 per cent of their fuel with waste, many regions still lack established practices.
The joint statement urges governments and institutions to formally recognise co-processing within waste policy frameworks, support waste collection and pre-treatment, streamline permitting, count recycled material towards national recycling targets, and provide fiscal incentives that reflect environmental benefits. It also calls for stronger public–private partnerships and international knowledge sharing.
With global waste generation estimated at over 11 billion tonnes annually and uncontrolled municipal waste projected to rise sharply by 2050, the signatories believe co-processing represents a practical and scalable response. With appropriate policy backing, it can help divert waste from landfills, reduce fossil fuel use in cement manufacturing and transform waste into a valuable societal resource.    

Continue Reading

Concrete

Industry Bodies Call for Wider Use of Cement Co-Processing

Joint statement seeks policy support for sustainable waste management

Published

on

By

Shares



Leading industry organisations have called for stronger policy support to accelerate the adoption of cement industry co-processing as a sustainable solution for managing non-recyclable and non-reusable waste. In a joint statement, bodies including the Global Cement and Concrete Association, European Composites Industry Association, International Solid Waste Association – Africa, Mission Possible Partnership and the Global Waste-to-Energy Research and Technology Council highlighted the role co-processing can play in addressing the growing global waste challenge.
Co-processing enables the use of waste as an alternative to fossil fuels in cement kilns, while residual ash is incorporated into cementitious materials, resulting in a zero-waste process. The approach supports both energy recovery and material recycling, complements conventional recycling systems and reduces reliance on landfill infrastructure. It is primarily applied to waste streams that are contaminated or unsuitable for recycling.
The organisations noted that co-processing is already recognised in regions such as Europe, India, Latin America and North America, operating under regulated frameworks to ensure safety, emissions control and transparency. However, adoption remains uneven globally, with some plants achieving over 90 per cent fuel substitution while others lack enabling policies.
The statement urged governments and institutions to formally recognise co-processing in waste management frameworks, streamline environmental permitting, incentivise waste collection and pre-treatment, account for recycled material content in national targets, and support public-private partnerships. The call comes amid rising global waste volumes, which are estimated at over 11 billion tonnes annually, with unmanaged waste contributing to greenhouse gas emissions, pollution and health risks.

Continue Reading

Concrete

Why Cement Needs CCUS

Published

on

By

Shares



Cement’s deep decarbonisation cannot be achieved through efficiency and fuel switching alone, making CCUS essential to address unavoidable process emissions from calcination. ICR explores if with the right mix of policy support, shared infrastructure, and phased scale-up from pilots to clusters, CCUS can enable India’s cement industry to align growth with its net-zero ambitions.

Cement underpins modern development—from housing and transport to renewable energy infrastructure—but it is also one of the world’s most carbon-intensive materials, with global production of around 4 billion tonnes per year accounting for 7 to 8 per cent of global CO2 emissions, according to the GCCA. What makes cement uniquely hard to abate is that 60 to 65 per cent of its emissions arise from limestone calcination, a chemical process that releases CO2 irrespective of the energy source used; the IPCC Sixth Assessment Report (AR6) therefore classifies cement as a hard-to-abate sector, noting that even fully renewable-powered kilns would continue to emit significant process emissions. While the industry has achieved substantial reductions over the past two decades through energy efficiency, alternative fuels and clinker substitution using fly ash, slag, and calcined clays, studies including the IEA Net Zero Roadmap and GCCA decarbonisation pathways show these levers can deliver only 50 to 60 per cent emissions reduction before reaching technical and material limits, leaving Carbon Capture, Utilisation and Storage (CCUS) as the only scalable and durable option to address remaining calcination emissions—an intervention the IPCC estimates will deliver nearly two-thirds of cumulative cement-sector emission reductions globally by mid-century, making CCUS a central pillar of any credible net-zero cement pathway.

Process emissions vs energy emissions
Cement’s carbon footprint is distinct from many other industries because it stems from two sources: energy emissions and process emissions. Energy emissions arise from burning fuels to heat kilns to around 1,450°C and account for roughly 35 to 40 per cent of total cement CO2 emissions, according to the International Energy Agency (IEA). These can be progressively reduced through efficiency improvements, alternative fuels such as biomass and RDF, and electrification supported by renewable power. Over the past two decades, such measures have delivered measurable gains, with global average thermal energy intensity in cement production falling by nearly 20 per cent since 2000, as reported by the IEA and GCCA.
The larger and more intractable challenge lies in process emissions, which make up approximately 60 per cent to 65 per cent of cement’s total CO2 output. These emissions are released during calcination, when limestone (CaCO3) is converted into lime (CaO), inherently emitting CO2 regardless of fuel choice or energy efficiency—a reality underscored by the IPCC Sixth Assessment Report (AR6). Even aggressive clinker substitution using fly ash, slag, or calcined clays is constrained by material availability and performance requirements, typically delivering 20 to 40 per cent emissions reduction at best, as outlined in the GCCA–TERI India Cement Roadmap and IEA Net Zero Scenario. This structural split explains why cement is classified as a hard-to-abate sector and why incremental improvements alone are insufficient; as energy emissions decline, process emissions will dominate, making Carbon Capture, Utilisation and Storage (CCUS) a critical intervention to intercept residual CO2 and keep the sector’s net-zero ambitions within reach.

Where CCUS stands today
Globally, CCUS in cement is moving from concept to early industrial reality, led by Europe and North America, with the IEA noting that cement accounts for nearly 40 per cent of planned CCUS projects in heavy industry, reflecting limited alternatives for deep decarbonisation; a flagship example is Heidelberg Materials’ Brevik CCS project in Norway, commissioned in 2025, designed to capture about 400,000 tonnes of CO2 annually—nearly half the plant’s emissions—with permanent offshore storage via the Northern Lights infrastructure (Reuters, Heidelberg Materials), alongside progress at projects in the UK, Belgium, and the US such as Padeswood, Lixhe (LEILAC), and Ste. Genevieve, all enabled by strong policy support, public funding, and shared transport-and-storage infrastructure.
These experiences show that CCUS scales fastest when policy support, infrastructure availability, and risk-sharing mechanisms align, with Europe bridging the viability gap through EU ETS allowances, Innovation Fund grants, and CO2 hubs despite capture costs remaining high at US$ 80-150 per tonne of CO2 (IEA, GCCA); India, by contrast, is at an early readiness stage but gaining momentum through five cement-sector CCU testbeds launched by the Department of Science and Technology (DST) under academia–industry public–private partnerships involving IITs and producers such as JSW Cement, Dalmia Cement, and JK Cement, targeting 1-2 tonnes of CO2 per day to validate performance under Indian conditions (ETInfra, DST), with the GCCA–TERI India Roadmap identifying the current phase as a foundation-building decade essential for achieving net-zero by 2070.
Amit Banka, Founder and CEO, WeNaturalists, says “Carbon literacy means more than understanding that CO2 harms the climate. It means cement professionals grasping why their specific plant’s emissions profile matters, how different CCUS technologies trade off between energy consumption and capture rates, where utilisation opportunities align with their operational reality, and what governance frameworks ensure verified, permanent carbon sequestration. Cement manufacturing contributes approximately 8 per cent of global carbon emissions. Addressing this requires professionals who understand CCUS deeply enough to make capital decisions, troubleshoot implementation challenges, and convince boards to invest substantial capital.”

Technology pathways for cement
Cement CCUS encompasses a range of technologies, from conventional post-combustion solvent-based systems to process-integrated solutions that directly target calcination, each with different energy requirements, retrofit complexity, and cost profiles. The most mature option remains amine-based post-combustion capture, already deployed at industrial scale and favoured for early cement projects because it can be retrofitted to existing flue-gas streams; however, capture costs typically range from US$ 60-120 per tonne of CO2, depending on CO2 concentration, plant layout, and energy integration.
Lovish Ahuja, Chief Sustainability Officer, Dalmia Cement (Bharat), says, “CCUS in Indian cement can be viewed through two complementary lenses. If technological innovation, enabling policies, and societal acceptance fail to translate ambition into action, CCUS risks becoming a significant and unavoidable compliance cost for hard-to-abate sectors such as cement, steel, and aluminium. However, if global commitments under the Paris Agreement and national targets—most notably India’s Net Zero 2070 pledge—are implemented at scale through sustained policy and industry action, CCUS shifts from a future liability to a strategic opportunity. In that scenario, it becomes a platform for technological leadership, long-term competitiveness, and systemic decarbonisation rather than merely a regulatory burden.”
“Accelerating CCUS adoption cannot hinge on a single policy lever; it demands a coordinated ecosystem approach. This includes mission-mode governance, alignment across ministries, and a mix of enabling instruments such as viability gap funding, concessional and ESG-linked finance, tax incentives, and support for R&D, infrastructure, and access to geological storage. Importantly, while cement is largely a regional commodity with limited exportability due to its low value-to-weight ratio, CCUS innovation itself can become a globally competitive export. By developing, piloting, and scaling cost-effective CCUS solutions domestically, India can not only decarbonise its own cement industry but also position itself as a supplier of affordable CCUS technologies and services to cement markets worldwide,” he adds.
Process-centric approaches seek to reduce the energy penalty associated with solvent regeneration by altering where and how CO2 is separated. Technologies such as LEILAC/Calix, which uses indirect calcination to produce a high-purity CO2 stream, are scaling toward a ~100,000 tCO2 per year demonstrator (LEILAC-2) following successful pilots, while calcium looping leverages limestone chemistry to achieve theoretical capture efficiencies above 90 per cent, albeit still at pilot and demonstration stages requiring careful integration. Other emerging routes—including oxy-fuel combustion, membrane separation, solid sorbents, and cryogenic or hybrid systems—offer varying trade-offs between purity, energy use, and retrofit complexity; taken together, recent studies suggest that no single technology fits all plants, making a multi-technology, site-specific approach the most realistic pathway for scaling CCUS across the cement sector.
Yash Agarwal, Co-Founder, Carbonetics Carbon Capture, says, “We are fully focused on CCUS, and for us, a running plant is a profitable plant. What we have done is created digital twins that allow operators to simulate and resolve specific problems in record time. In a conventional setup, when an issue arises, plants often have to shut down operations and bring in expert consultants. What we offer instead is on-the-fly consulting. As soon as a problem is detected, the system automatically provides a set of potential solutions that can be tested on a running plant. This approach ensures that plant shutdowns are avoided and production is not impacted.”

The economics of CCUS
Carbon Capture, Utilisation and Storage (CCUS) remains one of the toughest economic hurdles in cement decarbonisation, with the IEA estimating capture costs of US$ 80-150 per tonne of CO2, and full-system costs raising cement production by US$ 30-60 per tonne, potentially increasing prices by 20 to 40 per cent without policy support—an untenable burden for a low-margin, price-sensitive industry like India’s.
Global experience shows CCUS advances beyond pilots only when the viability gap is bridged through strong policy mechanisms such as EU ETS allowances, Innovation Fund grants, and carbon Contracts for Difference (CfDs), yet even in Europe few projects have reached final investment decision (GCCA); India’s lack of a dedicated CCUS financing framework leaves projects reliant on R&D grants and balance sheets, reinforcing the IEA Net Zero Roadmap conclusion that carbon markets, green public procurement, and viability gap funding are essential to spread costs across producers, policymakers, and end users and prevent CCUS from remaining confined to demonstrations well into the 2030s.

Utilisation or storage
Carbon utilisation pathways are often the first entry point for CCUS in cement because they offer near-term revenue potential and lower infrastructure complexity. The International Energy Agency (IEA) estimates that current utilisation routes—such as concrete curing, mineralisation into aggregates, precipitated calcium carbonate (PCC), and limited chemical conversion—can realistically absorb only 5 per cent to 10 per cent of captured CO2 at a typical cement plant. In India, utilisation is particularly attractive for early pilots as it avoids the immediate need for pipelines, injection wells, and long-term liability frameworks. Accordingly, Department of Science and Technology (DST)–supported cement CCU testbeds are already demonstrating mineralisation and CO2-cured concrete applications at 1–2 tonnes of CO2 per day, validating performance, durability, and operability under Indian conditions.
However, utilisation faces hard limits of scale and permanence. India’s cement sector emits over 200 million tonnes of CO2 annually (GCCA), far exceeding the absorptive capacity of domestic utilisation markets, while many pathways—especially fuels and chemicals—are energy-intensive and dependent on costly renewable power and green hydrogen. The IPCC Sixth Assessment Report (AR6) cautions that most CCU routes do not guarantee permanent storage unless CO2 is mineralised or locked into long-lived materials, making geological storage indispensable for deep decarbonisation. India has credible storage potential in deep saline aquifers, depleted oil and gas fields, and basalt formations such as the Deccan Traps (NITI Aayog, IEA), and hub-based models—where multiple plants share transport and storage infrastructure—can reduce costs and improve bankability, as seen in Norway’s Northern Lights project. The pragmatic pathway for India is therefore a dual-track approach: utilise CO2 where it is economical and store it where permanence and scale are unavoidable, enabling early learning while building the backbone for net-zero cement.

Policy, infrastructure and clusters
Scaling CCUS in the cement sector hinges on policy certainty, shared infrastructure, and coordinated cluster development, rather than isolated plant-level action. The IEA notes that over 70 per cent of advanced industrial CCUS projects globally rely on strong government intervention—through carbon pricing, capital grants, tax credits, and long-term offtake guarantees—with Europe’s EU ETS, Innovation Fund, and carbon Contracts for Difference (CfDs) proving decisive in advancing projects like Brevik CCS. In contrast, India lacks a dedicated CCUS policy framework, rendering capture costs of USD 80–150 per tonne of CO2 economically prohibitive without state support (IEA, GCCA), a gap the GCCA–TERI India Cement Roadmap highlights can be bridged through carbon markets, viability gap funding, and green public procurement.
Milan R Trivedi, Vice President, Shree Digvijay Cement, says, “CCUS represents both an unavoidable near-term compliance cost and a long-term strategic opportunity for Indian cement producers. While current capture costs of US$ 100-150 per tonne of CO2 strain margins and necessitate upfront retrofit investments driven by emerging mandates and NDCs, effective policy support—particularly a robust, long-term carbon pricing mechanism with tradable credits under frameworks like India’s Carbon Credit Trading Scheme (CCTS)—can de-risk capital deployment and convert CCUS into a competitive advantage. With such enablers in place, CCUS can unlock 10 per cent to 20 per cent green price premiums, strengthen ESG positioning, and allow Indian cement to compete in global low-carbon markets under regimes such as the EU CBAM, North America’s buy-clean policies, and Middle Eastern green procurement, transforming compliance into export-led leadership.”
Equally critical is cluster-based CO2 transport and storage infrastructure, which can reduce unit costs by 30 to 50 per cent compared to standalone projects (IEA, Clean Energy Ministerial); recognising this, the DST has launched five CCU testbeds under academia–industry public–private partnerships, while NITI Aayog works toward a national CCUS mission focused on hubs and regional planning. Global precedents—from Norway’s Northern Lights to the UK’s HyNet and East Coast clusters—demonstrate that CCUS scales fastest when governments plan infrastructure at a regional level, making cluster-led development, backed by early public investment, the decisive enabler for India to move CCUS from isolated pilots to a scalable industrial solution.
Paul Baruya, Director of Strategy and Sustainability, FutureCoal, says, “Cement is a foundational material with a fundamental climate challenge: process emissions that cannot be eliminated through clean energy alone. The IPCC is clear that in the absence of a near-term replacement of Portland cement chemistry, CCS is essential to address the majority of clinker-related emissions. With global cement production at around 4 gigatonnes (Gt) and still growing, cement decarbonisation is not a niche undertaking, it is a large-scale industrial transition.”

From pilots to practice
Moving CCUS in cement from pilots to practice requires a sequenced roadmap aligning technology maturity, infrastructure development, and policy support: the IEA estimates that achieving net zero will require CCUS to scale from less than 1 Mt of CO2 captured today to over 1.2 Gt annually by 2050, while the GCCA Net Zero Roadmap projects CCUS contributing 30 per cent to 40 per cent of total cement-sector emissions reductions by mid-century, alongside efficiency, alternative fuels, and clinker substitution.
MM Rathi, Joint President – Power Plants, Shree Cement, says, “The Indian cement sector is currently at a pilot to early demonstration stage of CCUS readiness. A few companies have initiated small-scale pilots focused on capturing CO2 from kiln flue gases and exploring utilisation routes such as mineralisation and concrete curing. CCUS has not yet reached commercial integration due to high capture costs (US$ 80-150 per tonne of CO2), lack of transport and storage infrastructure, limited access to storage sites, and absence of long-term policy incentives. While Europe and North America have begun early commercial deployment, large-scale CCUS adoption in India is more realistically expected post-2035, subject to enabling infrastructure and policy frameworks.”
Early pilots—such as India’s DST-backed CCU testbeds and Europe’s first commercial-scale plants—serve as learning platforms to validate integration, costs, and operational reliability, but large-scale deployment will depend on cluster-based scale-up, as emphasised by the IPCC AR6, which highlights the need for early CO2 transport and storage planning to avoid long-term emissions lock-in. For India, the GCCA–TERI India Roadmap identifies CCUS as indispensable for achieving net-zero by 2070, following a pragmatic pathway: pilot today to build confidence, cluster in the 2030s to reduce costs, and institutionalise CCUS by mid-century so that low-carbon cement becomes the default, not a niche, in the country’s infrastructure growth.

Conclusion
Cement will remain indispensable to India’s development, but its long-term viability hinges on addressing its hardest emissions challenge—process CO2 from calcination—which efficiency gains, alternative fuels, and clinker substitution alone cannot eliminate; global evidence from the IPCC, IEA, and GCCA confirms that Carbon Capture, Utilisation and Storage (CCUS) is the only scalable pathway capable of delivering the depth of reduction required for net zero. With early commercial projects emerging in Europe and structured pilots underway in India, CCUS has moved beyond theory into a decisive decade where learning, localisation, and integration will shape outcomes; however, success will depend less on technology availability and more on collective execution, including coordinated policy frameworks, shared transport and storage infrastructure, robust carbon markets, and carbon-literate capabilities.
For India, a deliberate transition from pilots to practice—anchored in cluster-based deployment, supported by public–private partnerships, and aligned with national development and climate goals—can transform CCUS from a high-cost intervention into a mainstream industrial solution, enabling the cement sector to keep building the nation while sharply reducing its climate footprint.

– Kanika Mathur

Continue Reading

Trending News