Connect with us

Concrete

Exploring New Secondary Cementitious Materials

Published

on

Shares

Dr S B Hegde, Visiting Professor, Pennsylvania State University, United States of America, discusses innovations in supplementary cementitious materials in the face of the challenges faced by cement manufacturers to become more sustainable.

Due to rapidly expanding urbanisation, environmental sustainability in the construction industry is facing serious challenges. To put it into perspective, concrete preparation requires a significant quantity of nat ural reserves worldwide and necessitates the development of alternative materials and sources. The manufacturing of concrete needs around 27 billion tonnes of raw material inventory, representing 4 tonnes of concrete per person per year!
By 2050, concrete production will be four times higher than in 1990. Aggregates and cement represent around 60 per cent to 80 per cent and 10 per cent to 15 per cent of the total weight of concrete, respectively.
Along with processing a substantial quantity of aggregates and around 3.5 billion tonnes of cement per year, concrete generates approximately 5 per cent to 7 per cent of the global total carbon dioxide emissions.
By 2025, around 4 billion tonnes of carbon dioxide (approximately) are estimated to be released to the atmosphere during cement production. The possible solution for more sustainable production could be to explore and develop SOPs for utilising the locally available waste materials or recyclable materials. The abundance of these materials and their different chemistries and physics compel the development of a common strategy for their application in concrete production.
Numerous industrial solid by-products containing calcareous siliceous, and aluminium materials (fly ash, ultrafine fly ash, silica fume, etc.), along with some natural pozzolanic materials (volcanic tuffs, diatomaceous earth, sugarcane bagasse ash, palm oil fuel ash, rice husk ash, mine tailings, etc.) can be used as SCM.
Sewage sludge ash (SSA) is an urban waste that may be used as fertiliser, as well as a cement substitute. SSA was not only considered as SCM in blended cements but also in a large scale of building materials like pave-stones, tiles, bricks, light aggregates production.
Marble dust, too, could be explored as one of the SCM. Marble is a finely crystallised metamorphic rock originating from the low-intensity metamorphism of calcareous and dolomitic rocks. Calcium carbonate (CaCO3) can form up to 99 per cent of the total amount of this carbonated rock. Additional phases may also include SiO2, MgO, Fe2O3, Al2O3 and Na2O and, in minor ratio, MnO, K2O, P2O5, F, Cu, S, Pb and Zn.
Construction and demolition debris (CDD) constitute one of the massive flows of solid waste generated from municipal and commercial activities of the modern era. Usually, CDD are in the shape of brick bats, mortars, aggregates, concrete, glass, ceramic tiles, metals and even plastics. The review of these new SCM for life cycle is very much imperative and will mention whether it will be environmentally feasible to apply the SCM for the life cycle of concrete.

Supplementary Cementitious Materials
Supplementary Cementitious Materials (SCM) play a significant role in performance of concrete specially to impart additional durability potential. They encompass a wide spectrum of aluminum-siliceous materials, including natural or processed pozzolans and industrial by-products like ground granulated blast furnace slag (GGBS), fly ash (FA), ultra-fine fly ash (UFFA) and silica fume (SF). Though there is higher fluctuation both in properties and chemistry across the various types of SCM, they share in common capacity to react chemically in concrete and form cementitious binders replacing those obtained by OPC hydration. The key feature of SCM is their pozzolanicity, i.e., their capability to react with calcium hydroxide (portlandite, CH) aqueous solutions to form calcium silicate hydrate (C–S–H).
In the right proportion, SCM can improve the fresh and hardened properties of concrete, especially the long-term durability.
Rice Husk Ash (RHA): An agricultural by-product that is suitable for cement replacement in rice-growing regions is Rice Husk Ash. Various research investigations have demonstrated that the principal chemical composition of rice husk ash consists of biomass-driven silicon dioxide (SiO2) as a result that the nature of silica in rice husk ash is sensitive to processing conditions. The ash obtained through open-field burning or uncontrolled combustion in furnaces generally includes a high percentage of crystalline silica minerals, like tridymite or cristobalite, with inferior reactivity. The highest amount of amorphous silica is obtained when RHA is burnt at temperatures ranging from 500°C to 700°C. The superior reactivity of RHA is due to its large amount of amorphous silica, which has high surface area due to the porous architecture of the host material. RHA can be used as a substitute in Portland cement (acceptable up to 15 per cent), thanks to its pozzolanic activity. Fine RHA can increase the compressive strength of cement paste and can lead to preparation of mortars with low porosity.
As a cement substitute, the usage of RHA in concrete production has advantages and disadvantages. Improved compressive strength of concrete is one of the essential advantages of using RHA as a substitute. Recent studies have highlighted important benefits of replacing cement with RHA in small percentages. In the context of durability, the use of RHA as a substitute in concrete production can lead to notable improved water permeability resistance, Cl penetration and sulphate deterioration.
Sugar cane bagasse: Sugarcane bagasse ash (SBA) is a by-product of producing juice from sugar cane by crushing the stalks of the plants. The addition of SBA in concrete production can decrease the hydration temperature up to 33 per cent, when 30 per cent of OPC is substituted by SBA. Also, water permeability considerably decreases when compared to control concrete samples. With the aim of superior compressive strength, OPC was substituted in the range from 15 per cent to 30 per cent. SBA incorporation has improved concrete durability.
Other wastes: Wastes of different sources have been investigated for their possibility in re-use, to reduce their environmental impact, in landfill volume and decomposition by-products. Sewage sludge ash (SSA) is an urban waste that may be used as fertiliser, as well as a cement substitute. SSA was not only considered as SCM in blended cements but also in a large scale of building materials like pave-stones, tiles, bricks, light aggregates production. The impact of SSA in mortar was a decrease in the compressive strength, when SSA was used as a partial cement substitute. Therefore, use of SSA as an SCM was shown to be limited, in the construction industry. The cement community does not include SSA in the group of pozzolanic materials.
Palm oil fuel ash (POFA): Palm oil is an important cash-crop in tropical countries, especially in Malaysia and Indonesia. For every 100 t of fresh fruit bunches handled, there will be about 20t of nut shells, 7t of fibres and 25t of empty bunches released from the mills. POFA can be used in concrete either as aggregates, SCM or as filler material. Comparable to RHA and SBA, the amorphous SiO2 (around 76 per cent) content of POFA offers relatively high pozzolanic activity, when used as binder in concrete production. Even though a few performance parameters of concrete (especially setting time and strength) are negatively influenced by POFA, several studies claimed that palm oil fuel ash may be appropriate in different applications.
Mining wastes: The quantity of mine wastes has increased hugely due to increasing demand for metal and mineral resources. Mining wastes are produced during mineral extraction by the mining industry and is at present one of the largest waste available worldwide.
At present, they are being used mainly as backfilling both in open cast mines and underground areas. They pose potential long-term risks for environmental pollution. However, use of tailings is not only relevant to environmental conservation, but can also benefit the mining industry. These solid wastes contain compounds with potential pozzolanic properties and can decrease the amount of cement used to produce concrete, reducing simultaneously the ecological impact of the cement and mining industries. An additional benefit of mine tailings is that they are already finely ground. Most of the other SCM require mechanical grinding, as a pre-treatment for use, to improve their reactivity.
Marble powder: Marble is a finely crystallised metamorphic rock of calcareous and dolomitic rocks. Calcium carbonate (CaCO3) can form up to 99 per cent of the total amount of this carbonated rock. Additional phases may also include SiO2, MgO, Fe2O3, Al2O3 and Na2O and, in minor ratio, MnO, K2O, P2O5, F, Cu, S, Pb and Zn.
Through the shaping, sawing and polishing operations, around 20 per cent to 25 per cent of processed marble is converted into powder or lumps. As a result, dumps of marble dust have become an important environmental issue worldwide. Marble powder (MP) has successfully been demonstrated as a viable SCM in self-compacting concrete (SCC). The research proved that marble powder used as a mineral substitute of cement can enhance some properties of fresh concrete and/or hardened concrete.
In the cement-related literature, there are just a few research studies related to the application of marble powder in concrete or mortar production. Thus, more detailed studies are needed in order to define the properties of concrete or mortars with marble powder. The use of marble powder in ternary cementitious blends demands further caution to remove or reduce its adverse effects on the fresh properties of self-compacting concrete and/or mortar.
Construction and demolition debris (CDD): CDD constitute huge solid waste generated from municipal and commercial activities of modern urban styles. Usually, CDD are in the shape of brick bats, mortars, aggregates, concrete, glass, ceramic tiles, metals and even plastics. They must be mechanically sorted according to size and quality level. They are then crushed down to desired size.
There is a need to study the ‘life cycle’ of construction materials to develop a global understanding of sustainable building construction and the feasible use of CDD as SCM for OPC replacement materials.
The materials like low grade/marginal grade limestone, red mud, bio wastes including vegetative wastes calcined under controlled conditions are some examples of potential SCM in future.

Conclusion
Concrete is one of the most widely used materials after water worldwide by volume. Portland cement production is highly energy intensive, and emits significant amounts of CO2 through the calcination process, which contributes substantial adverse impact on global warming. Efforts are needed to produce more ecologically friendly concrete with improved performance and durability.
The conventional SCM are not enough considering the quantity of concrete requirement for infra development world wide and to mitigate global warming issue; there is a pressing need to explore the new SCM, its characterisation, performance evaluation, standardisation and adoption.
However, it is clear that more research is needed to assess the feasibility of long-term performance and to develop a more ecologically sound production SOPs, in addition to quality assessment of these materials.
It is envisaged that introducing new cementitious materials in cement and concrete manufacturing is a time consuming process. Not only from the viewpoints of plants but from standards or codes issuing bodies like Bureau of Indian Standards (BIS) in India, ASTM, EN Standard organisations plus local nodal agencies of the particular countries. Many researches have been done in Universities, and other R&D institutions but issuing relevant codes (specifications) by these organisations for commercial usage is utmost important.

About the author:

DrS B Hegde is a Winner of Global Visionary Award for notable contribution to Cement and currently Visiting Professor, Pennsylvania State University, United States of America. Dr Hegde has more than 30 years of experience in the cement industry both in India and abroad.

References

  1. Madani H., Norouzifar M.N., Rostami J. The synergistic effect of pumice and silica fume on the durability and mechanical characteristics of eco-friendly concrete. Constr. Build Mater. 2018;174:356–368. doi: 10.1016/j.conbuildmat.2018.04.070. 
  2. Alnahhal M.F., Alengaram U.J., Jumaat M.Z., Alqedra M.A., Mo K.H., Sumesh M. Evaluation of Industrial By-Products as Sustainable Pozzolanic Materials in Recycled Aggregate Concrete. Sustainability. 2017;9:767. doi: 10.3390/su9050767. 
  3. Nili M., Sasanipour H., Aslani F. The Effect of Fine and Coarse Recycled Aggregates on Fresh and Mechanical Properties of Self-Compacting Concrete. Materials. 2019;12:1120. doi: 10.3390/ma12071120.
  4. Sagoe-Crentsil K.K., Brown T., Taylor A.H. Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cem. Concr. Res. 2001;31:707–712. doi: 10.1016/S0008-8846(00)00476-2.
  5. Limbachiya M.C., Leelawat T., Dhir R.K. Use of recycled concrete aggregate in high-strength concrete. Mater. Struct. 2000;33:574. doi: 10.1007/BF02480538. 
  6. Gómez-Soberón J.M.V. Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study. Cem. Concr. Res. 2002;32:1301–1311. doi: 10.1016/S0008-8846(02)00795-0. 
  7. Berndt M.L. Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Constr. Build. Mater. 2009;23:2606–2613. doi: 10.1016/j.conbuildmat.2009.02.011.
  8. Rakhimova N.R., Rakhimov R.Z. Toward clean cement technologies: A review on alkali-activated fly-ash cements incorporated with supplementary materials. J. Non Cryst. Sol. 2019;509:31–41. doi: 10.1016/j.jnoncrysol.2019.01.025. 
  9. Talsania S., Pitroda J., Vyas C.M. Effect of rice husk ash on properties of pervious concrete. Int. J. Adv. Eng. Res. Studies/IV/II/Jan.-March. 2015;296:299. 
  10. Xu W., Lo T.Y., Wang W., Ouyang D., Wang P., Xing F. Pozzolanic Reactivity of Silica Fume and Ground Rice Husk Ash as Reactive Silica in a Cementitious System: A Comparative Study. Materials. 2016;9:146. doi: 10.3390/ma9030146. 
  11. Rorat A., Courtois P., Vandenbulcke F., Lemiere S. 8 – Sanitary and environmental aspects of sewage sludge management. In: Prasad M.N.V., de Campos Favas P.J., Vithanage M., Mohan S.V., editors. Industrial and Municipal Sludge. Butterworth-Heinemann; Oxford, UK: 2019. pp. 155–180
  12. Güneyisi E., Gesoğlu M., Özbay E. Effects of marble powder and slag on the properties of self compacting mortars. Mater. Struct. 2009;42:813–826. doi: 10.1617/s11527-008-9426-2. 
  13. Aydin E., Arel H.Ş. High-volume marble substitution in cement-paste: Towards a better sustainability. J. Clean. Prod. 2019;237:117801. doi: 10.1016/j.jclepro.2019.117801. 
  14. Belaidi A.S.E., Azzouz L., Kadri E., Kenai S. Effect of natural pozzolana and marble powder on the properties of self-compacting concrete. Constr. Build. Mater. 2012;31:251–257. doi: 10.1016/j.conbuildmat.2011.12.109. 
  15. Prabhu K.R., Yaragal S.C., Venkataramana K. In Persuit of Alternative Ingredients to Cement Concrete Construction. Int. J. Res. Eng. Technol. 2013;02:404–410. 
  16. Aprianti S E. A huge number of artificial waste materials can be supplementary cementitious material (SCM) for concrete production—A review part II. J. Clean. Prod. 2017;142:4178–4194. doi: 10.1016/j.jclepro.2015.12.115. 
  17. Van den Heede P., De Belie N. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: Literature review and theoretical calculations. Cem. Concr. Compos. 2012;34:431–442. doi: 10.1016/j.cemconcomp.2012.01.004. 

By 2050, concrete production will be four times higher than in 1990. Aggregates and cement represent around 60 per cent to 80 per cent and 10 per cent to 15 per cent of the total weight of concrete, respectively.

Concrete

FORNNAX Appoints Dieter Jerschl as Sales Partner for Central Europe

Published

on

By

Shares



FORNNAX TECHNOLOGY has appointed industry veteran Dieter Jerschl as its new sales partner in Germany to strengthen its presence across Central Europe. The partnership aims to accelerate the adoption of FORNNAX’s high-capacity, sustainable recycling solutions while building long-term regional capabilities.

FORNNAX TECHNOLOGY, one of the leading advanced recycling equipment manufacturers, has announced the appointment of a new sales partner in Germany as part of its strategic expansion into Central Europe. The company has entered into a collaborative agreement with Mr. Dieter Jerschl, a seasoned industry professional with over 20 years of experience in the shredding and recycling sector, to represent and promote FORNNAX’s solutions across key European markets.

Mr. Jerschl brings extensive expertise from his work with renowned companies such as BHS, Eldan, Vecoplan, and others. Over the course of his career, he has successfully led the deployment of both single machines and complete turnkey installations for a wide range of applications, including tyre recycling, cable recycling, municipal solid waste, e-waste, and industrial waste processing.

Speaking about the partnership, Mr. Jerschl said,
“I’ve known FORNNAX for over a decade and have followed their growth closely. What attracted me to this collaboration is their state-of-the-art & high-capacity technology, it is powerful, sustainable, and economically viable. There is great potential to introduce FORNNAX’s innovative systems to more markets across Europe, and I am excited to be part of that journey.”

The partnership will primarily focus on Central Europe, including Germany, Austria, and neighbouring countries, with the flexibility to extend the geographical scope based on project requirements and mutual agreement. The collaboration is structured to evolve over time, with performance-driven expansion and ongoing strategic discussions with FORNNAX’s management. The immediate priority is to build a strong project pipeline and enhance FORNNAX’s brand presence across the region.

FORNNAX’s portfolio of high-performance shredding and pre-processing solutions is well aligned with Europe’s growing demand for sustainable and efficient waste treatment technologies. By partnering with Mr. Jerschl—who brings deep market insight and established industry relationships—FORNNAX aims to accelerate adoption of its solutions and participate in upcoming recycling projects across the region.

As part of the partnership, Mr. Jerschl will also deliver value-added services, including equipment installation, maintenance, and spare parts support through a dedicated technical team. This local service capability is expected to ensure faster project execution, minimise downtime, and enhance overall customer experience.

Commenting on the long-term vision, Mr. Jerschl added,
“We are committed to increasing market awareness and establishing new reference projects across the region. My goal is not only to generate business but to lay the foundation for long-term growth. Ideally, we aim to establish a dedicated FORNNAX legal entity or operational site in Germany over the next five to ten years.”

For FORNNAX, this partnership aligns closely with its global strategy of expanding into key markets through strong regional representation. The company believes that local partnerships are critical for navigating complex market dynamics and delivering solutions tailored to region-specific waste management challenges.

“We see tremendous potential in the Central European market,” said Mr. Jignesh Kundaria, Director and CEO of FORNNAX.
“Partnering with someone as experienced and well-established as Mr. Jerschl gives us a strong foothold and allows us to better serve our customers. This marks a major milestone in our efforts to promote reliable, efficient and future-ready recycling solutions globally,” he added.

This collaboration further strengthens FORNNAX’s commitment to environmental stewardship, innovation, and sustainable waste management, supporting the transition toward a greener and more circular future.

 

Continue Reading

Concrete

Budget 2026–27 infra thrust and CCUS outlay to lift cement sector outlook

Published

on

By

Shares



Higher capex, city-led growth and CCUS funding improve demand visibility and decarbonisation prospects for cement

Mumbai

Cement manufacturers have welcomed the Union Budget 2026–27’s strong infrastructure thrust, with public capital expenditure increased to Rs 12.2 trillion, saying it reinforces infrastructure as the central engine of economic growth and strengthens medium-term prospects for the cement sector. In a statement, the Cement Manufacturers’ Association (CMA) has welcomed the Union budget 2026-27 for reinforcing the ambitions for the nation’s growth balancing the aspirations of the people through inclusivity inspired by the vision of Narendra Modi, Prime Minister of India, for a Viksit Bharat by 2047 and Atmanirbharta.

The budget underscores India’s steady economic trajectory over the past 12 years, marked by fiscal discipline, sustained growth and moderate inflation, and offers strong demand visibility for infrastructure linked sectors such as cement.

The Budget’s strong infrastructure push, with public capital expenditure rising from Rs 11.2 trillion in fiscal year 2025–26 to Rs 12.2 trillion in fiscal year 2026–27, recognises infrastructure as the primary anchor for economic growth creating positive prospects for the Indian cement industry and improving long term visibility for the cement sector. The emphasis on Tier 2 and Tier 3 cities with populations above 5 lakh and the creation of City Economic Regions (CERs) with an allocation of Rs 50 billion per CER over five years, should accelerate construction activity across housing, transport and urban services, supporting broad based cement consumption.

Logistics and connectivity measures announced in the budget are particularly significant for the cement industry. The announcement of new dedicated freight corridors, the operationalisation of 20 additional National Waterways over the next five years, the launch of the Coastal Cargo Promotion Scheme to raise the modal share of waterways and coastal shipping from 6 per cent to 12 per cent by 2047, and the development of ship repair ecosystems should enhance multimodal freight efficiency, reduce logistics costs and improve the sector’s carbon footprint. The announcement of seven high speed rail corridors as growth corridors can be expected to further stimulate regional development and construction demand.

Commenting on the budget, Parth Jindal, President, Cement Manufacturers’ Association (CMA), said, “As India advances towards a Viksit Bharat, the three kartavya articulated in the Union Budget provide a clear context for the Nation’s growth and aspirations, combining economic momentum with capacity building and inclusive progress. The Cement Manufacturers’ Association (CMA) appreciates the Union Budget 2026-27 for the continued emphasis on manufacturing competitiveness, urban development and infrastructure modernisation, supported by over 350 reforms spanning GST simplification, labour codes, quality control rationalisation and coordinated deregulation with States. These reforms, alongside the Budget’s focus on Youth Power and domestic manufacturing capacity under Atmanirbharta, stand to strengthen the investment environment for capital intensive sectors such as Cement. The Union Budget 2026-27 reflects the Government’s focus on infrastructure led development emerging as a structural pillar of India’s growth strategy.”

He added, “The Rs 200 billion CCUS outlay for various sectors, including Cement, fundamentally alters the decarbonisation landscape for India’s emissions intensive industries. CCUS is a significant enabler for large scale decarbonisation of industries such as Cement and this intervention directly addresses the technology and cost requirements of the Cement sector in context. The Cement Industry, fully aligned with the Government of India’s Net Zero commitment by 2070, views this support as critical to enabling the adoption and scale up of CCUS technologies while continuing to meet the Country’s long term infrastructure needs.”

Dr Raghavpat Singhania, Vice President, CMA, said, “The government’s sustained infrastructure push supports employment, regional development and stronger local supply chains. Cement manufacturing clusters act as economic anchors across regions, generating livelihoods in construction, logistics and allied sectors. The budget’s focus on inclusive growth, execution and system level enablers creates a supportive environment for responsible and efficient expansion offering opportunities for economic growth and lending momentum to the cement sector. The increase in public capex to Rs 12.2 trillion, the focus on Tier 2 and Tier 3 cities, and the creation of City Economic Regions stand to strengthen the growth of the cement sector. We welcome the budget’s emphasis on tourism, cultural and social infrastructure, which should broaden construction activity across regions. Investments in tourism facilities, heritage and Buddhist circuits, regional connectivity in Purvodaya and North Eastern States, and the strengthening of emergency and trauma care infrastructure in district hospitals reinforce the cement sector’s role in enabling inclusive growth.”

CMA also noted the Government’s continued commitment to fiscal discipline, with the fiscal deficit estimated at 4.3 per cent of GDP in FY27, reinforcing macroeconomic stability and investor confidence.

Continue Reading

Concrete

Steel: Shielded or Strengthened?

CW explores the impact of pro-steel policies on construction and infrastructure and identifies gaps that need to be addressed.

Published

on

By

Shares



Going forward, domestic steel mills are targeting capacity expansion
of nearly 40 per cent through till FY31, adding 80-85 mt, translating
into an investment pipeline of $ 45-50 billion. So, Jhunjhunwala points
out that continuing the safeguard duty will be vital to prevent a surge
in imports and protect domestic prices from external shocks. While in
FY26, the industry operating profit per tonne is expected to hold at
around $ 108, similar to last year, the industry’s earnings must
meaningfully improve from hereon to sustain large-scale investments.
Else, domestic mills could experience a significant spike in industry
leverage levels over the medium term, increasing their vulnerability to
external macroeconomic shocks.(~$ 60/tonne) over the past one month,
compressing the import parity discount to ~$ 23-25/tonne from previous
highs of ~$ 70-90/tonne, adds Jhunjhunwala. With this, he says, “the
industry can expect high resistance to further steel price increases.”

Domestic HRC prices have increased by ~Rs 5,000/tonne
“Aggressive
capacity additions (~15 mt commissioned in FY25, with 5 mt more by
FY26) have created a supply overhang, temporarily outpacing demand
growth of ~11-12 mt,” he says…

To read the full article Click Here

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds