Concrete
Turning E-Waste into Green Concrete
Published
2 years agoon
By
admin
Creating green concrete with discarded printed circuit boards or e-waste is a new take on revolutionising recycling in the industry. JK Lakshmi Cement has taken this initiative at its Kalol Grinding Unit and the following is the case study of its successful execution.
Electrical and electronic waste (e-waste) is one of the fastest growing waste streams in the world due to its high rate of obsolescence. Market penetration in developing countries and replacement market in developed countries has resulted in the exponential increase of e-waste volume in the last two decades. Environmental pollution from e-waste is an important issue in this age of electronics. As a key component in almost all electronic equipment, large amounts of Waste Printed Circuit Boards (WPCBs) are generated. Printed Circuit Boards (PCBs) form about 3-6 per cent by weight of the total amount of electronic scrap. In this trial an attempt is made to use powdered non-metallic WPCB in concrete as a 10 per cent replacement of sand and conducted strength analysis at 7 days and 28 days. Results of these experiments show that there is an increase of 22 per cent in the compressive strength.
As per E-Waste Management Rules 2016 and as amended time to time published by Ministry of Environment Forest and Climate Change (MOEF&CC), e-waste means electrical and electronic equipment, whole or in part discarded as a waste by the consumer or bulk consumer as well as reject from manufacturing refurbishment and repair process. Disposal of e-waste is a particular problem faced in many regions across the globe. Most of the e-waste finds its way to the landfill. From this e-waste, a leachate is produced, which is harmful for the aquatic organisms. Acids and sludge obtained from melting computer chips, when disposed on the ground causes a decrease in pH of soil. Burning of e-wastes can emit toxic fumes and gases, thereby polluting the surrounding air. E-waste, when disposed of in sanitary landfills, which are not engineered properly, can be very hazardous because mercury will leach when certain electronic devices, such as circuit breakers are destroyed. PCBs are the electronic boards that are used in a majority of electronic devices including phones, laptops, household appliances and pieces of medical equipment. PCBs are an integral part of any electronic equipment. The growth of e-waste as end-of-life electronic equipment at an exponential rate is producing large quantities of discarded WPCBs. In India, current recycling and processing of WPCBs is managed almost entirely by the informal sector or the unskilled labour (95 per cent)1.
The crude recycling activities cause irreversible health and environmental hazards and the loss of valuable materials due to the poor recovery of base and precious metals. With the disclosures of the recycling being done by unskilled labour, alternative recycling strategies are being sought with the aim of higher recovery of materials in an environment friendly manner.
Need of the Project
The basic requirement of the project is to reduce the natural source of fine aggregate which is used in the concrete products; we know that today the problems faced in the depletion of the fine aggregate cause an admonishing situation in the riverbed areas. So, the research project is paramount to reuse or to utilise the printed circuit board that is all the electronic waste in the crushed powder form as a replacement material for the fine aggregate. In recent years throughout the world there has been increasing concern about the growing volume of end-of-life electronics, especially the WPCBs and the fact that much of its non-metallic portion is consigned to landfill. A large number of non-metallic portions in WPCBs are disposed of by combustion and in landfills as the main method for treating nonmetals from WPCBs, but it may cause secondary pollution and damages the environment. With improper technology for its reuse, recycling and dumping can cause serious threats to human health and the environment. In the present scenario, the major issue of e-waste management is how to manage PCBs waste. No construction activity can be imagined without using concrete. Concrete is the most widely used building material in the construction industry. The main reason behind its popularity is its high strength and durability. Today, the world is advancing too fast, and our environment is changing progressively. Attention is being focused on the environment and safeguarding of natural resources and recycling of wastes materials. One of the new waste materials used in the concrete industry is WPCBs. For solving the disposal of large amount of PCB waste material, reuse of WPCB in concrete industry is considered as the most feasible application.

Lab Test of Concrete Made from E-Waste
In M25 grade of concrete, the cement serves the purpose of binding all the other components together, the coarse and fine aggregate are the load bearing component while coarse and fine sand work as filler material. In this study, a 10 per cent replacement of fine sand is made with powdered non-metallic WPCBs (Waste Printed Circuit Boards) of size less than 1.18 mm. The sample composition taken for this study is as per Table1.
Once this mixture is formed the slump test for the concrete is conducted, as per Indian Standard IS 456:2000 (Reaffirmed in 2021), for which the standard range is 100-180 mm. After this, cubes having of dimension 150mm x 150mm x 150mm are filled with the concrete mixture and left to set. For the above-mentioned quantity, six such concrete cubes are filled, of which three are set for testing at an interval of 7 days and the other three are set aside for compressive strength testing at 28 days. These cubes are then tested for compressive strength using a compression testing machine (CTM) with an acting load of 2000KN.
Findings
For the trial mixture mentioned in Table 1. The slump value obtained was 110mm.The minimum compressive strength for a standard M25 concrete block at 7 days must be 16.25 N/mm2 and at 28 days must be 25N/mm2. The CTM values obtained for this trial mixture are mentioned in Table 2. Thus, it can be said that replacing 10 per cent river sand by crushed WPCB, not only retains the standard strength but also gains 22 per cent strength over regular M25 grade of concrete. Also, by using powdered non-metallic PCBs replacing the fine sand, we can save Rs 350 on every tonne of sand replaced. Also, a study conducted for testing, the reactivity of the material shows that it is non-reactive towards diluted as well as concentrated acid. Thus, it can be concluded that over a period of time the material will not leach any toxins.
Way Forward
Some studies show that natural fine aggregate can be reduced to a certain limitation by using the crushed WPCB powder as a replacement with 15 per cent, 20 per cent and 25 per cent by weight. It is found that the strength of the concrete is improved, and powdered non-metallic WPCB can be partially used as fine aggregate replacement.
References: 1. https://www.researchgate.net/publication/272668735_Review_Current_Status_of_Recycling_of_Waste_Printed_Circuit_Boards_in_India
About the author
Sanjeev Shroff is presently heading the Kalol unit of JK Lakshmi Cement Limited. He has a rich and diverse experience across various functions of the cement industry having worked in India and Africa. He is a Mechanical Engineer with a post Graduate Diploma.
Acknowledgment: The primary research work was done by Stuti Banerjee and Vishal Poriya under the guidance of Sanjeev Shroff.

Concrete
The primary high-power applications are fans and mills
Published
2 days agoon
October 10, 2025By
admin
Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how plants can achieve both cost competitiveness and sustainability by lowering emissions, reducing downtime and planning for significant power savings.
As one of the most energy-intensive industries, cement manufacturing faces growing pressure to optimise power consumption, reduce emissions and improve operational reliability. Technology providers like Innomotics India are enabling this transformation by combining advanced motors, AI-driven digital solutions and intelligent monitoring systems that enhance process stability and reduce energy costs. From severe duty motors built for extreme kiln environments to DigiMine AI solutions that optimise pyro and mill operations, Alex Nazareth, Whole-time Director and CEO, Innomotics India, explains how the company is helping cement plants achieve measurable energy savings while moving closer to their sustainability goals.
How does your Energy Performance Contracting model typically reduce power consumption in cement plants—e.g., MWh saved?
Our artificial intelligence-based DigiMine AI Pyro and Mill solutions developed specifically for the cement industry, supports our customers in improving their process stability, productivity and process efficiency. In Pyro, this is achieved by optimising fuel consumption (Coal / AFR), reducing Specific Heat Consumption and reduction in emissions (CO2, SOx and NOx) through continuous monitoring of thermodynamics in pyro and recommending set-points of crucial parameters in advance for maintaining stable operations.
Within the mill, this is achieved by improving throughput, reduce energy / power consumption and maintaining stable operations on a continuous basis. Our ROI-based value proposition captures the project KPIs like reduction of coal usage, increase of AFR, reduction of specific heat consumption (Kcal / Kg), reduction of specific power consumption (KWH / tonne), reduction of emissions, etc., by a specific percentage. This gives clarity to our customers to understand the investment vis-à-vis savings and estimate the recovery time of their investment, which typically is achieved within one year of DigiMine AI Pyro and Mill solutions implementation.
What role do digitalisation and motor monitoring play in overall plant energy optimisation?
Motors are being used extensively in cement production, and their monitoring play crucial role in ensuring continuous operation of applications. The monitoring system can automatically generate alerts for any anomaly / abnormalities in motor parameters, which allows plant team to take corrective actions and avoid any major equipment damage and breakdown. The alerts help maintenance team to plan maintenance schedule and related activity efficiently. Centralised and organised data gives overview to the engineers for day-to-day activities. Cement is amongst the top energy intensive industries in comparison to other industries. Hence, it becomes critically important to optimise efficiency, productivity and up-time of plant equipment. Motor monitoring and digitalisation plays a vital role in it. Monitoring and control of multiple applications and areas
within the plant or multiple plants becomes possible with digitalisation.
Digitalisation adds a layer on top of OT systems, bringing machine and process data onto a single interface. This solves the challenges such as system silo, different communications protocol, databases and most importantly, creates a common definition and measurement to plant KPIs. Relevant stakeholders, such as engineers, head of departments and plant heads, can see accurate information, analyse it and make better decisions with appropriate timing. In doing so, plant teams can take proactive actions before machine breakdown, enable better coordination during maintenance activities while improving operational efficiency and productivity.
Further using latest technologies like Artificial Intelligence can even assist operators in running their plant with minimal requirement of human intervention, which allows operators to utilise their time in focusing on more critical topics like analysing data to identify further improvements in operation.
Which of your high-efficiency IEC low-voltage motors deliver the best energy savings for cement mills or fans?
Innomotics India offers a range of IEC-compliant low-voltage motors engineered to deliver superior performance and energy savings, particularly for applications such as cement mills, large fans, and blowers. Innomotics has the complete range of IE4 motors from 0.37kW to 1000kW to meet the demands of cement industry. The IE5 range is also available for specific requirements.
Can safe area motors operate safely and efficiently in cement kiln environments?
Yes, safe area motors are designed to operate reliably in these environments without the risk of overheating. These motors have ingress protection that prevents dust, moisture ingress and can withstand mechanical stress. These motors are available in IE3 / IE4 efficiency classes thereby ensuring lower energy consumption during continuous operation. These motors comply with relevant Indian as well as international standards.
How do your SD Severe Duty motors contribute to lower emissions and lower cost in heavy duty cement applications?
Severe duty motors enhances energy efficiency and durability in demanding cement applications, directly contributing to lower emissions and operational costs. With high-efficiency ratings (such as IE3 or better), they reduce power consumption, minimising CO2 output from energy use. Their robust design handles extreme heat, dust and vibration—common in cement environments—ensuring reliable performance and fewer energy losses.
These motors also lower the total cost of ownership by reducing downtime, maintenance and replacement frequency. Their extended service life and minimal performance degradation help cement plants meet sustainability targets, comply with emissions regulations and improve overall energy management—all while keeping production consistent and cost-effective.
What pump, fan or compressor drive upgrades have shown approximately 60 per cent energy savings in industrial settings and can be replicated in cement plants?
In the cement industry, the primary high-power applications are fans and mills. Among these, fans have the greatest potential for energy savings. Examples, the pre-heater fan, bag house fan, and cooler fans. When there are variations in airflow or the need to maintain a constant pressure in a process, using a variable speed drive (VSD) system is a more effective option for starting and controlling these fans. This adaptive approach can lead to significant energy savings. For instance, vanes and dampers can remain open while the variable frequency drive and motor system manage airflow regulation efficiently.
Concrete
We conduct regular internal energy audits
Published
2 days agoon
October 10, 2025By
admin
Shaping the future of low-carbon cement production involves integrating renewables, digitalisation and innovative technologies. Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, gives us a detailed account of how.
In an industry where energy consumption can account for a significant portion of operating costs, cement manufacturers are under increasing pressure to adopt sustainable practices without compromising efficiency. Nuvoco Vistas has taken a decisive step in this direction, leveraging digitalisation, renewable energy and innovative technologies to drive energy efficiency across its operations. In this exclusive conversation, Uma Suryam, SVP and Head Manufacturing – Northern Region, Nuvoco Vistas, shares its approach to energy management, challenges of modernising brownfield plants and its long-term roadmap to align efficiency with India’s net-zero vision.
How has your company improved energy efficiency over the past five years?
Over the past five years, we have prioritised energy conservation by enhancing operational efficiency and scaling up renewable energy adoption. Through strategic fuel mix optimisation, deployment of cleaner technologies, and greater integration of renewables, we have steadily reduced our environmental footprint while meeting energy needs sustainably.
Technological upgrades across our plants have further strengthened efficiency. These include advanced process control systems, enhanced trend analysis, grinding media optimisation and the integration of solar-powered utilities. Importantly, grid integration at our key plants has delivered significant cost savings and streamlined energy management.
A notable milestone has been the expansion of our solar power capacity and Waste Heat Recovery Systems (WHRS). Our solar power capacity has grown from 1.5 MW in FY 2021–22 to 5.5 MW, while our WHRS capacity has increased from 44.7 MW to 49 MW, underscoring our commitment to sustainable energy solutions.
What technologies or practices have shown the highest energy-saving potential in cement production?
One of our most significant achievements in advancing energy efficiency has been the successful commissioning of a 132 KV Grid Integration Project, which unified three of our major manufacturing units under a single power network. This milestone, enabled by a dedicated transmission line and a state-of-the-art Line-In Line-Out (LILO) substation, has transformed our energy management and operational capabilities.
With this integration, we have substantially reduced our contract demand, eliminated power disruptions, and enhanced operational continuity. Supported by an optical fibre network for real-time communication and automation, this project stands as a testament to our innovation-led manufacturing excellence and underscores Nuvoco’s vision of building a safer, smarter, and sustainable world.
What role does digitalisation play in achieving energy efficiency in your operations?
Digitalisation plays a transformative role in driving energy efficiency across our operations. At Nuvoco, we are leveraging cutting-edge technologies and advanced digital tools to enhance productivity, optimise energy consumption and strengthen our commitment to sustainability and employee safety.
We are developing AI-enabled dashboards to optimise WHRS and kiln operations, ensuring maximum efficiency. Additionally, our advanced AI models evaluate multiple operational parameters — including fuel pricing, moisture content and energy output — to identify the most cost-effective fuel combinations in real time. These initiatives are enabling data-driven decision-making, improving operational excellence and reducing our environmental footprint.
What is your long-term strategy for aligning energy efficiency with decarbonisation goals?
As part of India’s climate action agenda, the cement sector has laid out a clear decarbonisation roadmap to achieve net-zero CO2 emissions by 2070. At Nuvoco, we view this as both a responsibility and an opportunity to redefine the future of sustainable construction. Our long-term strategy focuses on aligning energy efficiency with decarbonisation goals by embracing innovative technologies, alternative raw materials and renewable energy solutions.
We are making strategic investments to scale up solar power installations and enhance our renewable energy mix significantly by 2028. These initiatives are a key part of our broader vision to reduce Scope 2 emissions and strengthen our contribution to India’s net-zero journey, while continuing to deliver innovative and sustainable solutions to our customers.
How do you measure and benchmark energy performance across different plants?
We adopt a comprehensive approach to measure and benchmark energy performance across our plants. Key metrics include Specific Heat Consumption (kCal/kg of clinker) and Specific Power Consumption (kWh/tonne of cement), which are continuously tracked against Best Available Technology (BAT) benchmarks, industry peers and global standards such as the WBCSD-CSI and CII benchmarks.
To ensure consistency and drive improvements, we conduct regular internal energy audits, leverage real-time dashboards and implement robust KPI tracking systems. These tools enable us to compare performance across plants effectively, identify optimisation opportunities and set actionable targets for energy efficiency and sustainability.
What are the key challenges in adopting energy-efficient equipment in brownfield cement plants?
Adopting energy-efficient technologies in brownfield cement plants presents a unique set of challenges due to the constraints of working within existing infrastructure. Firstly, the high capital expenditure and relatively long payback periods often require careful evaluation before investments are made. Additionally, integrating new technologies with legacy equipment can be complex, requiring significant customisation to ensure seamless compatibility and performance.
Another major challenge is minimising production disruptions during installation. Since brownfield plants are already operational, upgrades must be planned meticulously to avoid affecting output. In many cases, space constraints in older facilities add to the difficulty of accommodating advanced equipment without compromising existing layouts.
At Nuvoco, we address these challenges through a phased implementation approach, detailed project planning and by fostering a culture of innovation and collaboration across our plants. This helps us balance operational continuity with our commitment to driving energy efficiency and sustainability.
Concrete
Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport
The airport is set to become Asia’s largest air connectivity hub.
Published
2 days agoon
October 10, 2025By
admin
Enlight Metals has supplied 3,200 metric tonne of steel for the newly inaugurated Navi Mumbai International Airport, marking a major contribution to one of India’s largest infrastructure projects and reinforcing the company’s commitment to supporting national development.
The Navi Mumbai International Airport, developed under a Public-Private Partnership led by the Adani Group, was inaugurated today by Prime Minister Narendra Modi. The airport is set to become Asia’s largest air connectivity hub, enhancing regional connectivity, boosting economic growth, and expanding trade opportunities. Prime Minister Modi described the project as a “glimpse of Viksit Bharat,” highlighting its transformative impact on infrastructure and development in the region.
“The supply of 3,200 metric tonne of steel for this key project aligns with our focus on supporting critical infrastructure development through reliable and timely metal sourcing. Enlight Metals is committed to enhancing transparency and efficiency in the steel supply chain, contributing to projects integral to India’s growth objectives,” said Vedant Goel, Director, Enlight Metals.
Enlight Metals has implemented technology-driven solutions to strengthen supply chain efficiency, ensuring consistent availability of construction materials for large-scale projects nationwide. Its contribution to the Navi Mumbai International Airport underscores the company’s growing role in supporting India’s infrastructure development initiatives.
This milestone reflects Enlight Metals’ ongoing engagement in delivering quality materials and timely services for major national projects, further cementing its position as a reliable partner in India’s infrastructure sector

The primary high-power applications are fans and mills

We conduct regular internal energy audits

Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport

World of Concrete India 2025 Showcases Global Expertise and Green Solutions

JSW Cement Opens Rs 1 Billion Plant in Odisha

The primary high-power applications are fans and mills

We conduct regular internal energy audits

Enlight Metals Supplies 3,200 Tonne of Steel for Navi Mumbai Airport

World of Concrete India 2025 Showcases Global Expertise and Green Solutions

JSW Cement Opens Rs 1 Billion Plant in Odisha
Trending News
-
Concrete4 weeks ago
Adani’s Strategic Emergence in India’s Cement Landscape
-
Concrete2 weeks ago
Cement Margins Seen Rising 12–18 per cent in FY26
-
Uncategorized1 week ago
Jindal Steel Commissions 5 MTPA Blast Furnace At Angul
-
Uncategorized1 week ago
Nippon Steel Buys 30% Stake In Canada’s Kami Iron Ore Project