Connect with us

Concrete

Turning E-Waste into Green Concrete

Published

on

Shares

Creating green concrete with discarded printed circuit boards or e-waste is a new take on revolutionising recycling in the industry. JK Lakshmi Cement has taken this initiative at its Kalol Grinding Unit and the following is the case study of its successful execution.

Electrical and electronic waste (e-waste) is one of the fastest growing waste streams in the world due to its high rate of obsolescence. Market penetration in developing countries and replacement market in developed countries has resulted in the exponential increase of e-waste volume in the last two decades. Environmental pollution from e-waste is an important issue in this age of electronics. As a key component in almost all electronic equipment, large amounts of Waste Printed Circuit Boards (WPCBs) are generated. Printed Circuit Boards (PCBs) form about 3-6 per cent by weight of the total amount of electronic scrap. In this trial an attempt is made to use powdered non-metallic WPCB in concrete as a 10 per cent replacement of sand and conducted strength analysis at 7 days and 28 days. Results of these experiments show that there is an increase of 22 per cent in the compressive strength.
As per E-Waste Management Rules 2016 and as amended time to time published by Ministry of Environment Forest and Climate Change (MOEF&CC), e-waste means electrical and electronic equipment, whole or in part discarded as a waste by the consumer or bulk consumer as well as reject from manufacturing refurbishment and repair process. Disposal of e-waste is a particular problem faced in many regions across the globe. Most of the e-waste finds its way to the landfill. From this e-waste, a leachate is produced, which is harmful for the aquatic organisms. Acids and sludge obtained from melting computer chips, when disposed on the ground causes a decrease in pH of soil. Burning of e-wastes can emit toxic fumes and gases, thereby polluting the surrounding air. E-waste, when disposed of in sanitary landfills, which are not engineered properly, can be very hazardous because mercury will leach when certain electronic devices, such as circuit breakers are destroyed. PCBs are the electronic boards that are used in a majority of electronic devices including phones, laptops, household appliances and pieces of medical equipment. PCBs are an integral part of any electronic equipment. The growth of e-waste as end-of-life electronic equipment at an exponential rate is producing large quantities of discarded WPCBs. In India, current recycling and processing of WPCBs is managed almost entirely by the informal sector or the unskilled labour (95 per cent)1.
The crude recycling activities cause irreversible health and environmental hazards and the loss of valuable materials due to the poor recovery of base and precious metals. With the disclosures of the recycling being done by unskilled labour, alternative recycling strategies are being sought with the aim of higher recovery of materials in an environment friendly manner.

Need of the Project
The basic requirement of the project is to reduce the natural source of fine aggregate which is used in the concrete products; we know that today the problems faced in the depletion of the fine aggregate cause an admonishing situation in the riverbed areas. So, the research project is paramount to reuse or to utilise the printed circuit board that is all the electronic waste in the crushed powder form as a replacement material for the fine aggregate. In recent years throughout the world there has been increasing concern about the growing volume of end-of-life electronics, especially the WPCBs and the fact that much of its non-metallic portion is consigned to landfill. A large number of non-metallic portions in WPCBs are disposed of by combustion and in landfills as the main method for treating nonmetals from WPCBs, but it may cause secondary pollution and damages the environment. With improper technology for its reuse, recycling and dumping can cause serious threats to human health and the environment. In the present scenario, the major issue of e-waste management is how to manage PCBs waste. No construction activity can be imagined without using concrete. Concrete is the most widely used building material in the construction industry. The main reason behind its popularity is its high strength and durability. Today, the world is advancing too fast, and our environment is changing progressively. Attention is being focused on the environment and safeguarding of natural resources and recycling of wastes materials. One of the new waste materials used in the concrete industry is WPCBs. For solving the disposal of large amount of PCB waste material, reuse of WPCB in concrete industry is considered as the most feasible application.

Lab Test of Concrete Made from E-Waste
In M25 grade of concrete, the cement serves the purpose of binding all the other components together, the coarse and fine aggregate are the load bearing component while coarse and fine sand work as filler material. In this study, a 10 per cent replacement of fine sand is made with powdered non-metallic WPCBs (Waste Printed Circuit Boards) of size less than 1.18 mm. The sample composition taken for this study is as per Table1.
Once this mixture is formed the slump test for the concrete is conducted, as per Indian Standard IS 456:2000 (Reaffirmed in 2021), for which the standard range is 100-180 mm. After this, cubes having of dimension 150mm x 150mm x 150mm are filled with the concrete mixture and left to set. For the above-mentioned quantity, six such concrete cubes are filled, of which three are set for testing at an interval of 7 days and the other three are set aside for compressive strength testing at 28 days. These cubes are then tested for compressive strength using a compression testing machine (CTM) with an acting load of 2000KN.

Findings
For the trial mixture mentioned in Table 1. The slump value obtained was 110mm.The minimum compressive strength for a standard M25 concrete block at 7 days must be 16.25 N/mm2 and at 28 days must be 25N/mm2. The CTM values obtained for this trial mixture are mentioned in Table 2. Thus, it can be said that replacing 10 per cent river sand by crushed WPCB, not only retains the standard strength but also gains 22 per cent strength over regular M25 grade of concrete. Also, by using powdered non-metallic PCBs replacing the fine sand, we can save Rs 350 on every tonne of sand replaced. Also, a study conducted for testing, the reactivity of the material shows that it is non-reactive towards diluted as well as concentrated acid. Thus, it can be concluded that over a period of time the material will not leach any toxins.

Way Forward
Some studies show that natural fine aggregate can be reduced to a certain limitation by using the crushed WPCB powder as a replacement with 15 per cent, 20 per cent and 25 per cent by weight. It is found that the strength of the concrete is improved, and powdered non-metallic WPCB can be partially used as fine aggregate replacement.

References: 1. https://www.researchgate.net/publication/272668735_Review_Current_Status_of_Recycling_of_Waste_Printed_Circuit_Boards_in_India

About the author
Sanjeev Shroff is presently heading the Kalol unit of JK Lakshmi Cement Limited. He has a rich and diverse experience across various functions of the cement industry having worked in India and Africa. He is a Mechanical Engineer with a post Graduate Diploma.

Acknowledgment: The primary research work was done by Stuti Banerjee and Vishal Poriya under the guidance of Sanjeev Shroff.

Concrete

Molecor Renews OCS Europe Certification Across Spanish Plants

Certification reinforces commitment to preventing microplastic pollution

Published

on

By

Shares



Molecor has renewed its OCS Europe certification for another year across all its production facilities in Spain under the Operation Clean Sweep (OCS) voluntary initiative, reaffirming its commitment to sustainability and environmental protection. The renewal underlines the company’s continued focus on preventing the unintentional release of plastic particles during manufacturing, with particular attention to safeguarding marine ecosystems from microplastic pollution.

All Molecor plants in Spain have been compliant with OCS Europe standards for several years, implementing best practices designed to avoid pellet loss and the release of plastic particles during the production of PVC pipes and fittings. The OCS-based management system enables the company to maintain strict operational controls while aligning with evolving regulatory expectations on microplastic prevention.

The renewed certification also positions Molecor ahead of newly published European regulations. The company’s practices are aligned with Regulation (EU) 2025/2365, recently adopted by the European Parliament, which sets out requirements to prevent pellet loss and reduce microplastic pollution across industrial operations.

Extending its sustainability commitment beyond its own operations, Molecor is actively engaging its wider value chain by informing suppliers and customers of its participation in the OCS programme and encouraging responsible microplastic management practices. Through these efforts, the company contributes directly to the United Nations Sustainable Development Goals, particularly SDG 14 ‘Life below water’, reinforcing its role as a responsible industrial manufacturer committed to environmental stewardship and long-term sustainability.

Continue Reading

Concrete

Coforge Launches AI-Led Data Cosmos Analytics Platform

New cloud-native platform targets enterprise data modernisation and GenAI adoption

Published

on

By

Shares



Coforge Limited has recently announced the launch of Coforge Data Cosmos, an AI-enabled, cloud-native data engineering and advanced analytics platform aimed at helping enterprises convert fragmented data environments into intelligent, high-performance data ecosystems. The platform strengthens Coforge’s technology stack by introducing a foundational innovation layer that supports cloud-native, domain-specific solutions built on reusable blueprints, proprietary IP, accelerators, agentic components and industry-aligned capabilities.

Data Cosmos is designed to address persistent enterprise challenges such as data fragmentation, legacy modernisation, high operational costs, limited self-service analytics, lack of unified governance and the complexity of GenAI adoption. The platform is structured around five technology portfolios—Supernova, Nebula, Hypernova, Pulsar and Quasar—covering the full data transformation lifecycle, from legacy-to-cloud migration and governance to cloud-native data platforms, autonomous DataOps and scaled GenAI orchestration.

To accelerate speed-to-value, Coforge has introduced the Data Cosmos Toolkit, comprising over 55 IPs and accelerators and 38 AI agents powered by the Data Cosmos Engine. The platform also enables Galaxy solutions, which combine industry-specific data models with the core technology stack to deliver tailored solutions across sectors including BFS, insurance, travel, transportation and hospitality, healthcare, public sector and retail.

“With Data Cosmos, we are setting a new benchmark for how enterprises convert data complexity into competitive advantage,” said Deepak Manjarekar, Global Head – Data HBU, Coforge. “Our objective is to provide clients with a fast, adaptive and AI-ready data foundation from day one.”

Supported by a strong ecosystem of cloud and technology partners, Data Cosmos operates across multi-cloud and hybrid environments and is already being deployed in large-scale transformation programmes for global clients.

Continue Reading

Concrete

India, Sweden Launch Seven Low-Carbon Steel, Cement Projects

Joint studies to cut industrial emissions under LeadIT

Published

on

By

Shares



India and Sweden have announced seven joint projects aimed at reducing carbon emissions in the steel and cement sectors, with funding support from India’s Department of Science and Technology and the Swedish Energy Agency.

The initiatives, launched under the LeadIT Industry Transition Partnership, bring together major Indian companies including Tata Steel, JK Cement, Ambuja Cements, Jindal Steel and Power, and Prism Johnson, alongside Swedish technology firms such as Cemvision, Kanthal and Swerim. Leading Indian academic institutions, including IIT Bombay, IIT-ISM Dhanbad, IIT Bhubaneswar and IIT Hyderabad, are also participating.

The projects will undertake pre-pilot feasibility studies on a range of low-carbon technologies. These include the use of hydrogen in steel rotary kilns, recycling steel slag for green cement production, and applying artificial intelligence to optimise concrete mix designs. Other studies will explore converting blast furnace carbon dioxide into carbon monoxide for reuse and assessing electric heating solutions for steelmaking.

India’s steel sector currently accounts for about 10–12 per cent of the country’s carbon emissions, while cement contributes nearly 6 per cent. Globally, heavy industry is responsible for roughly one-quarter of greenhouse gas emissions and consumes around one-third of total energy.

The collaboration aims to develop scalable, low-carbon industrial technologies that can support India’s net-zero emissions target by 2070. As part of the programme, Tata Steel and Cemvision will examine methods to convert steel slag into construction materials, creating a circular value chain for industrial byproducts.

Continue Reading

Trending News