Connect with us

Concrete

Exploring New Secondary Cementitious Materials

Published

on

Shares

Dr S B Hegde, Visiting Professor, Pennsylvania State University, United States of America, discusses innovations in supplementary cementitious materials in the face of the challenges faced by cement manufacturers to become more sustainable.

Due to rapidly expanding urbanisation, environmental sustainability in the construction industry is facing serious challenges. To put it into perspective, concrete preparation requires a significant quantity of nat ural reserves worldwide and necessitates the development of alternative materials and sources. The manufacturing of concrete needs around 27 billion tonnes of raw material inventory, representing 4 tonnes of concrete per person per year!
By 2050, concrete production will be four times higher than in 1990. Aggregates and cement represent around 60 per cent to 80 per cent and 10 per cent to 15 per cent of the total weight of concrete, respectively.
Along with processing a substantial quantity of aggregates and around 3.5 billion tonnes of cement per year, concrete generates approximately 5 per cent to 7 per cent of the global total carbon dioxide emissions.
By 2025, around 4 billion tonnes of carbon dioxide (approximately) are estimated to be released to the atmosphere during cement production. The possible solution for more sustainable production could be to explore and develop SOPs for utilising the locally available waste materials or recyclable materials. The abundance of these materials and their different chemistries and physics compel the development of a common strategy for their application in concrete production.
Numerous industrial solid by-products containing calcareous siliceous, and aluminium materials (fly ash, ultrafine fly ash, silica fume, etc.), along with some natural pozzolanic materials (volcanic tuffs, diatomaceous earth, sugarcane bagasse ash, palm oil fuel ash, rice husk ash, mine tailings, etc.) can be used as SCM.
Sewage sludge ash (SSA) is an urban waste that may be used as fertiliser, as well as a cement substitute. SSA was not only considered as SCM in blended cements but also in a large scale of building materials like pave-stones, tiles, bricks, light aggregates production.
Marble dust, too, could be explored as one of the SCM. Marble is a finely crystallised metamorphic rock originating from the low-intensity metamorphism of calcareous and dolomitic rocks. Calcium carbonate (CaCO3) can form up to 99 per cent of the total amount of this carbonated rock. Additional phases may also include SiO2, MgO, Fe2O3, Al2O3 and Na2O and, in minor ratio, MnO, K2O, P2O5, F, Cu, S, Pb and Zn.
Construction and demolition debris (CDD) constitute one of the massive flows of solid waste generated from municipal and commercial activities of the modern era. Usually, CDD are in the shape of brick bats, mortars, aggregates, concrete, glass, ceramic tiles, metals and even plastics. The review of these new SCM for life cycle is very much imperative and will mention whether it will be environmentally feasible to apply the SCM for the life cycle of concrete.

Supplementary Cementitious Materials
Supplementary Cementitious Materials (SCM) play a significant role in performance of concrete specially to impart additional durability potential. They encompass a wide spectrum of aluminum-siliceous materials, including natural or processed pozzolans and industrial by-products like ground granulated blast furnace slag (GGBS), fly ash (FA), ultra-fine fly ash (UFFA) and silica fume (SF). Though there is higher fluctuation both in properties and chemistry across the various types of SCM, they share in common capacity to react chemically in concrete and form cementitious binders replacing those obtained by OPC hydration. The key feature of SCM is their pozzolanicity, i.e., their capability to react with calcium hydroxide (portlandite, CH) aqueous solutions to form calcium silicate hydrate (C–S–H).
In the right proportion, SCM can improve the fresh and hardened properties of concrete, especially the long-term durability.
Rice Husk Ash (RHA): An agricultural by-product that is suitable for cement replacement in rice-growing regions is Rice Husk Ash. Various research investigations have demonstrated that the principal chemical composition of rice husk ash consists of biomass-driven silicon dioxide (SiO2) as a result that the nature of silica in rice husk ash is sensitive to processing conditions. The ash obtained through open-field burning or uncontrolled combustion in furnaces generally includes a high percentage of crystalline silica minerals, like tridymite or cristobalite, with inferior reactivity. The highest amount of amorphous silica is obtained when RHA is burnt at temperatures ranging from 500°C to 700°C. The superior reactivity of RHA is due to its large amount of amorphous silica, which has high surface area due to the porous architecture of the host material. RHA can be used as a substitute in Portland cement (acceptable up to 15 per cent), thanks to its pozzolanic activity. Fine RHA can increase the compressive strength of cement paste and can lead to preparation of mortars with low porosity.
As a cement substitute, the usage of RHA in concrete production has advantages and disadvantages. Improved compressive strength of concrete is one of the essential advantages of using RHA as a substitute. Recent studies have highlighted important benefits of replacing cement with RHA in small percentages. In the context of durability, the use of RHA as a substitute in concrete production can lead to notable improved water permeability resistance, Cl penetration and sulphate deterioration.
Sugar cane bagasse: Sugarcane bagasse ash (SBA) is a by-product of producing juice from sugar cane by crushing the stalks of the plants. The addition of SBA in concrete production can decrease the hydration temperature up to 33 per cent, when 30 per cent of OPC is substituted by SBA. Also, water permeability considerably decreases when compared to control concrete samples. With the aim of superior compressive strength, OPC was substituted in the range from 15 per cent to 30 per cent. SBA incorporation has improved concrete durability.
Other wastes: Wastes of different sources have been investigated for their possibility in re-use, to reduce their environmental impact, in landfill volume and decomposition by-products. Sewage sludge ash (SSA) is an urban waste that may be used as fertiliser, as well as a cement substitute. SSA was not only considered as SCM in blended cements but also in a large scale of building materials like pave-stones, tiles, bricks, light aggregates production. The impact of SSA in mortar was a decrease in the compressive strength, when SSA was used as a partial cement substitute. Therefore, use of SSA as an SCM was shown to be limited, in the construction industry. The cement community does not include SSA in the group of pozzolanic materials.
Palm oil fuel ash (POFA): Palm oil is an important cash-crop in tropical countries, especially in Malaysia and Indonesia. For every 100 t of fresh fruit bunches handled, there will be about 20t of nut shells, 7t of fibres and 25t of empty bunches released from the mills. POFA can be used in concrete either as aggregates, SCM or as filler material. Comparable to RHA and SBA, the amorphous SiO2 (around 76 per cent) content of POFA offers relatively high pozzolanic activity, when used as binder in concrete production. Even though a few performance parameters of concrete (especially setting time and strength) are negatively influenced by POFA, several studies claimed that palm oil fuel ash may be appropriate in different applications.
Mining wastes: The quantity of mine wastes has increased hugely due to increasing demand for metal and mineral resources. Mining wastes are produced during mineral extraction by the mining industry and is at present one of the largest waste available worldwide.
At present, they are being used mainly as backfilling both in open cast mines and underground areas. They pose potential long-term risks for environmental pollution. However, use of tailings is not only relevant to environmental conservation, but can also benefit the mining industry. These solid wastes contain compounds with potential pozzolanic properties and can decrease the amount of cement used to produce concrete, reducing simultaneously the ecological impact of the cement and mining industries. An additional benefit of mine tailings is that they are already finely ground. Most of the other SCM require mechanical grinding, as a pre-treatment for use, to improve their reactivity.
Marble powder: Marble is a finely crystallised metamorphic rock of calcareous and dolomitic rocks. Calcium carbonate (CaCO3) can form up to 99 per cent of the total amount of this carbonated rock. Additional phases may also include SiO2, MgO, Fe2O3, Al2O3 and Na2O and, in minor ratio, MnO, K2O, P2O5, F, Cu, S, Pb and Zn.
Through the shaping, sawing and polishing operations, around 20 per cent to 25 per cent of processed marble is converted into powder or lumps. As a result, dumps of marble dust have become an important environmental issue worldwide. Marble powder (MP) has successfully been demonstrated as a viable SCM in self-compacting concrete (SCC). The research proved that marble powder used as a mineral substitute of cement can enhance some properties of fresh concrete and/or hardened concrete.
In the cement-related literature, there are just a few research studies related to the application of marble powder in concrete or mortar production. Thus, more detailed studies are needed in order to define the properties of concrete or mortars with marble powder. The use of marble powder in ternary cementitious blends demands further caution to remove or reduce its adverse effects on the fresh properties of self-compacting concrete and/or mortar.
Construction and demolition debris (CDD): CDD constitute huge solid waste generated from municipal and commercial activities of modern urban styles. Usually, CDD are in the shape of brick bats, mortars, aggregates, concrete, glass, ceramic tiles, metals and even plastics. They must be mechanically sorted according to size and quality level. They are then crushed down to desired size.
There is a need to study the ‘life cycle’ of construction materials to develop a global understanding of sustainable building construction and the feasible use of CDD as SCM for OPC replacement materials.
The materials like low grade/marginal grade limestone, red mud, bio wastes including vegetative wastes calcined under controlled conditions are some examples of potential SCM in future.

Conclusion
Concrete is one of the most widely used materials after water worldwide by volume. Portland cement production is highly energy intensive, and emits significant amounts of CO2 through the calcination process, which contributes substantial adverse impact on global warming. Efforts are needed to produce more ecologically friendly concrete with improved performance and durability.
The conventional SCM are not enough considering the quantity of concrete requirement for infra development world wide and to mitigate global warming issue; there is a pressing need to explore the new SCM, its characterisation, performance evaluation, standardisation and adoption.
However, it is clear that more research is needed to assess the feasibility of long-term performance and to develop a more ecologically sound production SOPs, in addition to quality assessment of these materials.
It is envisaged that introducing new cementitious materials in cement and concrete manufacturing is a time consuming process. Not only from the viewpoints of plants but from standards or codes issuing bodies like Bureau of Indian Standards (BIS) in India, ASTM, EN Standard organisations plus local nodal agencies of the particular countries. Many researches have been done in Universities, and other R&D institutions but issuing relevant codes (specifications) by these organisations for commercial usage is utmost important.

About the author:

DrS B Hegde is a Winner of Global Visionary Award for notable contribution to Cement and currently Visiting Professor, Pennsylvania State University, United States of America. Dr Hegde has more than 30 years of experience in the cement industry both in India and abroad.

References

  1. Madani H., Norouzifar M.N., Rostami J. The synergistic effect of pumice and silica fume on the durability and mechanical characteristics of eco-friendly concrete. Constr. Build Mater. 2018;174:356–368. doi: 10.1016/j.conbuildmat.2018.04.070. 
  2. Alnahhal M.F., Alengaram U.J., Jumaat M.Z., Alqedra M.A., Mo K.H., Sumesh M. Evaluation of Industrial By-Products as Sustainable Pozzolanic Materials in Recycled Aggregate Concrete. Sustainability. 2017;9:767. doi: 10.3390/su9050767. 
  3. Nili M., Sasanipour H., Aslani F. The Effect of Fine and Coarse Recycled Aggregates on Fresh and Mechanical Properties of Self-Compacting Concrete. Materials. 2019;12:1120. doi: 10.3390/ma12071120.
  4. Sagoe-Crentsil K.K., Brown T., Taylor A.H. Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cem. Concr. Res. 2001;31:707–712. doi: 10.1016/S0008-8846(00)00476-2.
  5. Limbachiya M.C., Leelawat T., Dhir R.K. Use of recycled concrete aggregate in high-strength concrete. Mater. Struct. 2000;33:574. doi: 10.1007/BF02480538. 
  6. Gómez-Soberón J.M.V. Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study. Cem. Concr. Res. 2002;32:1301–1311. doi: 10.1016/S0008-8846(02)00795-0. 
  7. Berndt M.L. Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Constr. Build. Mater. 2009;23:2606–2613. doi: 10.1016/j.conbuildmat.2009.02.011.
  8. Rakhimova N.R., Rakhimov R.Z. Toward clean cement technologies: A review on alkali-activated fly-ash cements incorporated with supplementary materials. J. Non Cryst. Sol. 2019;509:31–41. doi: 10.1016/j.jnoncrysol.2019.01.025. 
  9. Talsania S., Pitroda J., Vyas C.M. Effect of rice husk ash on properties of pervious concrete. Int. J. Adv. Eng. Res. Studies/IV/II/Jan.-March. 2015;296:299. 
  10. Xu W., Lo T.Y., Wang W., Ouyang D., Wang P., Xing F. Pozzolanic Reactivity of Silica Fume and Ground Rice Husk Ash as Reactive Silica in a Cementitious System: A Comparative Study. Materials. 2016;9:146. doi: 10.3390/ma9030146. 
  11. Rorat A., Courtois P., Vandenbulcke F., Lemiere S. 8 – Sanitary and environmental aspects of sewage sludge management. In: Prasad M.N.V., de Campos Favas P.J., Vithanage M., Mohan S.V., editors. Industrial and Municipal Sludge. Butterworth-Heinemann; Oxford, UK: 2019. pp. 155–180
  12. Güneyisi E., GesoÄŸlu M., Özbay E. Effects of marble powder and slag on the properties of self compacting mortars. Mater. Struct. 2009;42:813–826. doi: 10.1617/s11527-008-9426-2. 
  13. Aydin E., Arel H.Åž. High-volume marble substitution in cement-paste: Towards a better sustainability. J. Clean. Prod. 2019;237:117801. doi: 10.1016/j.jclepro.2019.117801. 
  14. Belaidi A.S.E., Azzouz L., Kadri E., Kenai S. Effect of natural pozzolana and marble powder on the properties of self-compacting concrete. Constr. Build. Mater. 2012;31:251–257. doi: 10.1016/j.conbuildmat.2011.12.109. 
  15. Prabhu K.R., Yaragal S.C., Venkataramana K. In Persuit of Alternative Ingredients to Cement Concrete Construction. Int. J. Res. Eng. Technol. 2013;02:404–410. 
  16. Aprianti S E. A huge number of artificial waste materials can be supplementary cementitious material (SCM) for concrete production—A review part II. J. Clean. Prod. 2017;142:4178–4194. doi: 10.1016/j.jclepro.2015.12.115. 
  17. Van den Heede P., De Belie N. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: Literature review and theoretical calculations. Cem. Concr. Compos. 2012;34:431–442. doi: 10.1016/j.cemconcomp.2012.01.004. 

By 2050, concrete production will be four times higher than in 1990. Aggregates and cement represent around 60 per cent to 80 per cent and 10 per cent to 15 per cent of the total weight of concrete, respectively.

Concrete

Adani’s Strategic Emergence in India’s Cement Landscape

Published

on

By

Shares



Milind Khangan, Marketing Head, Vertex Market Research, sheds light on Adani’s rapid cement consolidation under its ‘One Business, One Company’ strategy while positioning it to rival UltraTech, and thus, shaping a potential duopoly in India’s booming cement market.

India is the second-largest cement-producing country in the world, following China. This expansion is being driven by tremendous public investment in the housing and infrastructure sectors. The industry is accelerating, with a boost from schemes such as PM Gati Shakti, Bharatmala, and the Vande Bharat corridors. An upsurge in affordable housing under the Pradhan Mantri Awas Yojana (PMAY) further supports this expansion. In May 2025, local cement production increased about 9 per cent from last year to about 40 million metric tonnes for the month. The combined cement capacity in India was recorded at 670 million metric tonnes in the 2025 fiscal year, according to the Cement Manufacturers’ Association (CMA). For the financial year 2026, this is set to grow by another 9 per cent.
In spite of the growing demand, the Indian cement industry is highly competitive. UltraTech Cement (Aditya Birla Group) is still the market leader with domestic installed capacity of more than 186 MTPA as on 2025. It is targeted to achieve 200 MTPA. Adani Cement recently became a major player and is now India’s second-largest cement company. It did this through aggressive consolidation, operational synergies, and scale efficiencies. Indian players in the cement industry are increasingly valuing operational efficiency and sustainability. Some of the strategies with high impact are alternative fuels and materials (AFR) adoption, green cement expansion, and digital technology investments to offset changing regulatory pressure and increasing energy prices.

Building Adani Cement brand
Vertex Market Research explains that the Adani Group is executing a comprehensive reorganisation and consolidation of its cement business under the ‘One Business, One Company’ strategy. The plan is to integrate its diversified holdings into one consolidated corporate entity named Adani Cement. The focus is on operating integration, governance streamlining, and cost reduction in its expanding cement business.
Integration roadmap and key milestones:

  • September 2022: The consolidation process started with the $6.4 billion buyout of Holcim’s majority stakes in Ambuja Cements and ACC, with Ambuja becoming the focal point of the consolidation.
  • December 2023: Bought Sanghi Industries to strengthen the firm’s presence in western India.
  • August 2024: Added Penna Cement to the portfolio, improving penetration of the southern market of India.
  • April 2025: Further holding addition in Orient Cement to 46.66 per cent by purchasing the same from CK Birla Group, becoming the promoter with control.
  • Ambuja Cements amalgamated with Adani Cement: This was sanctioned by the NCLT on 18th July 2025 with effect from April 1, 2024. This amalgamation brings in limestone reserves and fresh assets into Ambuja.
  • Subject to Sanghi and Penna merger with Ambuja: Board approvals in December 2024 with the aim to finish between September to December 2025.
  • Ambuja-ACC future integration: The latter is being contemplated as the final step towards consolidation.
  • Orient Cement: It would serve as a principal manufacturing facility following the merger.

Scale, capacity expansion and market position
In financial year-2025, Adani Cement, including Ambuja, surpassed 100 MTPA. This makes it one of the world’s top ten cement companies. Along with ACC’s operations, it is now firmly placed as India’s second-largest cement company. In FY25, the Adani group’s sales volume per annum clocked 65 million metric tonnes. Adani Group claims that it now supplies close to 30 per cent of the cement consumed in India’s homes and infrastructure as of June 2025.
The organisation is pursuing aggressive brownfield expansion:

  • By FY 2026: Reach 118 MTPA
  • By FY 2028: Target 140 MTPA

These goals will be driven by commissioning new clinker and grinding units at key sites, with civil and mechanical works underway.
As of 2024, Adani Cement had its market share pegged at around 14 to 15 per cent, with an ambition to scale this up to 20 per cent by FY?2028, emerging as a potent competitor to UltraTech’s 192?MTPA capacity (186 domestic and overseas).

Strategic advantages and competitive benefits
The consolidation simplifies decision-making by reducing legal entities, centralising oversight, and removing redundant functions. This drives compliance efficiency and transparent reporting. Using procurement power for raw materials and energy lowers costs per ton. Integrated logistics with Adani Ports and freight infrastructure has resulted in an estimated 6 per cent savings in logistics. The group aims for additional savings of INR 500 to 550 per tonne by FY 2028 by integrating green energy, using alternative fuel resources, and improving sourcing methods.

Market coverage and brand consistency
Brand integration under one strategy will provide uniform product quality and easier distribution networks. Integration with Orient Cement’s dealer base, 60 per cent of which already distributes Ambuja/ACC products, enhances outreach and responsiveness.
By having captive limestone reserves at Lakhpat (approximately 275 million tonnes) and proposed new manufacturing facilities in Raigad, Maharashtra, Adani Cement derives cost advantage, raw material security, and long-term operational robustness.

Strategic implications and risks
Consolidation at Adani Cement makes it not just a capacity leader but also an operationally agile competitor with the ability to reap digital and sustainability benefits. Its vertically integrated platform enables cost leadership, market responsiveness, and scalability.

Challenges potentially include:

  • Integration challenges across systems, corporate cultures, and plant operations
  • Regulatory sanctions for pending mergers and new capacity additions
  • Environmental clearances in environmentally sensitive areas and debt management with input price volatility

When materialised, this revolution would create a formidable Adani–UltraTech duopoly, redefining Indian cement on the basis of scale, innovation, and sustainability. India’s leading four cement players such as Adani (ACC and Ambuja), Dalmia Cement, Shree Cement, and UltraTech are expected to dominate the cement market.

Conclusion
Adani’s aggressive consolidation under the ‘One Business, One Company’ strategy signals a decisive shift in the Indian cement industry, positioning the group as a formidable challenger to UltraTech and setting the stage for a potential duopoly that could dominate the sector for years to come. By unifying operations, leveraging economies of scale, and securing vertical integration—from raw material reserves to distribution networks—Adani Cement is building both capacity and resilience, with clear advantages in cost efficiency, market reach, and sustainability. While integration complexities, regulatory hurdles, and environmental approvals remain key challenges, the scale and strategic alignment of this consolidation promise to redefine competition, pricing dynamics, and operational benchmarks in one of the world’s fastest-growing cement markets.

About the author:
Milind Khangan is the Marketing Head at Vertex Market Research and comes with over five years of experience in market research, lead generation and team management.

Continue Reading

Concrete

Precision in Motion: A Deep Dive into PowerBuild’s Core Gear Series

Published

on

By

Shares



PowerBuild’s flagship Series M, C, F, and K geared motors deliver robust, efficient, and versatile power transmission solutions for industries worldwide.

Products – M, C, F, K: At the heart of every high-performance industrial system lies the need for robust, reliable, and efficient power transmission. PowerBuild answers this need with its flagship geared motor series: M, C, F, and K. Each series is meticulously engineered to serve specific operational demands while maintaining the universal promise of durability, efficiency, and performance.
Series M – Helical Inline Geared Motors: Compact and powerful, the Series M delivers exceptional drive solutions for a broad range of applications. With power handling up to 160kW and torque capacity reaching 20,000 Nm, it is the trusted solution for industries requiring quiet operation, high efficiency, and space-saving design. Series M is available with multiple mounting and motor options, making it a versatile choice for manufacturers and OEMs globally.
Series C – Right Angled Heli-Worm Geared Motors: Combining the benefits of helical and worm gearing, the Series C is designed for right-angled power transmission. With gear ratios of up to 16,000:1 and torque capacities of up to 10,000 Nm, this series is optimal for applications demanding precision in compact spaces. Industries looking for a smooth, low-noise operation with maximum torque efficiency rely on Series C for dependable performance.
Series F – Parallel Shaft Mounted Geared Motors: Built for endurance in the most demanding environments, Series F is widely adopted in steel plants, hoists, cranes, and heavy-duty conveyors. Offering torque up to 10,000 Nm and high gear ratios up to 20,000:1, this product features an integral torque arm and diverse output configurations to meet industry-specific challenges head-on.
Series K – Right Angle Helical Bevel Geared Motors: For industries seeking high efficiency and torque-heavy performance, Series K is the answer. This right-angled geared motor series delivers torque up to 50,000 Nm, making it a preferred choice in core infrastructure sectors such as cement, power, mining, and material handling. Its flexibility in mounting and broad motor options offer engineers’ freedom in design and reliability in execution.
Together, these four series reflect PowerBuild’s commitment to excellence in mechanical power transmission. From compact inline designs to robust right-angle drives, each geared motor is a result of decades of engineering innovation, customer-focused design, and field-tested reliability. Whether the requirement is speed control, torque multiplication, or space efficiency, Radicon’s Series M, C, F, and K stand as trusted powerhouses for global industries.

Continue Reading

Concrete

Driving Measurable Gains

Published

on

By

Shares



Klüber Lubrication India’s Klübersynth GEM 4-320 N upgrades synthetic gear oil for energy efficiency.

Klüber Lubrication India has introduced a strategic upgrade for the tyre manufacturing industry by retrofitting its high-performance synthetic gear oil, Klübersynth GEM 4-320 N, into Barrel Cold Feed Extruder gearboxes. This smart substitution, requiring no hardware changes, delivered energy savings of 4-6 per cent, as validated by an internationally recognised energy audit firm under IPMVP – Option B protocols, aligned with
ISO 50015 standards.

Beyond energy efficiency, the retrofit significantly improved operational parameters:

  • Lower thermal stress on equipment
  • Extended lubricant drain intervals
  • Reduction in CO2 emissions and operational costs

These benefits position Klübersynth GEM 4-320 N as a powerful enabler of sustainability goals in line with India’s Business Responsibility and Sustainability Reporting (BRSR) guidelines and global Net Zero commitments.

Verified sustainability, zero compromise
This retrofit case illustrates that meaningful environmental impact doesn’t always require capital-intensive overhauls. Klübersynth GEM 4-320 N demonstrated high performance in demanding operating environments, offering:

  • Enhanced component protection
  • Extended oil life under high loads
  • Stable performance across fluctuating temperatures

By enabling quick wins in efficiency and sustainability without disrupting operations, Klüber reinforces its role as a trusted partner in India’s evolving industrial landscape.

Klüber wins EcoVadis Gold again
Further affirming its global leadership in responsible business practices, Klüber Lubrication has been awarded the EcoVadis Gold certification for the fourth consecutive year in 2025. This recognition places it in the top three per cent
of over 150,000 companies worldwide evaluated for environmental, ethical and sustainable procurement practices.
Klüber’s ongoing investments in R&D and product innovation reflect its commitment to providing data-backed, application-specific lubrication solutions that exceed industry expectations and support long-term sustainability goals.

A trusted industrial ally
Backed by 90+ years of tribology expertise and a global support network, Klüber Lubrication is helping customers transition toward a greener tomorrow. With Klübersynth GEM 4-320 N, tyre manufacturers can take measurable, low-risk steps to boost energy efficiency and regulatory alignment—proving that even the smallest change can spark a significant transformation.

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds

    This will close in 0 seconds