Connect with us

Concrete

Environmental Benefits of Using Waste Glass as Pozzolana

Published

on

Shares

Dr SB Hedge, Professor, Jain University and Visiting Professor, Pennsylvania State University, United States of America, discusses the environmental benefits of using waste glass as Pozzolana in this concluding part of the article.

Pozzolanic properties of waste glass refer to its ability to react with calcium hydroxide in the presence of water to form cementitious compounds. This reaction, known as the pozzolanic reaction, contributes to the strength and durability of cementitious materials.

Findings based on the investigation on the Pozzolanic properties
Here are some details on the pozzolanic properties of waste glass and examples of its usage:
Amorphous Silica Content: Waste glass typically contains a significant amount of amorphous silica, which is a key factor in its pozzolanic activity. Amorphous silica has a high
surface area, allowing it to react readily
with calcium hydroxide and form additional cementitious compounds.
Reactivity and Fineness: The reactivity of waste glass depends on factors such as its chemical composition, particle size distribution, and surface area. To enhance its pozzolanic reactivity, waste glass is often ground to a fine powder. Increased fineness improves the contact between waste glass particles and calcium hydroxide, facilitating the pozzolanic reaction.
Pozzolanic Reaction Products: When waste glass reacts with calcium hydroxide in the presence of water, it forms additional cementitious compounds, such as calcium silicate hydrate (C-S-H) gel. The C-S-H gel contributes to the strength and binding properties of the
cementitious matrix.

Examples of Usage
Partial cement replacement: Waste glass can be used as a partial replacement for cement in concrete production. Typically, a portion of the cement is substituted with finely ground waste glass powder. This reduces the overall cement content while maintaining or improving the mechanical properties and durability of the concrete.
Glass powder addition in concrete mixes: Waste glass powder can be directly added to concrete mixes as an additional pozzolanic material. It acts as a supplementary cementitious material (SCM) alongside other pozzolanic materials like fly ash or silica fume. This combination enhances the reactivity and overall performance of the concrete.
Glass aggregate in concrete: In addition to using waste glass as a pozzolanic material, it can also be used as a fine or coarse aggregate in concrete production. By incorporating waste glass aggregates, both the pozzolanic and aggregate properties of the glass are utilised. This approach enhances the sustainability of concrete while maintaining structural integrity.
Glass fibre reinforcement: Waste glass fibres can be used as reinforcement in cementitious composites. The glass fibres provide tensile strength and improve the overall performance of the concrete. This application is particularly useful in construction elements requiring enhanced durability and crack resistance.
Glass as pozzolanic additive in mortars: Waste glass can be used as a pozzolanic additive in mortar mixes. Mortars containing waste glass exhibit improved workability, increased strength and reduced permeability. This makes them suitable for applications such as plastering, masonry and tile adhesives.
Waste glass possesses pozzolanic properties due to its high amorphous silica content. By utilising waste glass as a pozzolanic material, its environmental impact can be reduced while enhancing the performance and sustainability of cementitious materials.
The examples provided demonstrate the versatile usage of waste glass in cement and concrete applications, contributing to a more sustainable construction industry.

Environmental Benefits
The utilisation of waste glass as a pozzolanic material in cement production offers significant environmental benefits. Here is a detailed account of these benefits:
Waste reduction and recycling: Waste glass, if not properly managed, poses a significant environmental challenge. By using waste glass as a pozzolanic material, it is diverted from landfills or incineration, reducing the need for new disposal sites and minimising the environmental impact associated with glass waste. Recycling waste glass as a pozzolana promotes a circular economy by converting it into a valuable resource.
Conservation of natural resources: The incorporation of waste glass in cement production reduces the need for virgin raw materials, such as limestone or silica. By substituting a portion of cement with waste glass, natural resources are conserved, including the energy and water required for extraction and processing of raw materials. This conservation helps in preserving natural ecosystems and reducing the overall ecological footprint.
Energy savings and emissions reduction: The production of cement is energy-intensive and contributes to greenhouse gas emissions, primarily carbon dioxide (CO2). By using waste glass as a pozzolanic material, the cement content in concrete is reduced, resulting in lower energy consumption and CO2 emissions during cement manufacturing. This reduction in energy usage and emissions contributes to mitigating climate change and achieving sustainability goals.
Reduced landfill space and leachate generation: When waste glass is disposed of in landfills, it occupies valuable space and can contribute to environmental concerns. Glass waste in landfills may also produce leachate, potentially contaminating soil and groundwater. Utilising waste glass as a pozzolanic material reduces
the amount of glass waste sent to landfills, alleviating the pressure on waste management infrastructure and minimising the associated environmental risks.
Improved air quality: Cement production is associated with the release of pollutants, including dust, particulate matter, and potentially harmful gases. By replacing a portion of cement with waste glass, the production of cementitious materials can be optimised. The use of waste glass as a pozzolana reduces the overall emissions of particulate matter and improves air quality in and around cement plants, promoting a healthier environment for nearby communities.
Enhanced durability and reduced maintenance: Concrete incorporating waste glass as a pozzolanic material exhibits improved durability and reduced permeability. This translates into longer service life for concrete structures, reduced maintenance requirements, and decreased need for repairs or replacements. By extending the life of concrete, the environmental impact associated with new construction projects is minimised.

Waste Glass Addition
The addition of waste glass to concrete can significantly improve its performance in several ways. Here are the key ways in which waste glass enhances the performance of concrete:

  1. Increased strength and durability: The incorporation of waste glass as a pozzolanic material in concrete leads to the formation of additional cementitious compounds. These compounds, such as calcium silicate hydrate (C-S-H) gel, contribute to the strength and durability of the concrete. The pozzolanic reaction between waste glass and calcium hydroxide results in denser and more compact concrete, improving its compressive and flexural strength.
  2. Reduced permeability: Concrete containing waste glass exhibits reduced permeability to water and other potentially harmful substances. The pozzolanic reaction of waste glass results in the formation of a refined pore structure within the concrete matrix. This refined pore structure restricts the movement of water and other aggressive agents, enhancing the concrete’s resistance to moisture ingress, chemical attack, and freeze-thaw damage.
  3. Enhanced chemical resistance: The pozzolanic reaction of waste glass in concrete leads to the formation of calcium silicate hydrate (C-S-H) gel, which provides improved chemical resistance. This resistance makes the concrete less susceptible to chemical degradation caused by substances such as sulphates, chlorides and acids.
    Concrete with waste glass as a pozzolanic material exhibits better long-term performance in aggressive environments.
  4. Improved workability and cohesion: The addition of waste glass as a pozzolanic material can enhance the workability and cohesion of concrete. Due to the fine particle size and pozzolanic nature of waste glass, it acts as a filler material, improving the packing and lubrication of the concrete mixture. This improved workability allows for easier placement, consolidation, and finishing of
    the concrete.
  5. Mitigation of alkali-silica reaction: Alkali-Silica Reaction (ASR) is a chemical reaction that can occur between certain reactive silica minerals in aggregates and the alkalis present in cement. This reaction can lead to expansive cracking and deterioration of concrete. Waste glass, being an inert material, can act as a mitigating agent for ASR by replacing some of the reactive silica in the concrete mix.
  6. Sustainability and eco-friendliness: In addition to performance improvements, the utilisation of waste glass in concrete contributes to sustainability and eco-friendliness. By incorporating waste glass as a pozzolanic material, the consumption of cement is reduced, resulting in CO2 emissions associated with cement production. This reduction in CO2 emissions aligns with environmental goals and contributes to a more sustainable construction industry.

Challenges and Considerations
The utilisation of waste glass as a pozzolanic material in cement production does pose some challenges. Proper processing and grinding of waste glass to achieve optimal fineness is crucial to ensure its reactivity. The potential presence of impurities in the waste glass, such as metals or contaminants, requires careful selection and pre-treatment. Additionally, the impact of incorporating waste glass on the fresh and hardened properties of concrete should be evaluated to ensure compatibility with specific project requirements.

Research and Industry Initiatives
Ongoing research and industry initiatives are focused on optimising the use of waste glass as a pozzolanic material. Studies explore various methods of processing and grinding waste glass to enhance its reactivity and maximise its utilisation. Additionally, there is a scope to investigate the influence of waste glass characteristics, such as particle size, composition and treatment, on the properties of concrete. These efforts aim to develop guidelines and standards for incorporating waste glass in cement production.

Conclusion
The use of waste glass as a pozzolanic material in cement production offers a sustainable solution to address environmental concerns associated with both waste glass disposal and cement manufacturing. By harnessing the pozzolanic properties of waste glass, cement producers can reduce their carbon footprint, enhance concrete performance, and contribute to a more circular economy.
The addition of waste glass as a pozzolanic material significantly enhances the performance of concrete. The improvements include increased strength and durability, reduced permeability, enhanced chemical resistance, improved workability and cohesion, mitigation of alkali-silica reaction and sustainability benefits. By embracing waste glass in concrete production, the construction industry can create more resilient and eco-friendly structures while effectively utilising a valuable waste material.
Further research, collaboration and implementation efforts are essential to fully exploit the potential of waste glass as a valuable resource.

References

  1. Utilisation of Waste Glass Powder in Concrete by P. Manoj Kumar, K. Sreenivasulu, and M. Srinivasulu Reddy, International Journal of Innovative Research in Science, Engineering and Technology, 2013.
  2. Recycling of Waste Glass as a Partial Replacement for Fine Aggregate in Concrete Mix by W. A. Rahman, M. A. S. Al-gahtani, and M. A. K. El-Kourd, Journal of King Saud University – Engineering Sciences, 2010.
  3. Mechanical and Durability Properties of Concrete Containing Glass Powder as Partial Replacement of Cement by A. Shayan and R. Xu, Construction and Building Materials, 2004.
  4. Properties of Glass Concrete Containing Fine and Coarse Glass Aggregates by Z. Feng, S. Xie, and Y. Zhou, Journal of Materials in Civil Engineering, 2011.

You can find part one in the August issue of Indian Cement Review.

ABOUT THE AUTHOR
Dr SB Hegde is a Professor at Jain University and a Visiting Professor at the Pennsylvania State University, United States of America.

Concrete

NBCC Wins Rs 550m IOB Office Project In Raipur

PMC Contract Covers Design, Execution And Handover

Published

on

By

Shares



State-owned construction major NBCC India Ltd has secured a new domestic work order worth around Rs 550.2 million from Indian Overseas Bank (IOB) in the normal course of business, according to a regulatory filing.

The project involves planning, designing, execution and handover of IOB’s new Regional Office building at Raipur. The contract has been awarded under NBCC’s project management consultancy (PMC) operations and excludes GST.

NBCC said the order further strengthens its construction and infrastructure portfolio. The company clarified that the contract is not a related party transaction and that neither its promoter nor promoter group has any interest in the awarding entity.

The development has been duly disclosed to the stock exchanges as part of NBCC’s standard compliance requirements.

Continue Reading

Concrete

Nuvoco Q3 EBITDA Jumps As Cement Sales Hit Record

Premium products and cost control lift profitability

Published

on

By

Shares



Nuvoco Vistas Corp. Ltd reported a strong financial performance for the quarter ended 31 December 2025 (Q3 FY26), driven by record cement sales, higher premium product volumes and improved operational efficiencies.

The company achieved its highest-ever third-quarter consolidated cement sales volume of 5 million tonnes, registering growth of 7 per cent year-on-year. Consolidated revenue from operations rose 12 per cent to Rs 27.01 billion during the quarter. EBITDA increased sharply by 50 per cent YoY to Rs 3.86 billion, supported by improved pricing and cost management.

Premium products continued to be a key growth driver, sustaining a historic high contribution of 44 per cent for the second consecutive quarter. The strong momentum reflects rising brand traction for the Nuvoco Concreto and Nuvoco Duraguard ranges, which are increasingly recognised as trusted choices in building materials.

In the ready-mix concrete segment, Nuvoco witnessed healthy demand traction across its Concreto product portfolio. The company launched Concreto Tri Shield, a specialised offering delivering three-layer durability and a 50 per cent increase in structural lifespan. In the modern building materials category, the firm introduced Nuvoco Zero M Unnati App, a digital loyalty platform aimed at improving influencer engagement, transparency and channel growth.

Despite heavy rainfall affecting parts of the quarter, the company maintained improved performance supported by strong premiumisation and operational discipline. Capacity expansion projects in the East, along with ongoing execution at the Vadraj Cement facilities, remain on track. The operationalisation of the clinker unit and grinding capacity, planned in phases starting Q3 FY27, is expected to lift total cement capacity to around 35 million tonnes per annum, reinforcing Nuvoco’s position as India’s fifth-largest cement group.

Commenting on the results, Managing Director Mr Jayakumar Krishnaswamy said Q3 marked strong recovery and momentum despite economic challenges. He highlighted double-digit volume growth, premium-led expansion and a 50 per cent rise in EBITDA. The company also recorded its lowest blended fuel cost in 17 quarters at Rs 1.41 per Mcal. Refurbishment and project execution at the Vadraj Cement Plant are progressing steadily, which, along with strategic capacity additions and cost efficiencies, is expected to strengthen Nuvoco’s long-term competitive advantage.

Continue Reading

Concrete

Cement Industry Backs Co-Processing to Tackle Global Waste

Industry bodies recently urged policy support for cement co-processing as waste solution

Published

on

By

Shares



Leading industry bodies, including the Global Cement and Concrete Association (GCCA), European Composites Industry Association, International Solid Waste Association – Africa, Mission Possible Partnership and the Global Waste-to-Energy Research and Technology Council, have issued a joint statement highlighting the cement industry’s potential role in addressing the growing global challenge of non-recyclable and non-reusable waste. The organisations have called for stronger policy support to unlock the full potential of cement industry co-processing as a safe, effective and sustainable waste management solution.
Co-processing enables both energy recovery and material recycling by using suitable waste to replace fossil fuels in cement kilns, while simultaneously recycling residual ash into the cement itself. This integrated approach delivers a zero-waste solution, reduces landfill dependence and complements conventional recycling by addressing waste streams that cannot be recycled or are contaminated.
Already recognised across regions including Europe, India, Latin America and North America, co-processing operates under strict regulatory and technical frameworks to ensure high standards of safety, emissions control and transparency.
Commenting on the initiative, Thomas Guillot, Chief Executive of the GCCA, said co-processing offers a circular, community-friendly waste solution but requires effective regulatory frameworks and supportive public policy to scale further. He noted that while some cement kilns already substitute over 90 per cent of their fuel with waste, many regions still lack established practices.
The joint statement urges governments and institutions to formally recognise co-processing within waste policy frameworks, support waste collection and pre-treatment, streamline permitting, count recycled material towards national recycling targets, and provide fiscal incentives that reflect environmental benefits. It also calls for stronger public–private partnerships and international knowledge sharing.
With global waste generation estimated at over 11 billion tonnes annually and uncontrolled municipal waste projected to rise sharply by 2050, the signatories believe co-processing represents a practical and scalable response. With appropriate policy backing, it can help divert waste from landfills, reduce fossil fuel use in cement manufacturing and transform waste into a valuable societal resource.    

Continue Reading

Trending News