Concrete
Revolutionising Material Movement
Published
1 month agoon
By
admin
Streamlining material transportation at cement plants vastly affects productivity, cost-effectiveness and environmental compliance. ICR looks at how automation has transformed the way cement plants manage, store and transport materials, as a vital step towards modernising the manufacturing process.
Material handling in a cement manufacturing plant setup refers to the various processes and equipment used to transport, store, control, and manage raw materials, intermediate products, and finished cement within the plant. Effective material handling is crucial for ensuring the efficient and safe operation of the cement manufacturing process.
In the process of cement manufacturing, materials go through several touch points as they are transformed from raw materials into the final product.
The process begins with the extraction of raw materials, primarily limestone, clay and silica, from quarries or mines. Large equipment such as bulldozers and dump trucks are used to handle and transport these materials from the quarry to the cement plant. Once the raw materials are extracted, they are transported to crushers where they are crushed
into smaller pieces to facilitate further processing. The crushed materials are then blended in
precise proportions to create a raw mix, ensuring a consistent composition.
The raw mix is conveyed to a raw mill, where it is finely ground into a powder. The mill may use rollers, ball mills, or other grinding equipment to achieve the desired particle size. The finely ground raw meal is then preheated and pre-calcined in a preheater tower or cyclone system. This reduces the moisture content and initiates the chemical reactions necessary for cement production. The preheated and pre-calcined raw meal is fed into a rotary kiln, where it is heated to extremely high temperatures, typically around 1,450o C. This process transforms the raw materials into clinker, a nodular material.
After exiting the rotary kiln, the clinker is cooled and then finely ground in a cement mill. Gypsum is often added to control the setting time of the resulting cement. The ground clinker and gypsum mixture is known as Portland cement. The final cement product is stored in silos or bins before being packaged in bags or bulk containers for distribution to customers. Material handling equipment like conveyors, bucket elevators, and packing machines are used at this stage. Cement products are transported by trucks, rail, or ships to distribution centers or directly to construction sites, where they are used in various construction applications.
Throughout the entire cement manufacturing process, careful control and handling of materials are essential to ensure the quality and consistency of the final product. Automation and monitoring systems are often employed to maintain precise control over these touchpoints and optimise the efficiency of the process.
“Cement plants are notorious for clogging problems. Accumulations in ducts, chutes, and vessels often choke the movement of materials, causing bottlenecks that create expensive impediments to plant performance, process efficiency, productivity, and profitability. This means build-ups need to be manually cleared with alarming regularity unless the right technology is employed to keep things flowing smoothly,”
says Anup Nair, Managing Director, Martin Engineering India.
“The biggest single improvement when it comes to safety and efficiency in preheater performance is the use of air cannons, employed in a number of applications in cement production, from unclogging chutes and hoppers to moving super-heated material through the cooling process,” he adds.
MATERIAL TRANSPORTATION ENABLERS
In a cement manufacturing plant, various types of equipment and systems are used for the transportation of materials from quarries to the plant, within the plant, and for moving finished products from the plant to the dispatch points. Here are the key equipment and systems used at each stage of material transportation:
- Quarry to plant transportation
Heavy-duty trucks and haulage equipment are commonly used to transport raw materials from quarries or mines to the cement plant. These vehicles can carry bulk quantities of materials such as limestone, clay, and shale. - Within the plant transportation
• Conveyor belts: Conveyor systems are extensively used within the plant to move raw materials from one process to another. They are especially critical for transporting raw materials from storage areas to processing equipment.
• Bucket elevators: Bucket elevators are used to vertically transport bulk materials such as clinker, cement, and additives within the plant. They consist of buckets attached to a rotating belt.
• Pneumatic conveying systems: These systems use air pressure to transport powdered or granular materials through pipelines. They are often used for transporting cement and fly ash.
• Screw conveyors: Screw conveyors are used for transporting materials horizontally or at an incline. They are commonly employed in cement
plants to move materials like cement clinker and granular additives.
• Palletisers and robotic systems: Automated systems are used for palletising cement bags or other packaging containers before dispatch.
• Rail and Tram Systems: In larger plants, railroads or trams may be used to transport materials over longer distances within the facility. - Finished product from plant to despatch
• Belt conveyors: Conveyor belts are used to transport the final cement product from the cement
mill to storage silos and from silos to the
packaging area.
• Silo storage: Silos are used to store cement before packaging or dispatch. They often have aeration systems to prevent material caking.
• Truck loadout systems: Loading systems are used to load cement into trucks for distribution. These systems often have weighing scales to ensure accurate loading.
• Railcar loadout systems: In some cases, cement may be transported in railcars. Loadout systems for railcars are used to fill them efficiently.
• Bulk handling equipment: For bulk cement transport, specialised equipment like bulk tanker trucks, bulk ship loaders and pneumatic conveyors may be used for large-scale transportation.
MATERIAL TRANSPORTATION AND EFFICIENCY
Efficient material transportation is integral to the effectiveness and production output of a cement plant. It exerts a direct influence on various facets of plant operations, and its proficiency can have a ripple effect on overall production. Firstly, the timely and dependable supply of raw materials from quarries or mines to the plant ensures a steady production flow. Any disruptions or delays in material delivery can disrupt production schedules, leading to downtime and a decrease in efficiency. Furthermore, material transportation is instrumental in preserving the quality and uniformity of raw materials, a critical factor in achieving the desired properties of the cement product. Proper blending and mixing of these materials, made feasible by streamlined transport systems, are essential.
“We have a process of quality checking for every belt that is manufactured at our end. The key to maintaining quality is inspection of every belt that is dispatched from our company. Our in-house laboratory helps us keep a check on quality maintenance,” says AP Singh, Executive Director, Continental Conveyors Private Limited.
“Maintenance of the belts or requirement of change depends from plant to plant. If the establishment is good and follows all protocols, the requirement for changing the belts is lesser. If the maintenance of systems and processes are not good, then the requirement of changing or getting maintenance done for the belts is high as they are made of softer materials and may be classified as one of the weakest materials in the cement plants,” he adds.
Energy consumption also ties closely to material transportation efficiency. Inefficient systems, such as long conveyor belts with excessive friction or poorly designed pneumatic conveying setups, can lead to wasteful energy consumption and increased operational costs. Additionally, the time it takes for raw materials to traverse various processing stages within the plant hinges on effective material transportation. Faster, more dependable transport systems can shorten processing times, increase throughput, and enhance overall production efficiency. Efficient material handling also ensures that processing equipment, including crushers, mills, and kilns, receive a consistent supply of raw materials at the required rates, minimising equipment downtime due to shortages or blockages.
Effective material transport also facilitates inventory management, reducing the likelihood of excess or insufficient stockpiles of raw materials, which can lead to inefficiencies, storage complications, and extra expenses. Quality control is another key aspect, as material transportation impacts the quality of the final cement product. Proper handling,
blending, and storage of clinker and additives are vital for achieving the desired cement quality and minimising waste. Furthermore, efficient dust and emission control measures are necessary for environmental compliance and avoiding regulatory issues.
Lastly, operational costs, encompassing maintenance, energy and labour expenses, are profoundly affected by material transportation efficiency. Optimising these processes can reduce these costs and bolster overall operational efficiency. Additionally, a well-designed and maintained material handling system contributes to a safe working environment, promoting plant safety.
AUTOMATION IN MATERIAL TRANSPORTATION
The implementation of material transportation and handling automation in cement plants offers a multitude of benefits that contribute to the overall efficiency and effectiveness of operations.
Firstly, automation significantly enhances efficiency by eliminating human errors and optimising processes, resulting in increased operational efficiency and higher throughput rates. Secondly, it leads to substantial cost reductions as it reduces labour costs,
minimises energy consumption, and lowers maintenance expenses, thus improving the plant’s financial viability.
Furthermore, automation prioritises safety by removing workers from potentially hazardous environments and minimising the risk of accidents. This not only ensures the well-being of plant personnel but also safeguards the plant’s reputation and productivity. Additionally, automation plays a pivotal role in maintaining consistent product quality.
Precise control over material handling processes guarantees that the final cement product adheres to stringent quality standards, ultimately satisfying customer expectations.
Lastly, automation in material transportation and handling aligns with environmental compliance efforts. By effectively controlling emissions and mitigating dust, it helps cement plants adhere to environmental regulations, contributing to sustainability and minimising the plant’s environmental
footprint. In essence, these benefits underscore the significance of material transportation and handling automation as a fundamental aspect of modern cement plant operations.
CONCLUSION
The efficient handling and transportation of materials in cement manufacturing plants are vital for their productivity, cost-effectiveness and environmental compliance. Automation technologies have emerged as key enablers in this context, offering a range of benefits. These include improved operational efficiency, cost reduction, enhanced safety, consistent product quality and environmental compliance. Automation has revolutionised the way cement plants manage materials, making them more competitive, sustainable, and efficient in an increasingly demanding industry. Embracing automation in material handling is not just a trend; it is a necessity for cement plants to thrive in the modern era.
–Kanika Mathur

ICR explores the various facets around the integration of Supplementary Cementitious Materials (SCMs) into the cement manufacturing process, which has emerged as a crucial solution to enhance cost-effectiveness and environmental sustainability, resulting in effective management of issues such as carbon emissions and resource usage.
India is the second largest producer of cement in the world. Limestone is at the core of its production as it is the prime raw material used for production. The process of making cement involves extraction of this limestone from its quarries, crushing and processing it at the cement plant under extreme temperatures for calcination to form what is called a clinker (a mixture of raw materials like limestone, silica, iron ore, fly ash etc.). This clinker is then cooled down and is ground to a fine powder and mixed with gypsum or other additives to make the final product – cement. The reason we are elucidating the cement production process is to look at how supplementary cementitious materials (SCM) can be incorporated into it to make the process not only more cost effective but also environmentally responsible.
Limestone is a sedimentary rock composed typically of calcium carbonate (calcite) or the double carbonate of calcium and magnesium (dolomite). It is commonly composed of tiny fossils, shell fragments and other fossilised debris. This sediment is usually available in grey colour, but it may also be white, yellow or brown. It is a soft rock and is easily scratched. It will effervesce readily in any common acid. This naturally occurring deposit, when used in
large volumes for the cement making process is also depleting from the environment. Its extraction is the cause of dust pollution as well as some erosion in the nearby areas.
The process of calcination while manufacturing cement is the major contributor to carbon emission in the environment. This gives rise to the need of using alternative raw materials to the cement making process. The industry is advancing in its production swiftly to meet the needs of development happening across the nation.
Ratings agency Crisil forecasts an all-Indian cement consumption growth of 11 per cent year-on-year to 440Mt during the current financial year. Crisil attributed this to a 51 per cent year-on-year rise in infrastructure spending, to US$ 6.75 billion throughout the year.
Strong expansion of the industrial sector, which has fully recovered from the COVID-19 pandemic shock, is one of the main demand drivers for the cement industry. As a result, there is a strong potential for an increase in the long-term demand for the cement industry. Some of the recent initiatives, such as the development of 98 smart cities, are expected to significantly boost the sector.
Aided by suitable governmental foreign policies, several foreign players such as Lafarge-Holcim, Heidelberg Cement and Vicat have invested in the country in the recent past. A significant factor, which aids the growth of this sector, is the ready availability of raw materials for making cement, such as limestone and coal.
According to Indian Brand Equity Foundation (IBEF), cement demand in India is exhibiting a CAGR of 5.65 per cent between 2016-22. Nearly 32 per cent of India’s cement production capacity is based in South India, 20 per cent in North India, 13 per cent in Central, 15 per cent in West India, and the remaining 20 per cent is based in East India. India’s cement production is expected to increase at a CAGR of 5.65 per cent between FY16-22, driven by demands in roads, urban infrastructure and commercial real estate. India’s cement production was expected to range between 380-390 million tonnes in FY23, a growth rate of 8 to 9 per cent y-o-y.
Between FY12 and FY23, the installed capacity grew by 61 per cent to 570 MT from 353 in FY22. The Indian cement sector’s capacity is expected to expand at a compound annual growth rate (CAGR) of 4 to 5 per cent over the four-year period up to the end of FY27. It would thus begin the 2028 financial year at 715-725 MT/ year in installed capacity.
Sameer Bharadwaj, Head – Manufacturing Excellence, JK Cement, says, “The key feature of SCMs is their Pozzolanic properties, which refers to its capability to react with calcium hydroxide (CH) to form calcium silicate hydrate (C-S-H). Likewise, with the increased conventional fuel prices, adopting green energy utilisation is now become a necessity in order to bring down the cement manufacturing cost, in a similar manner adoption of SCMs to a larger extent is a must requirement in order to bring down the clinker factor because clinker manufacturing will anyhow emit carbon emissions for calcination of limestone, but what we as a sustainable oriented manufacturer can contribute toward less carbon emissions is to produce more blended cement with less requirement of clinker.”
“At JK Cement, we manufacture various types of blended cements in which the contribution of SCM is well within the BIS norms. Major SCM’s are fly ash and slag which are procured from nearby thermal power plants and steel industries. We produce PPC (fly ash based) at all our manufacturing units in which 35 per cent (maximum) fly ash is being utilised. Also, to promote the more usage of blended cement, we are producing premium category PPC Cement which has a compressive strength equivalent to OPC. In our Muddapur plant in the South of India, we are also producing Portland Slag Cement (PSC),” he adds.
“The production of SCMs require less energy as compared to traditional cement and support in reducing carbon emission and use of fossil fuels to combat environmental challenges like depleting natural resources, climate change and air pollution. The other advantage of using SCM is enhancing the durability of concrete. Mixing SCMs can make concrete long-lasting and efficient, promoting conservation of resources. By using durable concrete with SCMs during construction of green buildings, it becomes possible to reduce the need for frequent repairs, replacements, and extend the lifespan of buildings. For instance, materials such as fly ash and slag carry the potential to mitigate alkali-silica reactions which often lead to formation of cracks in buildings and impact concrete’s durability.
By incorporating SCMs, it becomes possible to avoid the damaging effects and achieve stronger and structurally sound buildings with longer lifespans,” says Arun Shukla, President and Director, JK Lakshmi Cement.
Dr SB Hegde, Professor Jain University, India and Visiting Professor, Penn State University, United States of America says, “The use of SCMs in cement production is primarily to reduce carbon emissions. This can result in tax incentives and compliance benefits, further improving the overall profitability of cement manufacturing. Let us take a hypothetical example of an Indian cement plant with an annual production capacity of one
million tonnes.”
“SCMs like fly ash, in the case of Wonder Cement, are actually an industrial waste product, which if left unattended, can cause nuisance for the environment. Our cement plant consumes this industrial waste and in turn also preserves the natural resources of limestone and coal which would be used as a raw material and as a source of energy for the manufacturing of cement,” says RS Kabra, Executive Vice President – Commercial, Wonder Cement.
According to a report by McKinsey titled Cementing Your Lead: The Cement Industry in the Net-Zero Transition, October 2023, alternative cementitious materials, such as low-carbon cement or geopolymer concrete, have historically struggled to scale. However, current investment trends and rapid technological advancements have allowed start-ups to disrupt the alternative-cementitious space with low-carbon offerings. For example, Brimstone replaces limestone in traditional cement production with calcium-silicate rock, and Sublime Systems uses an electrochemical process that eliminates the need for a kiln. Although these approaches are novel, investment data indicates that appetite for alternative cementitious materials is high: Brimstone announced a $55 million funding round in 2022, and Sublime Systems has raised more than $40 million in two funding rounds since 2021.
In particular, supplementary cementitious materials (SCMs) offer promising ways to significantly reduce the carbon footprint of traditional cement and concrete. Traditional SCMs—such as fly ash, ground granulated blast-furnace slag (GGBFS), and silica fume—can be used to partially replace the clinker used in cement or the cement content used in concrete. This can have both sustainability and cost benefits, but SCMs are typically not fully leveraged.
In many markets, local and regional standards limit the volume of traditional SCMs in cement based on their hydraulic and cementitious properties. For example, the European Union limits fly ash to a maximum of 35 percent, whereas the United States limits it to 40 percent. New SCMs such as calcined clay, limestone, and recycled concrete may require a reevaluation of these standards to maximise both the performance and decarbonisation potential of cement and concrete, particularly as the availability of traditional SCMs decreases.
Exploring Long Term Benefits of SCMs
SCMs are materials that can be used in cement manufacturing to partially replace traditional Portland cement clinker, thereby reducing the environmental impact of cement production. The incorporation of SCMs in cement helps reduce the carbon footprint, energy consumption and natural resource usage associated with cement production.
Some of the most used SCMs are:
• Fly ash is a fine, powdery byproduct of coal combustion in power plants. It is rich in silica and alumina and is often used as an SCM in cement production. When properly processed and blended, fly ash can improve concrete workability, reduce heat of hydration, and enhance long-term durability.
• Blast furnace slag is a byproduct of iron production and consists of glassy granules with latent hydraulic properties. Ground granulated blast furnace slag (GGBFS) is commonly used as an SCM in cement to improve concrete properties and reduce the heat of hydration.
• Silica fume is a very fine, amorphous silicon dioxide powder obtained from the production of silicon and ferrosilicon alloys. It is highly reactive and is used in small quantities to enhance the strength, durability, and impermeability
of concrete.
• Natural pozzolans, such as calcined clay, calcined shale, or volcanic ash, can be used as SCMs in cement manufacturing. They are rich in reactive silica and alumina and can improve concrete performance when properly processed and blended.
• Limestone and calcined clays (LC3) are materials that can be used in cement to reduce the clinker content. Limestone and clay are mixed with clinker, reducing the carbon dioxide emissions associated with traditional Portland cement.
“Use of alternative fuels and raw materials impacts the emission rates of the cement plant. 3 to 4 per cent of global greenhouse gas emissions are caused by landfills. Use of alternative fuels and raw materials avoids formation of dioxins and furans and
reduces Nox generation” says Amarjit Bhowmic, GM – Procurement (AFR Incharge), Heidelberg Cement India.
“CEMS is the quantity of hazardous substances coming from the stacks, measurements are performed every 2 seconds and are recorded in a secured place, where human access is not possible. Annual spot checks are done by a third party” he adds.
IMPACT OF SCMs
The use of SCMs in the production of cement can have several significant impacts, both positive and negative, on the cement manufacturing process. The most significant positive impact of using SCMs is the reduction in carbon emissions. SCMs allow for a partial replacement of clinker, which is the most energy-intensive and carbon-intensive component in cement production.
By using SCMs, cement manufacturers can reduce their greenhouse gas emissions, as clinker production is responsible for a substantial portion of the carbon footprint associated with cement. Additionally, the incorporation of SCMs typically requires less energy compared to clinker production, leading to cost savings and environmental benefits. This reduction in energy consumption also contributes to environmental sustainability by conserving natural resources.
Many SCMs can enhance the performance of cement, such as increasing durability, reducing heat of hydration, and improving workability. This can lead to better-quality concrete and greater customer satisfaction. Furthermore, SCMs are often derived from industrial byproducts or waste materials, and their use in cement production helps repurpose
and recycle these materials, reducing the need for landfill disposal.
Dr Hegde explains how by incorporating 20 per cent fly ash, a common SCM, into its cement mix, the plant can realise significant cost savings, in the following ways:
• Reduced raw material costs: Assuming a cost savings of Rs 200 per tonne (as fly ash is typically cheaper than clinker), the annual savings would be Rs 20 million.
• Energy savings: A 10 per cent reduction in energy costs due to reduced clinker production would result in savings of Rs 10 million.
• Transportation costs: Savings from reduced transportation costs might amount to Rs 5 million annually.
• Regulatory benefits: Tax incentives and compliance benefits might contribute another Rs 5 million.
This hypothetical case illustrates that by incorporating SCMs into their cement production processes, Indian cement manufacturers can potentially save Rs 40 million annually. These cost savings can significantly impact the overall profitability of the business. Beyond cost savings, this practice aligns with sustainability goals, reduces carbon emissions, and opens doors to regulatory benefits.
Kabra affirms, “With the use of this supplementary cementitious material, we are saving substantial heat value, electricity and natural minerals.”
As the Indian construction industry continues to expand, cement manufacturers should get the new amendment done as early as possible from BIS for higher addition of SCMs in blended cements and also get the new IS codes in place for ‘Newer and Emerging Cementitious’ materials in the months to come.
Role of Technology
Technology is fundamental to the effective use of supplementary cementitious materials in cement plants. It allows for precise control over material handling, quality, mix design, and production processes, resulting in more sustainable and high-performance cement products. Additionally, technology helps cement plants comply with environmental regulations and reduce their carbon footprint, contributing to a greener and more sustainable cement industry.
Advanced systems streamline SCMs handling and storage, employing automated conveyors and robotics to efficiently transport materials while minimising manual labour. Quality control is bolstered by cutting-edge technology, with online sensors and analytical instruments continuously monitoring SCMs properties to meet stringent standards.
Furthermore, advanced grinding and blending technologies ensure the homogeneous mixing of SCMs, enhancing reactivity in the final cement product. In the kiln, energy-efficient designs and alternative fuels are deployed to reduce energy consumption and carbon emissions during clinker production. Alternative clinker materials, activated SCMs, energy-efficient equipment, and emissions control technologies all contribute to a more sustainable and eco-friendly cement production process.
Conclusion
Cement manufacturing in India, like many parts of the world, faces the dual challenge of meeting the growing demand for construction materials while minimising its environmental impact. A critical strategy employed in this endeavour is the incorporation of SCMs in cement production.
As India continues to align its construction practices with global sustainability initiatives, these standards play a pivotal role in fostering innovation and responsible SCMs use in cement manufacturing. The collaboration between industry stakeholders and the BIS standards ensures that the nation’s construction materials are not only of high
quality but also environmentally conscious,contributing to a more sustainable and resilient built environment.
- –Kanika Mathur

Arun Shukla, President and Director, JK Lakshmi Cement, elucidates how supplementary cementitious materials (SCMs) are evolving as an indispensable route toward a sustainable future.
Construction activities and large-scale infrastructure development form the bedrock of economic progress. At present, growing population, rapid urbanisation, commercialisation and increasing residential needs are catapulting demand for commercial, residential and industrial buildings. However, the alarming rise in environmental concerns including climate change and pollution have made it critical for the construction sector to prioritise sustainability for a greener and better future. As per reports, the construction sector accounts for 23 per cent of air pollution, 40 per cent of drinking water pollutants, and 50 per cent of landfill wastes. At this juncture, it thus becomes crucial to find the right balance between development and sustainability, and innovative concepts like green buildings have emerged as a practical solution for it.
While green buildings carry tremendous potential to reduce environmental impact, they further bring additional advantages such as improving energy efficiency, promoting better air quality and healthier ecosystems, efficient resource utilisation and minimising wastage. According to data, green buildings can reduce energy consumption by 20-30 per cent, water usage by 30-50 per cent, and significantly reduce waste generation through extensive recycling. Considering the rise in construction activities to meet the current and future demands, development of green building is both beneficial and a necessity.
Since utilising sustainable materials is key to promote green construction practices, the use of supplementary cementitious materials (SCMs) can take the benefits of green buildings to another level. SCMs are not only environmentally friendly, but are a potent solution to inch closer to sustainable development and decarbonisation goals as well.
Understanding SCMs
Simply put, SCMs are materials or substances which are added to concrete to make it more environmentally friendly, durable and enhance its performance. They not only improve the strength of concrete but bring huge sustainability-related benefits as they require lower energy for production and support in reducing greenhouse gas emissions. As per estimates, for every tonne of clinker replaced by SCMs, the carbon dioxide emissions are reduced by around 0.8 tonnes.
It is noteworthy that SCMs are mostly by-products coming out from various industries, which makes them highly beneficial in terms of utilising waste materials and promoting efficient resource utilisation for both environmental and economic gains. The various types of SCMs that are used to enhance concrete’s performance and properties include fly ash which is a by-product of coal combustion in power plants. Fly ash contains silica and alumina and improves concrete workability, reducing heat generation and increasing long-term strength.
Another SCM is silica fume, which is a fine material produced during silicon metal and alloy production. It effectively strengthens concrete and reduces permeability. Moreover, natural pozzolans like volcanic ash, calcined clay are great options to enhance concrete workability, durability, and strength. Metakaolin, a calcined clay, is also beneficial in improving concrete’s properties and durability, particularly reducing permeability and increasing chemical resistance. Similarly, natural zeolites, minerals with a porous structure, enhance concrete workability and durability. These various kinds of SCMs in addition to offering diverse benefits, allow the construction industry to utilise by-products and waste materials and reduce the need for high energy-intensive cement manufacturing, promoting sustainability.
Sustainability advantages
The demand for buildings is increasing rapidly and thus constructing green buildings is a solution to ensure this demand is met in an environmentally friendly manner. While green buildings definitely make it possible to create spaces which promote cleaner and healthier environments, the use of SCMs ensure their sustainability related advantages are multiplied, environmental impacts are reduced, resources are efficiently utilised, energy demand is lowered, and overall well-being is achieved.
For instance, use of SCMs in construction supports greenhouse gases reduction. The production of SCMs require less energy as compared to traditional cement and support in reducing carbon emission and use of fossil fuels to combat environmental challenges like depleting natural resources, climate change and air pollution.
The other advantage of using SCM is enhancing the durability of concrete. Mixing SCMs can make concrete long-lasting and efficient, promoting conservation of resources. By using durable concrete with SCMs during construction of green buildings, it becomes possible to reduce the need for frequent repairs, replacements, and extend the lifespan of buildings. For instance, materials such as fly ash and slag carry the potential to mitigate alkali-silica reactions which often lead to formation of cracks in buildings and impact concrete’s durability. By incorporating SCMs, it becomes possible to avoid the damaging effects and achieve stronger and structurally sound buildings with longer lifespans.
Most importantly, use of SCMs helps the construction industry to adopt responsible sourcing of materials, efficient utilisation of by-products and promote waste minimisation for sustainable development. Since most of these materials are by-products of various industries, integrating them
in construction not only supports efficient use of resources but further prevents them from ending up in landfills as waste, minimising their harmful environmental impact and potential health hazards to achieve healthier ecosystems for current and
coming generations.
In the current period where construction activities are growing constantly to satiate residential and commercial demands, green buildings developed using SCMs are a great way to promote sustainability. SCMs in green buildings are not only environmentally friendly but bring a host of advantages, which are essential to build a greener, healthier and better future for all.

ICR analyses how the integration of supplementary cementitious materials (SCM) and the strategies thereof has catalysed the cement industry’s economic landscape, fostering streamlined processes and enhanced resource utilisation, ultimately shaping a more resilient and profitable sector within India’s economy.
The way to look at any cementitious material in modern times would be to look at the carbon intensity inherent in it in terms of CO2 emissions, such as clinker, which forms the basis for making cement. After grinding the clinker (95 per cent) with gypsum and some correctives (together at 5 per cent), its emission intensity is 849-868 kg per tonne of output. Thus, when you produce ordinary Portland cement (OPC), which contains only clinker as the base cementitious material, the emission intensity is the highest at 750-860 kg of cement output. The lower end of the band is reserved for those who use the best technology that improves thermal efficiency and electrical efficiency.
Now, OPC could be the best suited for giving the early strength of cement measured by the compressive strength in MPa. Whether you take a 3-day or 7-day or 28-day strength, OPC would remain at the highest when you compare with any other form of cement that supplements clinker in the OPC with other cementitious materials like fly ash, slag, silica fume, natural pozzolans – such as calcined clays, shale and metakaolin, sugarcane bagass ash (SCBA) or rice husk ash (RHA).
The purpose of using supplementary cementitious material is two-fold:
- Economic
- Environmental
The way to deal with this subject would be to look at the life cycle assessment of each of these and compute the impact. To make matters simple one may first look at the carbon intensity in each in terms of emissions and attach an appropriate environmental cost to it. Let us look at some of these numbers:
Portland Pozzolana Cement (PPC) uses a mix of 60-65 per cent clinker, 5 per cent gypsum and 25-30 per cent fly ash thus taking the overall emission to an average 700 kg per tonne of cement. Efforts have been always to look at ways of maximising fly ash and PPC specifications allow for even 35 per cent fly ash to meet the compressive strength guidelines. However, we must note that compressive strength will be lower for 3 days, 7 days and 28 days for PPC when compared with OPC by at least 8-10 per cent. If one considers the cost of fly ash that is replacing clinker, the economic impact is huge as the cost of the former is a fraction of the latter.
Economic Implications
To compute the economic benefits of fly ash in PPC there are two important factors to be considered. The grinding units that are the final delivery points of cement units must be logistically located such that the cost of fly ash could be minimised. But this is a network optimisation question and the optimisation would entail outbound logistics cost of cement as well. Most advanced economies, India included, have looked at fly ash as an economic agent that not only turns waste into wealth but also reduces environmental impact of cement emissions (850 kg to 700 kg per tonne). The reduction in the landed cost of fly ash would further improve the economics through better logistics cost optimisation and mode-mix improvements. In recent times freight charges on rail in India for fly ash have been reduced to move fly ash over longer distances.
The environmental impact over long distance haulage of fly ash thus could be brought down
using rail as the mode, a crucial factor for the life cycle assessment.
The wider economic implication could be seen in the alternative deployment of a waste that was put to landfill is now an economic alternative to clinker. Some fly ash producers like NTPC or TATA Power or Adani Power, who together produce more than 100 million tonnes of fly ash per year, could be powerful actors to sway economic balance. Fly ash brick manufacturers who operate in the smaller concentrated networks, mostly SMEs, could be the next contenders in the value balance.
Slag based cement, uses 50 per cent clinker and 45 per cent slag and 5 per cent gypsum on an average. It is the next best example of SCM making a huge difference to the economic as well as environmental impact. By replacing a large amount of clinker, slag-based cement thus makes the emission intensity of cement come down to less than 500 kg per tonne of cement. This when looked at the back of the cost of slag vis-à-vis clinker, which it replaces in the cement, the economic implication is huge. The total production of blast furnace slag is growing, despite its environmental impact and it makes an economic case for GGBS.
However, blast furnace slag or the copper smelter slag, as inputs mixed together, is not free and must compete as commodities with clinker. But game theoretic approaches to price negotiations have fructified into either contracts that are short or medium term tenured (a sharp departure from the past) or pure spot contracts through auctions, that could be well mired in quasi-collusion dynamics of all kinds (in the past). Slag producers seeing an economic opportunity (as opposed to the environmental impact they face otherwise) have mostly experimented with a mix of spot and contracting strategy. The slag benefit in cement over clinker could be in the range of 30-40 per cent looking at the range of cost dynamics that would also include transportation cost by rail.
When one adds the CO2 emission impact benefit, fly ash and slag make a stunning case.
Exploring Other Options
The next most talked about SCMs are silica fumes and natural pozzolans, but their use has been limited in most parts of the world due to economic evaluations, including logistics cost. However, this economics could be lopsided in Europe where fly ash is hardly available and slag could be following suit. Natural pozzolans like calcined clay and metakaolin are therefore in news today, especially in Europe. In India, for example, they could be traded at cement cost, whereas in Europe they could well be lower than the clinker cost.
Utilisation of fly ash in cement has been improving in India but it is still far from the developed world numbers. The old wet fly ash lying in ponds and the dry lying in ash mounds could together be in excess of 100 million tonnes. While the vertical roller mills (VRM) technologies offer great benefits overall ball mills in grinding for absorption of wet fly ash, some innovative methods to use wet fly ash without adding to cost have been developed by some. Similarly, those having a logistics advantage towards a mix of fly ash and slag have settled for composite cement that could use a blend of fly ash and slag in their grinding mix. These could offer negotiating leverage while settling contracts in fly ash and slag.
At the end, to weigh the environmental impact in concrete, which uses a mix of sand, gravel, cement and water, one must see the equation differently: in a one cubic metre of concrete, using 14 per cent cement in the mix, the CO2 emission would be of the order of 410 kg/cubic metre compared to 290 kg per cubic using 30 per cent fly ash in PPC.
- –Procyon Mukherjee

Unveiling Potential!

Use of SCMs in Green Buildings

Economic Implications of Using SCMs

Future Potential Materials

Technology plays a crucial role in curbing emissions

Environment Ministry revises rules of solid waste management

M-sand boards new terrain

Process and quality optimization in cement plant.

Concrete: A Highly Sustainable Building Material

Technology advancement has opened up opportunities
Trending News
-
Concrete1 month ago
World Cement Association Founder Director to be star speaker at Indian Cement Review Conference 2023 at 14th Cement EXPO, Delhi
-
Concrete2 weeks ago
Unveiling Potential!
-
Concrete2 weeks ago
Technology plays a crucial role in curbing emissions
-
Concrete2 weeks ago
Future Potential Materials