Connect with us

Concrete

Revolutionising Material Movement

Published

on

Shares

Streamlining material transportation at cement plants vastly affects productivity, cost-effectiveness and environmental compliance. ICR looks at how automation has transformed the way cement plants manage, store and transport materials, as a vital step towards modernising the manufacturing process.

Material handling in a cement manufacturing plant setup refers to the various processes and equipment used to transport, store, control, and manage raw materials, intermediate products, and finished cement within the plant. Effective material handling is crucial for ensuring the efficient and safe operation of the cement manufacturing process.
In the process of cement manufacturing, materials go through several touch points as they are transformed from raw materials into the final product.
The process begins with the extraction of raw materials, primarily limestone, clay and silica, from quarries or mines. Large equipment such as bulldozers and dump trucks are used to handle and transport these materials from the quarry to the cement plant. Once the raw materials are extracted, they are transported to crushers where they are crushed
into smaller pieces to facilitate further processing. The crushed materials are then blended in
precise proportions to create a raw mix, ensuring a consistent composition.
The raw mix is conveyed to a raw mill, where it is finely ground into a powder. The mill may use rollers, ball mills, or other grinding equipment to achieve the desired particle size. The finely ground raw meal is then preheated and pre-calcined in a preheater tower or cyclone system. This reduces the moisture content and initiates the chemical reactions necessary for cement production. The preheated and pre-calcined raw meal is fed into a rotary kiln, where it is heated to extremely high temperatures, typically around 1,450o C. This process transforms the raw materials into clinker, a nodular material.
After exiting the rotary kiln, the clinker is cooled and then finely ground in a cement mill. Gypsum is often added to control the setting time of the resulting cement. The ground clinker and gypsum mixture is known as Portland cement. The final cement product is stored in silos or bins before being packaged in bags or bulk containers for distribution to customers. Material handling equipment like conveyors, bucket elevators, and packing machines are used at this stage. Cement products are transported by trucks, rail, or ships to distribution centers or directly to construction sites, where they are used in various construction applications.
Throughout the entire cement manufacturing process, careful control and handling of materials are essential to ensure the quality and consistency of the final product. Automation and monitoring systems are often employed to maintain precise control over these touchpoints and optimise the efficiency of the process.
“Cement plants are notorious for clogging problems. Accumulations in ducts, chutes, and vessels often choke the movement of materials, causing bottlenecks that create expensive impediments to plant performance, process efficiency, productivity, and profitability. This means build-ups need to be manually cleared with alarming regularity unless the right technology is employed to keep things flowing smoothly,”
says Anup Nair, Managing Director, Martin Engineering India.
“The biggest single improvement when it comes to safety and efficiency in preheater performance is the use of air cannons, employed in a number of applications in cement production, from unclogging chutes and hoppers to moving super-heated material through the cooling process,” he adds.

MATERIAL TRANSPORTATION ENABLERS
In a cement manufacturing plant, various types of equipment and systems are used for the transportation of materials from quarries to the plant, within the plant, and for moving finished products from the plant to the dispatch points. Here are the key equipment and systems used at each stage of material transportation:

  1. Quarry to plant transportation
    Heavy-duty trucks and haulage equipment are commonly used to transport raw materials from quarries or mines to the cement plant. These vehicles can carry bulk quantities of materials such as limestone, clay, and shale.
  2. Within the plant transportation
    • Conveyor belts: Conveyor systems are extensively used within the plant to move raw materials from one process to another. They are especially critical for transporting raw materials from storage areas to processing equipment.
    • Bucket elevators: Bucket elevators are used to vertically transport bulk materials such as clinker, cement, and additives within the plant. They consist of buckets attached to a rotating belt.
    • Pneumatic conveying systems: These systems use air pressure to transport powdered or granular materials through pipelines. They are often used for transporting cement and fly ash.
    • Screw conveyors: Screw conveyors are used for transporting materials horizontally or at an incline. They are commonly employed in cement
    plants to move materials like cement clinker and granular additives.
    • Palletisers and robotic systems: Automated systems are used for palletising cement bags or other packaging containers before dispatch.
    • Rail and Tram Systems: In larger plants, railroads or trams may be used to transport materials over longer distances within the facility.
  3. Finished product from plant to despatch
    • Belt conveyors: Conveyor belts are used to transport the final cement product from the cement
    mill to storage silos and from silos to the
    packaging area.
    • Silo storage: Silos are used to store cement before packaging or dispatch. They often have aeration systems to prevent material caking.
    • Truck loadout systems: Loading systems are used to load cement into trucks for distribution. These systems often have weighing scales to ensure accurate loading.
    • Railcar loadout systems: In some cases, cement may be transported in railcars. Loadout systems for railcars are used to fill them efficiently.
    • Bulk handling equipment: For bulk cement transport, specialised equipment like bulk tanker trucks, bulk ship loaders and pneumatic conveyors may be used for large-scale transportation.

MATERIAL TRANSPORTATION AND EFFICIENCY
Efficient material transportation is integral to the effectiveness and production output of a cement plant. It exerts a direct influence on various facets of plant operations, and its proficiency can have a ripple effect on overall production. Firstly, the timely and dependable supply of raw materials from quarries or mines to the plant ensures a steady production flow. Any disruptions or delays in material delivery can disrupt production schedules, leading to downtime and a decrease in efficiency. Furthermore, material transportation is instrumental in preserving the quality and uniformity of raw materials, a critical factor in achieving the desired properties of the cement product. Proper blending and mixing of these materials, made feasible by streamlined transport systems, are essential.
“We have a process of quality checking for every belt that is manufactured at our end. The key to maintaining quality is inspection of every belt that is dispatched from our company. Our in-house laboratory helps us keep a check on quality maintenance,” says AP Singh, Executive Director, Continental Conveyors Private Limited.
“Maintenance of the belts or requirement of change depends from plant to plant. If the establishment is good and follows all protocols, the requirement for changing the belts is lesser. If the maintenance of systems and processes are not good, then the requirement of changing or getting maintenance done for the belts is high as they are made of softer materials and may be classified as one of the weakest materials in the cement plants,” he adds.
Energy consumption also ties closely to material transportation efficiency. Inefficient systems, such as long conveyor belts with excessive friction or poorly designed pneumatic conveying setups, can lead to wasteful energy consumption and increased operational costs. Additionally, the time it takes for raw materials to traverse various processing stages within the plant hinges on effective material transportation. Faster, more dependable transport systems can shorten processing times, increase throughput, and enhance overall production efficiency. Efficient material handling also ensures that processing equipment, including crushers, mills, and kilns, receive a consistent supply of raw materials at the required rates, minimising equipment downtime due to shortages or blockages.
Effective material transport also facilitates inventory management, reducing the likelihood of excess or insufficient stockpiles of raw materials, which can lead to inefficiencies, storage complications, and extra expenses. Quality control is another key aspect, as material transportation impacts the quality of the final cement product. Proper handling,
blending, and storage of clinker and additives are vital for achieving the desired cement quality and minimising waste. Furthermore, efficient dust and emission control measures are necessary for environmental compliance and avoiding regulatory issues.
Lastly, operational costs, encompassing maintenance, energy and labour expenses, are profoundly affected by material transportation efficiency. Optimising these processes can reduce these costs and bolster overall operational efficiency. Additionally, a well-designed and maintained material handling system contributes to a safe working environment, promoting plant safety.

AUTOMATION IN MATERIAL TRANSPORTATION
The implementation of material transportation and handling automation in cement plants offers a multitude of benefits that contribute to the overall efficiency and effectiveness of operations.
Firstly, automation significantly enhances efficiency by eliminating human errors and optimising processes, resulting in increased operational efficiency and higher throughput rates. Secondly, it leads to substantial cost reductions as it reduces labour costs,
minimises energy consumption, and lowers maintenance expenses, thus improving the plant’s financial viability.
Furthermore, automation prioritises safety by removing workers from potentially hazardous environments and minimising the risk of accidents. This not only ensures the well-being of plant personnel but also safeguards the plant’s reputation and productivity. Additionally, automation plays a pivotal role in maintaining consistent product quality.
Precise control over material handling processes guarantees that the final cement product adheres to stringent quality standards, ultimately satisfying customer expectations.
Lastly, automation in material transportation and handling aligns with environmental compliance efforts. By effectively controlling emissions and mitigating dust, it helps cement plants adhere to environmental regulations, contributing to sustainability and minimising the plant’s environmental
footprint. In essence, these benefits underscore the significance of material transportation and handling automation as a fundamental aspect of modern cement plant operations.

CONCLUSION
The efficient handling and transportation of materials in cement manufacturing plants are vital for their productivity, cost-effectiveness and environmental compliance. Automation technologies have emerged as key enablers in this context, offering a range of benefits. These include improved operational efficiency, cost reduction, enhanced safety, consistent product quality and environmental compliance. Automation has revolutionised the way cement plants manage materials, making them more competitive, sustainable, and efficient in an increasingly demanding industry. Embracing automation in material handling is not just a trend; it is a necessity for cement plants to thrive in the modern era.

Kanika Mathur

Concrete

JK Cement marks 140 years of innovation and leadership

JK is one of India’s leading manufacturers of Grey Cement in India

Published

on

By

Shares



JK Cement Ltd. a leading building material company, one of India’s leading manufacturers of Grey Cement in India and one of the largest White Cement manufacturers in the world, celebrated 140 years of JK Organisation’s remarkable legacy at a grand event in the capital. The event honoured the group’s rich history, its significant contributions to multiple sectors of the Indian economy, and the unwavering dedication of its employees and partners.

The celebration gathered dignitaries, industry leaders, employees, and key stakeholders to reflect on JK Organisation’s journey from its inception to its present status as a global leader. Lieutenant Governor of New Delhi, VK Saxena, who himself started his career at JK Cement, along with Rajeev Shukla, Member of Rajya Sabha, graced the occasion. Key leaders of the JK Organisation, including Dr. Nidhipati Singhania, Vice President, JK Organisation, Dr. Raghavpat Singhania, Managing Director, JK Cement, and Madhavkrishna Singhania, Joint MD and CEO, JK Cement, were present to mark this significant milestone.

CEO’s from various known business houses both Indian and Multinational companies across sectors graced the occasion.

Reflecting on the organization’s journey, Dr. Nidhipati Singhania, Vice President, JK Organisation, said, “As we celebrate 140 years of JK Organisation, we are filled with immense pride and gratitude for our legacy, which is rooted in values of innovation, quality, and service to the nation. Our journey has been as much about business success as about driving positive change in the communities and industries we serve. The milestones we have achieved reflect our continuous efforts in advancing India’s infrastructure and industrial landscape.”

One of the key highlights of the evening was the recognising the long-serving employees and partners who have dedicated decades to JKCement. Their enduring loyalty underscores JK Organisation’s foundational values of trust and collaboration, which have been pivotal to the organisation’s success.

Addressing the guests at the event, Dr. Raghavpat Singhania, Managing Director, JK Cement, said, “This year along with the 140 years milestone, also marks two significant milestones for us: 50 years of grey cement business and 40 years of white cement business, affirming our leadership in the industry. Our recent expansion into coal mining underscores our commitment to vertical integration and sustainable resource management. We are dedicated to not only adapting to the evolving landscape but also driving positive change and creating lasting value for all our stakeholders and the nation.”

Emphasising the company’s commitment to innovation and progress, Madhavkrishna Singhania, Joint MD and CEO, JK Cement, said, “Our journey has been marked by resilience, adaptability, and a constant drive to exceed expectations. We’re committed to leveraging cutting-edge technology and sustainable practices to not only maintain our market leadership but also to contribute significantly to India’s progress. The trust of our stakeholders and the dedication of our team members have been instrumental in our success, and they will continue to be the pillars of our future endeavors.”

The event celebrated JK Organisation’s visionary outlook, showcasing its commitment to sustainable growth, technological innovation, and its influential role in driving India’s economic advancement.

VK Saxena, Lieutenant Governor, New Delhi, who was invited as the Chief Guest said “It’s an honour for me to be part of this landmark celebration for a company where I started my career as an Assistant Officer in Gotan, Rajasthan and worked for 11 years in different capacities with its White Cement plant. This exposure gave me insights of a corporate working, faster decision making and team work, which has helped me throughout my various stints thereafter. I wish all the best to JK Cement for all their Future endeavors in Nation Building”

Continue Reading

Concrete

Steel Ministry Proposes Rs.23.52 Lakh Crore for Decarbonisation

Steel Ministry unveils massive decarbonisation plan.

Published

on

By

Shares



Decarbonisation Proposal:
The Steel Ministry has outlined a substantial Rs.23.52 lakh crore proposal aimed at decarbonising the steel industry. This initiative is part of the broader sustainability and environmental goals set by the Indian government.

Objective and Goals:
The primary objective of the proposal is to reduce carbon emissions significantly and enhance the environmental performance of the steel sector. This aligns with India’s commitment to climate action and green growth.

Investment Focus:
The proposal will channel funds into advanced technologies, energy-efficient processes, and renewable energy sources. Key areas of investment include electrification, hydrogen-based steelmaking, and carbon capture technologies.

Expected Benefits:
Implementing this plan is expected to lead to major reductions in carbon emissions, improve air quality, and contribute to sustainable development. It will also bolster India’s position as a global leader in green steel production.

Industry Impact:
The steel industry, being a major emitter of greenhouse gases, will undergo a transformation. This shift will require industry-wide adaptation and could influence global steel market trends.

Government Support:
The Indian government is committed to providing policy support, incentives, and regulatory frameworks to facilitate this transition. This includes subsidies for green technologies and research and development funding.

Timeline and Phases:
The implementation will be carried out in phases over the coming years. Short-term goals will focus on immediate emission reductions, while long-term goals will target more comprehensive technological advancements.

Stakeholder Involvement:
Collaboration with industry stakeholders, technology providers, and research institutions will be crucial. Engagement with local communities and environmental groups will also play a role in ensuring the success of the proposal.

Challenges:
The initiative may face challenges such as high costs, technological barriers, and regulatory hurdles. Addressing these challenges will be essential for the successful execution of the decarbonisation plan.

Future Outlook:
The proposal positions India as a key player in the global movement towards sustainable steel production. It sets a precedent for other sectors to follow and supports the country’s broader climate goals.

Conclusion:
The Steel Ministry’s proposal for a Rs.23.52 lakh crore decarbonisation plan represents a significant step towards reducing carbon emissions in the steel industry. With substantial investment in green technologies and strong government support, this initiative aims to drive sustainable growth and position India as a leader in environmental stewardship.

Continue Reading

Concrete

New home prices in China fall 5.3% in August 2024

New home prices were down 5.3% from a year earlier.

Published

on

By

Shares



Official data revealed that China’s new home prices had fallen at their fastest rate in over nine years in August, as supportive measures failed to induce a significant recovery in the property sector. The data showed that new home prices were down 5.3% compared to the previous year, marking the sharpest decline since May 2015, compared to a 4.9% drop in July, based on calculations by Reuters from National Bureau of Statistics (NBS) data. Monthly figures indicated that new home prices had fallen for the fourteenth consecutive month, decreasing by 0.7%, which was the same drop recorded in July.

The property market in China continues to struggle with deeply indebted developers, incomplete apartments, and declining buyer confidence, which is putting a strain on the financial system and threatening the 5% economic growth target for the year. A Reuters poll had forecast that home prices in China would decline by 8.5% in 2024 and by 3.9% in 2025 as the sector struggles to stabilise.

Zhang Dawei, chief analyst at property agency Centaline, mentioned that the property market is still gradually bottoming out, with home buyers’ demand, income, and confidence expected to take some time to recover. He noted that the market was anticipating a stronger policy response. According to the official data released on Saturday, property investment had fallen by 10.2% and home sales had dropped by 18.0% year-on-year in the first eight months of the year.

Chinese policymakers have stepped up efforts to support the property sector, including reducing mortgage rates and lowering home buying costs. These measures have partially revitalised demand in major cities, while smaller cities, which have fewer home purchase restrictions and high levels of unsold inventory, are particularly vulnerable. This situation underscores the difficulties faced by authorities in balancing demand and supply across different regions.

In a research note on Friday, Nomura indicated that with the growth slowdown worsening under new headwinds in the second half of the year, Beijing might eventually need to step in as the “builder of last resort” by directly providing funding to delayed residential projects that have already been pre-sold. According to Bloomberg News, China may cut interest rates on over $5 trillion in outstanding mortgages as early as this month.

To support these mortgage rate cuts, economists at ANZ suggested that a reduction in the five-year Loan Prime Rate was likely in September, along with a 20 basis point cut to the medium-term lending facility (MLF) and a 50 basis point cut to the reserve requirement ratio (RRR).

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds