Connect with us

Concrete

Driving Efficiency

Published

on

Shares

Advancements in technology are positively helping innovation in machine management at cement plants, thereby enhancing efficiency, resulting in cost savings. ICR delves into the latest updates in gears, drives and motors, which are key components for smooth functioning of equipment in cement manufacturing.

Gears, drives, and motors are essential components that play vital roles in the operations of a cement plant in India. Gears, with their toothed structure, are employed in various critical applications throughout the plant. One significant application is in the rotation of the cement kiln. The kiln is a large, cylindrical structure where raw materials are heated to high temperatures to produce clinker. Gears enable the smooth and controlled rotation of the kiln, ensuring the efficient and consistent processing of materials. Additionally, gears are utilised in cement mills, which are responsible for grinding the raw materials or clinker into a fine powder. By driving the rotation of the mill, gears facilitate the grinding process, enabling the materials to be finely ground and transformed into cement.
Gears are also integral to the functioning of conveyors and elevators within the plant. These systems are responsible for the movement of raw materials, clinker, and finished cement from one area to another. Gears assist in driving these mechanisms, ensuring the smooth and reliable transportation of materials throughout the plant.
Drives are responsible for providing the necessary power to operate various equipment within the cement plant. Motor drives are commonly used and are essential in controlling the speed and torque of electric motors. They enable precise control over equipment such as kilns, mills, crushers, and conveyors, ensuring optimal performance and efficiency in their operations. In addition to motor drives, hydraulic drives and pneumatic drives are employed in specific applications. Hydraulic drives utilise fluid power to generate motion and force, typically employed in heavy-duty machinery like crushers and clinker cooler systems. Pneumatic drives, on the other hand, utilise compressed air to provide motion and power and can be found
in systems such as air compressors and pneumatic conveyors.


Motors serve as the primary power sources for the various equipment in a cement plant. Electric motors are extensively used, driving fans, blowers, pumps, crushers, mills, and kilns. They convert electrical energy into mechanical energy, enabling the machinery to perform their intended functions efficiently. In larger-scale cement plants, high voltage motors are utilised to handle the higher power requirements. These motors are designed to operate at higher voltages and can effectively drive heavy machinery within the plant. Induction motors are also commonly employed due to their reliability and robustness, offering good performance and energy efficiency in various applications throughout the cement plant.
Collectively, gears, drives, and motors are integral components that ensure the smooth and efficient operation of a cement plant in India. They facilitate critical processes involved in cement production, such as raw material grinding, kiln rotation, and material transportation. By providing reliable power, precise control, and optimal performance, these components contribute significantly to the overall functionality and productivity of the cement plant.
“The manufacturing of cement involves an elaborate process, starting from the mining of necessary mineral resources to the processing of these minerals to obtain the final products with desired physical and chemical properties. In this process, rotary drive systems play a crucial role in powering heavy-duty critical equipment that operates under harsh conditions and heavy loads. These systems are utilised for various applications such as crushing, grinding, melting, mixing and conveying,” says Krishnaraj Sreedharan, Head of Customer Service, Flender Drives.

ACHIEVING EFFICIENCY WITH ACCURACY
Gears, drives, and motors play a crucial role in helping cement plants achieve efficiency in cement production, reduce costs, and save electricity and fuel. These components contribute to the overall optimisation of various processes, leading to improved performance and sustainability in the industry.
One significant aspect of gears, drives, and motors is their ability to provide enhanced process control. With precise control over speed, torque and operation, these components enable cement plants to enhance process parameters. For example, in the case of kilns and mills, the rotation speed can be adjusted to maintain optimal conditions for efficient and consistent cement production. This level of control minimises waste, reduces energy consumption, and enhances overall production efficiency.
Energy optimisation is another area where gears, drives, and motors play a vital role. Modern motor drives offer features such as variable speed control, allowing operators to match motor speeds to the load demand. By adjusting the motor speed according to the process requirements, energy consumption can be significantly reduced. This capability is particularly beneficial for equipment such as fans, blowers, and pumps, which consume a significant amount of energy in cement plants.
These components also contribute to improved equipment reliability. High-quality gears and drives help minimise the risk of unexpected failures and breakdowns. Furthermore, motors with efficient designs and robust construction can operate reliably under challenging conditions, reducing the need for frequent repairs and replacements. This leads to reduced downtime and maintenance costs, enhancing overall cost efficiency.
Gears, drives, and motors also contribute to fuel efficiency in cement plants. By optimising the operation of grinding mills, these components ensure effective pulverisation of raw materials or clinker while minimising energy consumption. Additionally, precise control over kiln rotation allows for better heat transfer, ensuring efficient fuel utilisation during the clinker production process. The result is reduced fuel consumption, leading to cost savings and lower environmental impact.
Another advantage of integrating gears, drives, and motors is the potential for process automation. By leveraging advanced control systems, these components enable real-time monitoring, data analysis, and decision-making based on process variables. Automation facilitates optimised equipment operation, energy management, and production scheduling. By automating repetitive tasks and optimising processes, cement plants can achieve higher efficiency, reduce human errors, and save both electricity and fuel.
Furthermore, gears, drives, and motors provide valuable data on their operating conditions, allowing for predictive maintenance planning. Through condition monitoring and sensor technology, these components can detect potential issues and provide insights on temperature, vibration, and other relevant parameters. This data enables proactive maintenance planning, minimising unplanned downtime and optimising maintenance costs.

MAINTENANCE OF GEARS, DRIVES AND MOTORS
To increase the lifetime and optimise the performance of gears, drives, and motors in cement plants, several maintenance practices can be implemented. Regular inspections should be conducted to visually assess the condition of these components and monitor temperature, vibration, and noise levels. This helps identify any signs of wear, misalignment, or damage early on.
Proper lubrication is crucial for the smooth operation of gears, drives, and motors. Following manufacturer recommendations for the type of lubricant, quantity, and frequency of lubrication is essential. Regularly checking lubrication levels and performing timely lubrication prevents excessive friction, wear and overheating.
Ensuring proper alignment of gears, drives, and motors is vital to avoid excessive loads and uneven wear. Precision alignment tools and techniques should be utilised to align shafts, couplings, and belts accurately. Dynamic balancing of rotating components should also be carried out to minimise vibrations, which can lead to premature failure and reduced lifespan.
Maintaining cleanliness around gears, drives, and motors is crucial to prevent the accumulation of dust, debris, and contaminants. Regular cleaning and removal of any buildup help maintain optimal performance and reduce the risk of overheating or component failure. Implementing dust prevention measures in the plant can minimise the ingress of dust into critical equipment.
Monitoring the temperature of gears, drives, and motors is important to detect abnormal heating patterns. Excessive heat can indicate issues such as inadequate lubrication, misalignment, or overloading. Temperature sensors and monitoring systems should be installed to identify and address temperature anomalies promptly.
Performing regular vibration analysis on gears, drives, and motors can help identify potential faults or imbalances. Vibration monitoring systems detect abnormal vibration patterns, indicating misalignment, worn components, or impending failures. Analysing vibration data enables maintenance personnel to schedule corrective actions and prevent major breakdowns.
Providing adequate training and expertise to maintenance personnel is crucial. They should be trained in inspecting, maintaining, and troubleshooting gears, drives, and motors. Continuous professional development programs and access to technical resources enhance their knowledge and skills, facilitating effective maintenance practices.
Developing a proactive replacement strategy based on the anticipated lifespan of gears, drives, and motors is important. Monitoring their performance and condition regularly enables scheduling replacements before they reach the end of their operational life. This approach prevents unexpected failures and minimises costly downtime.
Maintaining detailed records of maintenance activities, inspections, repairs, and component history is essential. This documentation provides valuable insights into the performance, maintenance requirements, and lifespan of gears, drives, and motors. It helps identify recurring issues, analyse trends, and make informed decisions regarding maintenance and replacement strategies.
By implementing these maintenance practices, cement plants can extend the lifetime of gears, drives, and motors. Regular inspections, proper lubrication, alignment, cleaning, temperature monitoring, vibration analysis, training, proactive replacements and comprehensive record-keeping contribute to their optimal performance, reliability and longevity.

IMPACT OF TECHNOLOGY ON MOTOR WORKINGS
Gears, drives and motors manufacturers are embracing digitalisation and leveraging technology to enhance their products and provide better solutions to customers. One significant area of advancement is in digital design and simulation. Manufacturers are utilising advanced computer-aided design (CAD) software and simulation tools to create highly optimised gears, drives, and motors. These tools allow for precise modeling and analysis, enabling manufacturers to test various configurations, evaluate performance, and identify potential issues before physical prototypes are produced. This digital design process significantly improves efficiency, reduces development time and enhances product quality.
Another key aspect of digitalisation is performance monitoring and analytics. By integrating sensors and monitoring systems into gears, drives, and motors, manufacturers can collect real-time data on operating conditions, performance parameters, and health status. This data is then processed and analysed using data analytics techniques, enabling predictive maintenance, performance optimisation, and early fault detection. Manufacturers can provide smarter products that offer valuable insights to customers, leading to increased reliability, reduced downtime and improved operations.
Connectivity and remote monitoring capabilities are also being incorporated into gears, drives, and motors. By integrating with Industrial Internet of Things (IIoT) platforms, manufacturers enable remote diagnostics, condition monitoring, and performance optimisation. Customers can access real-time data, receive alerts, and remotely manage their equipment, resulting in improved efficiency, reduced maintenance costs, and enhanced productivity. This connectivity enhances the overall functionality and value of the products.
“The cement industry has also been emphasising on digitalisation and ABB has been a front runner in developing ways and means to do things better. We now have the option of getting every drive functioning in an industry connected remotely to our remote monitoring centres, which enable 24×7 watch on the critical performance parameters of the drives and proactively advise the plant engineers for taking preventive actions if any negative trend is shown on any critical parameters,” says Anoop Anand, Motion System Drives Division President, ABB India.
“The challenge has always been that it was not economically viable to extend monitoring to a much greater scope of equipment across a plant. That has now changed with the introduction of a new generation of wireless smart sensors for motors. The availability of cloud computing, data analytics, and mobile data transmission, has paved the way for the arrival of low-cost, IoT-based wireless sensors. With no hard wiring requirements, they allow for permanent monitoring at a fraction of the cost of traditional condition monitoring systems,” he adds.
Digitalisation is also being used to improve energy efficiency and sustainability. Manufacturers develop intelligent control algorithms and energy management systems that enhance the operation of gears, drives, and motors, thereby reducing energy consumption and environmental impact. Digital technologies enable the integration of renewable energy sources and energy recovery systems, further enhancing the sustainability of these products and supporting the industry’s efforts towards a greener future.
“We believe in offering efficient and futuristic technology to customers. Globally, we have stopped offering IE1 and IE2 class motors and offer more energy efficient IE3 and IE4 motors and soon IE5 efficiency motors will be available in a complete product range. As the world is adapting to Industry 4.0, hence, we have made our products suitable for new edge technology and we can get all kinds of data like temperature, speed, vibration, bearing life etc., from our product, process through our drives and store on the cloud for periodic analysis sitting at remote locations. This will be useful for the maintenance team to keep their machinery operative and avert breakdowns with proper and accurate feedback in advance,” says Amit Deokule, Director- Sales & Marketing, Nord.
Manufacturers are also developing collaborative platforms and digital services to enhance customer engagement and support. These platforms provide access to technical documentation, manuals, and online support, facilitating efficient communication between manufacturers and customers. Digital services such as remote technical assistance, spare parts ordering and performance optimisation consulting further enhance customer support and provide value-added services.
By embracing digitalisation and leveraging technology, gears, drives, and motors manufacturers are advancing product design, performance monitoring, connectivity, energy efficiency and customer support. These innovations result in more intelligent, reliable, and sustainable products that meet the evolving needs of customers in various industries. The integration of digitalisation and technology is transforming the industry and paving the way for more efficient and innovative solutions in the future.

CONCLUSION
Gears, drives, and motors play crucial roles in cement plants in India. They facilitate the movement and control of heavy machinery, such as crushers, kilns and mills, enabling efficient cement production. By using advanced technology and digitalisation, manufacturers are enhancing the design, performance and sustainability of these components.
Digital design and simulation improve their functionality, while performance monitoring and analytics enable predictive maintenance and fault detection. Connectivity and remote monitoring capabilities allow for real-time data access and control, leading to improved efficiency and reduced downtime.
Energy efficiency and sustainability are prioritised through intelligent control algorithms and the integration of renewable energy sources. Augmented reality and virtual reality support product design, training, and maintenance. Collaborative platforms and digital services enhance customer support and engagement. Overall, the integration of digitalisation and technology in gears, drives and motors drives innovation, improves efficiency and delivers smarter and more sustainable solutions for the cement industry.

Concrete

Refractory demands in our kiln have changed

Published

on

By

Shares

Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, points out why performance, predictability and life-cycle value now matter more than routine replacement in cement kilns.

As Indian cement plants push for higher throughput, increased alternative fuel usage and tighter shutdown cycles, refractory performance in kilns and pyro-processing systems is under growing pressure. In this interview, Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, shares how refractory demands have evolved on the ground and how smarter digital monitoring is improving kiln stability, uptime and clinker quality.

How have refractory demands changed in your kiln and pyro-processing line over the last five years?
Over the last five years, refractory demands in our kiln and pyro line have changed. Earlier, the focus was mostly on standard grades and routine shutdown-based replacement. But now, because of higher production loads, more alternative fuels and raw materials (AFR) usage and greater temperature variation, the expectation from refractory has increased.
In our own case, the current kiln refractory has already completed around 1.5 years, which itself shows how much more we now rely on materials that can handle thermal shock, alkali attack and coating fluctuations. We have moved towards more stable, high-performance linings so that we don’t have to enter the kiln frequently for repairs.
Overall, the shift has been from just ‘installation and run’ to selecting refractories that give longer life, better coating behaviour and more predictable performance under tougher operating conditions.

What are the biggest refractory challenges in the preheater, calciner and cooler zones?
• Preheater: Coating instability, chloride/sulphur cycles and brick erosion.
• Calciner: AFR firing, thermal shock and alkali infiltration.
• Cooler: Severe abrasion, red-river formation and mechanical stress on linings.
Overall, the biggest challenge is maintaining lining stability under highly variable operating conditions.

How do you evaluate and select refractory partners for long-term performance?
In real plant conditions, we don’t select a refractory partner just by looking at price. First, we see their past performance in similar kilns and whether their material has actually survived our operating conditions. We also check how strong their technical support is during shutdowns, because installation quality matters as much as the material itself.
Another key point is how quickly they respond during breakdowns or hot spots. A good partner should be available on short notice. We also look at their failure analysis capability, whether they can explain why a lining failed and suggest improvements.
On top of this, we review the life they delivered in the last few campaigns, their supply reliability and their willingness to offer plant-specific custom solutions instead of generic grades. Only a partner who supports us throughout the life cycle, which includes selection, installation, monitoring and post-failure analysis, fits our long-term requirement.

Can you share a recent example where better refractory selection improved uptime or clinker quality?
Recently, we upgraded to a high-abrasion basic brick at the kiln outlet. Earlier we had frequent chipping and coating loss. With the new lining, thermal stability improved and the coating became much more stable. As a result, our shutdown interval increased and clinker quality remained more consistent. It had a direct impact on our uptime.

How is increased AFR use affecting refractory behaviour?
Increased AFR use is definitely putting more stress on the refractory. The biggest issue we see daily is the rise in chlorine, alkalis and volatiles, which directly attack the lining, especially in the calciner and kiln inlet. AFR firing is also not as stable as conventional fuel, so we face frequent temperature fluctuations, which cause more thermal shock and small cracks in the lining.
Another real problem is coating instability. Some days the coating builds too fast, other days it suddenly drops, and both conditions impact refractory life. We also notice more dust circulation and buildup inside the calciner whenever the AFR mix changes, which again increases erosion.
Because of these practical issues, we have started relying more on alkali-resistant, low-porosity and better thermal shock–resistant materials to handle the additional stress coming from AFR.

What role does digital monitoring or thermal profiling play in your refractory strategy?
Digital tools like kiln shell scanners, IR imaging and thermal profiling help us detect weakening areas much earlier. This reduces unplanned shutdowns, helps identify hotspots accurately and allows us to replace only the critical sections. Overall, our maintenance has shifted from reactive to predictive, improving lining life significantly.

How do you balance cost, durability and installation speed during refractory shutdowns?
We focus on three points:
• Material quality that suits our thermal profile and chemistry.
• Installation speed, in fast turnarounds, we prefer monolithic.
• Life-cycle cost—the cheapest material is not the most economical. We look at durability, future downtime and total cost of ownership.
This balance ensures reliable performance without unnecessary expenditure.

What refractory or pyro-processing innovations could transform Indian cement operations?
Some promising developments include:
• High-performance, low-porosity and nano-bonded refractories
• Precast modular linings to drastically reduce shutdown time
• AI-driven kiln thermal analytics
• Advanced coating management solutions
• More AFR-compatible refractory mixes

These innovations can significantly improve kiln stability, efficiency and maintenance planning across the industry.

Continue Reading

Concrete

Digital supply chain visibility is critical

Published

on

By

Shares

MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, discusses how data, discipline and scale are turning Industry 4.0 into everyday business reality.

Over the past five years, digitalisation in Indian cement manufacturing has moved decisively beyond experimentation. Today, it is a strategic lever for cost control, operational resilience and sustainability. In this interview, MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, explains how integrated digital foundations, advanced analytics and real-time visibility are helping deliver measurable business outcomes.

How has digitalisation moved from pilot projects to core strategy in Indian cement manufacturing over the past five years?
Digitalisation in Indian cement has evolved from isolated pilot initiatives into a core business strategy because outcomes are now measurable, repeatable and scalable. The key shift has been the move away from standalone solutions toward an integrated digital foundation built on standardised processes, governed data and enterprise platforms that can be deployed consistently across plants and functions.
At Shree Cement, this transition has been very pragmatic. The early phase focused on visibility through dashboards, reporting, and digitisation of critical workflows. Over time, this has progressed into enterprise-level analytics and decision support across manufacturing and the supply chain,
with clear outcomes in cost optimisation, margin protection and revenue improvement through enhanced customer experience.
Equally important, digital is no longer the responsibility of a single function. It is embedded into day-to-day operations across planning, production, maintenance, despatch and customer servicing, supported by enterprise systems, Industrial Internet of Things (IIoT) data platforms, and a structured approach to change management.

Which digital interventions are delivering the highest ROI across mining, production and logistics today?
In a capital- and cost-intensive sector like cement, the highest returns come from digital interventions that directly reduce unit costs or unlock latent capacity without significant capex.
Supply chain and planning (advanced analytics): Tools for demand forecasting, S&OP, network optimisation and scheduling deliver strong returns by lowering logistics costs, improving service levels, and aligning production with demand in a fragmented and regionally diverse market.
Mining (fleet and productivity analytics): Data-led mine planning, fleet analytics, despatch discipline, and idle-time reduction improve fuel efficiency and equipment utilisation, generating meaningful savings in a cost-heavy operation.
Manufacturing (APC and process analytics): Advanced Process Control, mill optimisation, and variability reduction improve thermal and electrical efficiency, stabilise quality and reduce rework and unplanned stoppages.
Customer experience and revenue enablement (digital platforms): Dealer and retailer apps, order visibility and digitally enabled technical services improve ease of doing business and responsiveness. We are also empowering channel partners with transparent, real-time information on schemes, including eligibility, utilisation status and actionable recommendations, which improves channel satisfaction and market execution while supporting revenue growth.
Overall, while Artificial Intelligence (AI) and IIoT are powerful enablers, it is advanced analytics anchored in strong processes that typically delivers the fastest and most reliable ROI.

How is real-time data helping plants shift from reactive maintenance to predictive and prescriptive operations?
Real-time and near real-time data is driving a more proactive and disciplined maintenance culture, beginning with visibility and progressively moving toward prediction and prescription.
At Shree Cement, we have implemented a robust SAP Plant Maintenance framework to standardise maintenance workflows. This is complemented by IIoT-driven condition monitoring, ensuring consistent capture of equipment health indicators such as vibration, temperature, load, operating patterns and alarms.
Real-time visibility enables early detection of abnormal conditions, allowing teams to intervene before failures occur. As data quality improves and failure histories become structured, predictive models can anticipate likely failure modes and recommend timely interventions, improving MTBF and reducing downtime. Over time, these insights will evolve into prescriptive actions, including spares readiness, maintenance scheduling, and operating parameter adjustments, enabling reliability optimisation with minimal disruption.
A critical success factor is adoption. Predictive insights deliver value only when they are embedded into daily workflows, roles and accountability structures. Without this, they remain insights without action.

In a cost-sensitive market like India, how do cement companies balance digital investment with price competitiveness?
In India’s intensely competitive cement market, digital investments must be tightly linked to tangible business outcomes, particularly cost reduction, service improvement, and faster decision-making.
This balance is achieved by prioritising high-impact use cases such as planning efficiency, logistics optimisation, asset reliability, and process stability, all of which typically deliver quick payback. Equally important is building scalable and governed digital foundations that reduce the marginal cost of rolling out new use cases across plants.
Digitally enabled order management, live despatch visibility, and channel partner platforms also improve customer centricity while controlling cost-to-serve, allowing service levels to improve without proportionate increases in headcount or overheads.
In essence, the most effective digital investments do not add cost. They protect margins by reducing variability, improving planning accuracy, and strengthening execution discipline.

How is digitalisation enabling measurable reductions in energy consumption, emissions, and overall carbon footprint?
Digitalisation plays a pivotal role in improving energy efficiency, reducing emissions and lowering overall carbon intensity.
Real-time monitoring and analytics enable near real-time tracking of energy consumption and critical operating parameters, allowing inefficiencies to be identified quickly and corrective actions to be implemented. Centralised data consolidation across plants enables benchmarking, accelerates best-practice adoption, and drives consistent improvements in energy performance.
Improved asset reliability through predictive maintenance reduces unplanned downtime and process instability, directly lowering energy losses. Digital platforms also support more effective planning and control of renewable energy sources and waste heat recovery systems, reducing dependence on fossil fuels.
Most importantly, digitalisation enables sustainability progress to be tracked with greater accuracy and consistency, supporting long-term ESG commitments.

What role does digital supply chain visibility play in managing demand volatility and regional market dynamics in India?
Digital supply chain visibility is critical in India, where demand is highly regional, seasonality is pronounced, and logistics constraints can shift rapidly.
At Shree Cement, planning operates across multiple horizons. Annual planning focuses on capacity, network footprint and medium-term demand. Monthly S&OP aligns demand, production and logistics, while daily scheduling drives execution-level decisions on despatch, sourcing and prioritisation.
As digital maturity increases, this structure is being augmented by central command-and-control capabilities that manage exceptions such as plant constraints, demand spikes, route disruptions and order prioritisation. Planning is also shifting from aggregated averages to granular, cost-to-serve and exception-based decision-making, improving responsiveness, lowering logistics costs and strengthening service reliability.

How prepared is the current workforce for Industry 4.0, and what reskilling strategies are proving most effective?
Workforce preparedness for Industry 4.0 is improving, though the primary challenge lies in scaling capabilities consistently across diverse roles.
The most effective approach is to define capability requirements by role and tailor enablement accordingly. Senior leadership focuses on digital literacy for governance, investment prioritisation, and value tracking. Middle management is enabled to use analytics for execution discipline and adoption. Frontline sales and service teams benefit from
mobile-first tools and KPI-driven workflows, while shop-floor and plant teams focus on data-driven operations, APC usage, maintenance discipline, safety and quality routines.
Personalised, role-based learning paths, supported by on-ground champions and a clear articulation of practical benefits, drive adoption far more effectively than generic training programmes.

Which emerging digital technologies will fundamentally reshape cement manufacturing in the next decade?
AI and GenAI are expected to have the most significant impact, particularly when combined with connected operations and disciplined processes.
Key technologies likely to reshape the sector include GenAI and agentic AI for faster root-cause analysis, knowledge access, and standardisation of best practices; industrial foundation models that learn patterns across large sensor datasets; digital twins that allow simulation of process changes before implementation; and increasingly autonomous control systems that integrate sensors, AI, and APC to maintain stability with minimal manual intervention.
Over time, this will enable more centralised monitoring and management of plant operations, supported by strong processes, training and capability-building.

Continue Reading

Concrete

Redefining Efficiency with Digitalisation

Published

on

By

Shares

Professor Procyon Mukherjee discusses how as the cement industry accelerates its shift towards digitalisation, data-driven technologies are becoming the mainstay of sustainability and control across the value chain.

The cement industry, long perceived as traditional and resistant to change, is undergoing a profound transformation driven by digital technologies. As global infrastructure demand grows alongside increasing pressure to decarbonise and improve productivity, cement manufacturers are adopting data-centric tools to enhance performance across the value chain. Nowhere is this shift more impactful than in grinding, which is the energy-intensive final stage of cement production, and in the materials that make grinding more efficient: grinding media and grinding aids.

The imperative for digitalisation
Cement production accounts for roughly 7 per cent to 8 per cent of global CO2 emissions, largely due to the energy intensity of clinker production and grinding processes. Digital solutions, such as AI-driven process controls and digital twins, are helping plants improve stability, cut fuel use and reduce emissions while maintaining consistent product quality. In one deployment alongside ABB’s process controls at a Heidelberg plant in Czechia, AI tools cut fuel use by 4 per cent and emissions by 2 per cent, while also improving operational stability.
Digitalisation in cement manufacturing encompasses a suite of technologies, broadly termed as Industrial Internet of Things (IIoT), AI and machine learning, predictive analytics, cloud-based platforms, advanced process control and digital twins, each playing a role in optimising various stages of production from quarrying to despatch.

Grinding: The crucible of efficiency and cost
Of all the stages in cement production, grinding is among the most energy-intensive, historically consuming large amounts of electricity and representing a significant portion of plant operating costs. As a result, optimising grinding operations has become central to digital transformation strategies.
Modern digital systems are transforming grinding mills from mechanical workhorses into intelligent, interconnected assets. Sensors throughout the mill measure parameters such as mill load, vibration, mill speed, particle size distribution, and power consumption. This real-time data, fed into machine learning and advanced process control (APC) systems, can dynamically adjust operating conditions to maintain optimal throughput and energy usage.
For example, advanced grinding systems now predict inefficient conditions, such as impending mill overload, by continuously analysing acoustic and vibration signatures. The system can then proactively adjust clinker feed rates and grinding media distribution to sustain optimal conditions, reducing energy consumption and improving consistency.

Digital twins: Seeing grinding in the virtual world
One of the most transformative digital tools applied in cement grinding is the digital twin, which a real-time virtual replica of physical equipment and processes. By integrating sensor data and
process models, digital twins enable engineers to simulate process variations and run ‘what-if’
scenarios without disrupting actual production. These simulations support decisions on variables such as grinding media charge, mill speed and classifier settings, allowing optimisation of energy use and product fineness.
Digital twins have been used to optimise kilns and grinding circuits in plants worldwide, reducing unplanned downtime and allowing predictive maintenance to extend the life of expensive grinding assets.

Grinding media and grinding aids in a digital era
While digital technologies improve control and prediction, materials science innovations in grinding media and grinding aids have become equally crucial for achieving performance gains.
Grinding media, which comprise the balls or cylinders inside mills, directly influence the efficiency of clinker comminution. Traditionally composed of high-chrome cast iron or forged steel, grinding media account for nearly a quarter of global grinding media consumption by application, with efficiency improvements translating directly to lower energy intensity.
Recent advancements include ceramic and hybrid media that combine hardness and toughness to reduce wear and energy losses. For example, manufacturers such as Sanxin New Materials in China and Tosoh Corporation in Japan have developed sub-nano and zirconia media with exceptional wear resistance. Other innovations include smart media embedded with sensors to monitor wear, temperature, and impact forces in real time, enabling predictive maintenance and optimal media replacement scheduling. These digitally-enabled media solutions can increase grinding efficiency by as much as 15 per cent.
Complementing grinding media are grinding aids, which are chemical additives that improve mill throughput and reduce energy consumption by altering the surface properties of particles, trapping air, and preventing re-agglomeration. Technology leaders like SIKA AG and GCP Applied Technologies have invested in tailored grinding aids compatible with AI-driven dosing platforms that automatically adjust additive concentrations based on real-time mill conditions. Trials in South America reported throughput improvements nearing 19 per cent when integrating such digital assistive dosing with process control systems.
The integration of grinding media data and digital dosing of grinding aids moves the mill closer to a self-optimising system, where AI not only predicts media wear or energy losses but prescribes optimal interventions through automated dosing and operational adjustments.

Global case studies in digital adoption
Several cement companies around the world exemplify digital transformation in practice.
Heidelberg Materials has deployed digital twin technologies across global plants, achieving up to 15 per cent increases in production efficiency and 20 per cent reductions in energy consumption by leveraging real-time analytics and predictive algorithms.
Holcim’s Siggenthal plant in Switzerland piloted AI controllers that autonomously adjusted kiln operations, boosting throughput while reducing specific energy consumption and emissions.
Cemex, through its AI and predictive maintenance initiatives, improved kiln availability and reduced maintenance costs by predicting failures before they occurred. Global efforts also include AI process optimisation initiatives to reduce energy consumption and environmental impact.

Challenges and the road ahead
Despite these advances, digitalisation in cement grinding faces challenges. Legacy equipment may lack sensor readiness, requiring retrofits and edge-cloud connectivity upgrades. Data governance and integration across plants and systems remains a barrier for many mid-tier producers. Yet, digital transformation statistics show momentum: more than half of cement companies have implemented IoT sensors for equipment monitoring, and digital twin adoption is growing rapidly as part of broader Industry 4.0 strategies.
Furthermore, as digital systems mature, they increasingly support sustainability goals: reduced energy use, optimised media consumption and lower greenhouse gas emissions. By embedding intelligence into grinding circuits and material inputs like grinding aids, cement manufacturers can strike a balance between efficiency and environmental stewardship.
Conclusion
Digitalisation is not merely an add-on to cement manufacturing. It is reshaping the competitive and sustainability landscape of an industry often perceived as inertia-bound. With grinding representing a nexus of energy intensity and cost, digital technologies from sensor networks and predictive analytics to digital twins offer new levers of control. When paired with innovations in grinding media and grinding aids, particularly those with embedded digital capabilities, plants can achieve unprecedented gains in efficiency, predictability and performance.
For global cement producers aiming to reduce costs and carbon footprints simultaneously, the future belongs to those who harness digital intelligence not just to monitor operations, but to optimise and evolve them continuously.

About the author:
Professor Procyon Mukherjee, ex-CPO Lafarge-Holcim India, ex-President Hindalco, ex-VP Supply Chain Novelis Europe,
has been an industry leader in logistics, procurement, operations and supply chain management. His career spans 38 years starting from Philips, Alcan Inc (Indian Aluminum Company), Hindalco, Novelis and Holcim. He authored the book, ‘The Search for Value in Supply Chains’. He serves now as Visiting Professor in SP Jain Global, SIOM and as the Adjunct Professor at SBUP. He advises leading Global Firms including Consulting firms on SCM and Industrial Leadership and is a subject matter expert in aluminum and cement. An Alumnus of IIM Calcutta and Jadavpur University, he has completed the LH Senior Leadership Programme at IVEY Academy at Western University, Canada.

Continue Reading

Trending News