Connect with us

Concrete

The mark of a good refractory is its ability to remain inert

Published

on

Shares

Prabhat Singh Parihar, Vice President (Technical Head), Mangrol Plant, JK Cement, talks about the challenges faced by cement plants in maintaining refractories and the important properties of refractories that ensure smooth functioning of the processes.

Explain the types of refractories you have in your manufacturing unit. What are their respective purposes?
At JK Cement’s MGR plant, the following types of refractories are used:

  • Acid Refractories: Any type of alumina silicate refractories (like fire bricks, alumina brick, high alumina bricks) and silica refractories are called acid refractories. Our manufacturing facilities use alumina bricks in all our kilns, PH, and coolers.
  • Kiln Refractory: In the kiln we use DALSINT A (70 per cent alumina and 2 per cent Fe), DALSINT B (70 per cent alumina and 2.5 per cent Fe) and alumina 40 per cent bricks in the respective kiln zones.
  • Purpose: Alumina bricks are especially used because these bricks resist acidic flux. Alumina bricks have good thermal stability, high refractoriness that is more than 1770oC and lower thermal conductivity resulting in less heat loss. Alumina bricks are also cost effective when compared to basic bricks.
  • Castable: Various grades of castable are used for better service life of the kiln inlet and outlet sectors, burner pipe and coolers. As sintered clinker is very abrasive in nature, Castables such as SiC base, mullite base and CRC- BP for burner pipe are preferred. Castables are best suited for surfaces where brick lining installation is not-possible or is not suitable, as it is easy to mould and there is no chance of falling out like bricks.
  • Calcium Silicate Blocks: The challenge with pyro-section is its high operating temperature, resulting in high surface heat losses to ambient surroundings. To overcome this, calcium silicate blocks are installed throughout with refractory, with increment in thickness of insulation blocks. This results in a significant decrease in surface temperature and heat loss.
  • Mortar: Alumina/Mullite based mortars are generally used for adhering bricks. As it also shrinks at high temperatures a limited quantity (1.5 to 2 mm) should be applied.
  • Ceramic Blankets / Paper / Wool: Like all materials, refractory also expands when heated. Typically, a newly installed refractory would expand anywhere between 1.5 per cent to 2 per cent initially. To avoid adding extra mechanical stress to the refractory, a gap is provided along a certain length. This is generally packed with glass-wool as it gets compressed when the refractory expands. Glass can be easily fitted in any slot or gap as it can be compressed. The dimension for the brick lining is typically 600×600 mm for castable panels, with the axial height of 1000 mm.

What are the key materials used in building a refractory lining to the kiln in your organisation?
For kiln refractory lining, a major portion consists of refractory bricks, castable for kiln inlet and outlet sector, mortar, ceramic paper, shim plate and anchors.

  • Refractory bricks: In a rotary kiln, the majority of the refractory type is brick refractory. Various grades of 40 per cent, 60 per cent and 70 per cent alumina bricks (DALSINT-A, B and C) are used. VDZ type bricks are generally used. Kiln lining is done by both layering and jack.
  • Castable are used for kiln inlet and outlet sectors to improve better service life. Since, sintered clinker is cooled just after the liquid phase as the sintered phase reaches a high temperature (1450oC) and is very abrasive in nature. Castable that is SiC base and CRC- BP is usually preferred.
  • Anchors: Temperature of both extremities are high, to hold castable, and provide structural strength to castable, SS-310 anchors are used. Anchors are welded and capped to prevent breakage from metallic expansion.
  • Ceramic Blankets / Paper / Wool: To provide expansion provision for brick lining and castable panel for kiln sector (10 to 18 panel), ceramic paper of 3 mm applied.
  • Mortar: Alumina/Mullite based mortars are generally used for adhering bricks. As it also shrinks at high temperature and can loosen the arch causing refractory failure, a minimum and only justified amount of mortar should be used in kiln lining.

What are the key properties of a refractory that support the cement making process?
Cement manufacturing is an energy intensive process. Burning alkaline raw materials (reactive) combined with smaller constituents of metals and abrasive raw materials at very high temperature is a major challenge. Therefore, a good refractory that can withstand high temperatures while retaining required strength and that is resistant to chemical properties of the alkaline raw materials is crucial. Besides, chemical attacks from sulphates or chlorine from the kiln feed or fuel or alternative fuels are other factors that need to be factored in.

Major refractory properties that contribute to cement manufacturing are:

Thermal properties

  • Refractories are materials that can withstand very high temperatures and mechanical stresses of dead load. Key parameters for considering a good refractory are its service temperature which is the maximum temperature at which refractory can withstand stresses applied to it at a given temperature.
  • Refractory Under Load (RUL) and Pyrometric Cone Equivalent (PCE) are defined as the most important properties of refractory, i.e., resisting or withstanding high temperature. Refractory under load can be defined as the temperature at which refractory can withstand without deformation. Pyrometric Cone Equivalent (PCU) is the temperature at which refractory starts to form an amorphous phase.
  • Resistance to thermal shock or spalling: As refractory is heated or cooled it tends to expand or shrink respectively a sudden cooling or heating can cause refractory to lose its strength or can dislocate its position during the heating and cooling cycle resulting in refractory failure.
  • Reducing heat losses: Refractories have a lower heat conductivity, thus, the heat transfer rate due to conduction is reduced.

Chemical properties
Refractory material is exposed to high temperature and reactive components of kiln feed, fuel, and alternative fuels. The major reactive components are the metal sulphates or chlorides that can penetrate through the pores of the refractory and get deposited at the core. The cold face of the refractory causes’ loss of strength of refractory material. The mark of a good refractory is its ability to remain inert.
Physical properties
Bulk density is an important property of refractories. A higher bulk density material means that it has a minimum porosity which minimises chemical attacks on the refractory.
Porosity can be defined as the percentage of open pore space in the overall volume of refractory. Pores on a refractory material, provides a site for absorption to the alkali sulphates or chlorides which get absorbed from the hot face side to under refractories and erodes and loses strength from the core of refractories. That is why a good refractory shall have a minimum apparent porosity of 0.2 per cent.
Cold crushing strength: As refractories must withstand a certain mechanical load. The load of itself and the mechanical stress generated due to expansion (radial and axial). A high cold crushing strength means that it would have less breakage while installing, with a good RUL and along comes the draw-back of brittleness
of refractory.
Thermal expansion or permanent linear change. Like all materials, refractory also expands at high temperatures. While a newly installed refractory expands to upto 2 per cent, the permanent expansion and thermal expansion shrinkage cycle deteriorates the strength and service life of the refractory.

Tell us more about the porosity and permeability of the refractory.
Porosity is the volumetric ratio occupied by pores present in refractory material. Porous material is not suitable for refractory application as it has low bulk density and low cold crushing strength.
Apparent Porosity: The ratio of the total volume of the open pores in a porous body to its bulk volume expressed as percentage, of the bulk volume is apparent porosity.
The significance of apparent porosity is as follows:

  • Lower the better as it influences chemical resistance.
  • Related to BD or compactness.
  • Affects cold crushing strength.
  • Higher the porosity, lower the thermal conductivity. This means lower heat loss because of more entrapped air inside the refractory structure. Hence, higher porosity refractory may be used to save heat loss in the area where there is lesser risk of abrasion and lower possibility of alkali penetration.
  • Very low porosity affects thermal shock resistance.
  • 15 per cent to 20 per cent common value for most refractories made by machine pressing.
  • For hand moulded shapes 25 per cent to 35 per cent may be the range
  • Higher the porosity, more will be the alkali penetration. Generally, alkali salts are solidified at a temperature range between 750 to 850oC directly from vapour. Hence, a more porous refractory can be easily used in the area where the application temperature is less than 750oC.

Closed Porosity: The ratio of the total volume of the closed pores in a porous body to its bulk volume expressed as a percentage of the bulk volume is closed porosity.
True Porosity: The sum of the apparent porosity and the closed porosity is true porosity.
Permeability: It is the measure of flow of gases through pores within the refractory body, and it indicates the extent of pore linkage. Permeability of refractories gives an indication on how well the refractory will stand up to molten slag, a melt or to a gas penetration.
Permeability of refractory is directly influenced by refractory material and apparent porosity of the refractory. As the apparent porosity of the refractory increases it provides a more active site for absorption of volatile sulphates or chlorides into the refractory.

Typical cases of permeability are:

  • Alkali Salt Infiltration: As the pores on the refractory surface absorb the volatile metallic sulphates and chloride. They seep through refractory to core and cold face of refractory where they condense to solid form.
  • Anchor Corrosion: The alkali salts that seep through the castable reacts with anchors causing corrosion, hence, castable loses its structural strength causing refractory failure.

What is the maximum temperature that a refractory can withhold? How does its strength differ from ambient temperature to high temperature?
There are four key parameters for defining the maximum temperature a refractory can
withhold are:

  • Service Temperature: This is the temperature at which refractory can withstand without any failure or losing strength. With increase in active refractory ingredients, the refractory service temperature increases.
  • Refractory Under Load (RUL): It is the minimum temperature at which a sample will deform by 0.6 per cent under a constant load. Cylindrical sample that is 50 mm in diameter and 50 mm in height is tested. Constant load of 2 kg/cm2 is maintained on the specimen. The rate of temperature rise is maintained at 15oC or a minimum up to 1000oC and 8oC/min beyond that. Temperature is measured either by thermocouple or optical pyrometer. The expansion or contraction while reading is measured by a dial gauge. As a thumb rule, RUL of brick should be at least 200oC more from its application temperature.
  • Pyro metric Cone Equivalent (PCE): It is the temperature at which refractory material gets softened, or it indicates the range of melting point. Sample cones are made by using ~1 per cent alkali free dextrin. Standard cone (German Standard Seger cone or ASTM standard orton cone) along with sample cone are placed on a plaque at an angle of 82o inside. After that this plaque is placed inside the furnace where temperature rise is 35oC/min up to 1560oC and 2-3oC/min beyond that.
  • Cold Crushing Strength (CCS): In this test, the cube of a specific dimension cut from the brick sample is subjected to increasing load, until it gets crushed and the test result is reported as the value load per unit area. It indicates the adequacy of firing temperature, for shaped Refractory products, required for proper sintering and to develop the required microstructure and the quality of hydraulic or chemical bond in case of unshaped refractories. In the unshaped products, the CCS does not remain the same after heat treatment, and it decreases or increases with the temperature of heat treatment. The good cold crushing strength of shaped refractories protects them from damages during handling and from mechanical abuses in service.

PCE > RUL > Service Temperature > Operating Temperature
As a thumb rule PCE temperature is about 15 to 20oC more than RUL, whereas RUL should be about 150 to 200oC more than service temperature.
Service temperature is decided in such a manner that at any given time it is always higher than operating temperature (operating temperature + temperature increase in case of process fluctuation).
Numerous inert or non-refractory materials can decrease the service temperature as they form a new eutectic point with an active refractory compound. It is a common practice to make small panels of refractory by installing extra retainers to hold the dead weight of refractories.

Tell us about the installation and operating process of refractories in the kiln.
The lining of refractory material in the rotary kiln is almost exclusively made up of refractory bricks. Refractory castables are used in part only in the kiln inlet and outlet. The bricks work creates an arch in the kiln that is self-supporting and which correctly fits with the kiln shell.
Due to lack of anchoring, the lining must be supported during installation. Two type of bricks installation in a kiln are:
Installation with rotation of kiln – Spindle Method: The spindle method or jacking method is a classic procedure for lining rotary kilns. The bricks are placed in the lower half of the kiln, then the wall segment is supported with spindles so that the kiln can be rotated. After a quarter turn the next segment is lined and so on. The spindle method is a cost-effective method and can achieve excellent results. However, the kiln must be rotated again and again because the individual sections cannot be more than five metre in length. Moreover, the spindle method is suitable only up to a kiln diameter of 4.4 metres.
Installation without rotation of the kiln – Brick Lining Machine: A method in which the rotary kiln must not be rotated while lining (and cannot be rotated) work based on the same principle i.e., first, the lower half of the kiln is provided with the refractory bricks, because no support is required in this area and then brick lining machine will be installed for the remaining upper half area and each ring is supported by a hydraulic jack of brick lining machine until its completion.

What are the standards set for refractories in a cement kiln?
For a kiln, the following types of refractories are used: Refractory Brick, Castable and SS Anchor.
The refractory bricks for the kiln brick lining, high alumina ISO bricks of 40 per cent, 60 per cent and 70 per cent alumina are used. Abrasive resistant castables have a high service temperature and are desired such as grade- LC-60, 90 SiC and CRC as the quenching/cooling zone of the kiln handles the hot and abrasive sintered clinker. SS310 anchors are preferred over SS304 only for kiln and burner pipe.
The main standards that a refractory supplier must meet are:

  • Bulk Density: A very crude and crucial standard. A higher bulk density means the refractory bricks are cooked properly and have an active refractory ingredient present. Brick with low brick density indicates low active refractory ingredients.
  • Alumina/Active Refractory Content: Alumina content of bricks should not be less than specified value as it is the active refractory ingredient.
  • Iron/Ferrite: Iron content of refractory should be below 2.5 per cent as the increase in iron content decreases the PCE and RUL values.
  • Apparent Porosity: The value of the refractory should be kept below 0.25 as it increases the alkali salt permeability, anchor corrosion, and decreases the core crushing strength of refractory.
  • Cold Crushing Strength (CCS): This strength of the refractory is a must compliant property of a refractory to withhold any mechanical load that is applied to it. Typical CCS value for a fireclay with high alumina is 450kN/cm2 and 650 kN/cm2.


Refractory Under Load (RUL) for refractories it typically between 1400oC to 1500oC
Permanent Linear Change (PLC) is an expansion of a newly installed refractory. This generates an excessive mechanical load on refractory. PLC for refractory should be less than 1.5 per cent.
Pyrometric Cone Equivalent (PCE) for a refractory should be around 35 degree Orton.
Spalling Resistance are the numbers of heating and cooling cycles that a refractory can hold without any failure. Spalling resistance for refractory is desired to be above 30.
Geometry of the refractory is mostly important and no compromise can be made with it, albeit a tolerance of 1.5 to 2 mm can be considered. Same applies for the SS anchors.

What is the role of technology and automation in refractories for cement kilns?
Since the refractory work is very bulky and time consuming, lots of skilled man-hours are spent, which makes it one of the most cost and time intensive jobs. Shutdown even for a small duration of the plant is a major challenge. The introductions of new technology will help to ultimately overcome the refractory application cost and the installation time.
To overcome the above challenges, new processes/technology that are being implemented.
Brick Lining Machine: Before brick lining machine, the refractory applications required manpower for the transportation of refractory, installation of refractory and using jack for holding arch. All these procedures require a large manpower, both skilled and unskilled. In addition to that, it also takes a long time for installation.
The use of brick lining machines and portable belt conveyor, refractory materials are easily conveyed in a convenient way without any unnecessary stockpile lying around in the way of work. Since all brickwork can be done without rotation with the brick lining machine, the time lost in between tightening and loosening the jack and evacuating the manpower from the kiln while rotating is eliminated. A huge advantage is the completion of this process without the requirement of a huge manpower. A small team of skilled manpower can execute the work in a very precise manner and in a limited time.
Gunning/ShotCreting: For castable application in gunning, a batch of dry castable and binder or water are conveyed through a compressed air line to the mixing nozzle where they mix and get applied at application site. Conventional castable application requires a mandatory castable shuttering with material poured over and a vibrator needle, to set it in the right place. This makes it very time-consuming and chances of the castable not being placed properly is there which will take enormous time and manpower to rectify the application. For a shuttering that is not set properly it needs to be broken and new castable will be reapplied hence increasing cost of breaking and re-applying.
For a point place where huge quantum of castable must be applied, Gunning is preferred as it has its advantages such as:

  • No need of carpenter or mason or helpers for shuttering frame, making and application of castable.
  • Chances of castable not setting properly is eliminated.
  • Refractory application rate can be achieved up to 5 TPH.
  • Since, failure of setting occurs and application are lesser than conventional method, wastage of castable is minimum with rebound losses for gunning of are about 2 per cent.
  • Precast Pre-Fired Refractory: A modern and modular way for refractory application is the Precast Pre-Fired Refractory, which are pre casted to defined required geometrical shapes and can be applied simply bolting, anchoring, and hanging to roof channel support. The key advantages of the new concept are less dependency on skilled manpower, availability of refractory is already casted and only need to be installed.

What tests are employed to check the refractory for defects and at what intervals are these tests done?
There is only a limited number of methods available for a condition diagnosis of the refractory material. In practice, the following are used:

  • Measurement of shell temperatures.
  • Visual inspection from inside and outside (example: inspection of expansion joints, friction comp.)
  • Non-destructive measurement of residual
  • brick thickness
  • Drill holes and chiselling out of windows
  • Quality measurement and surveying the kiln axis

Measurement of shell temperatures: The chronological development of the maximum, average and minimum temperatures on the shell of the rotary kiln allows for conclusion to be drawn for the ratio between lining and coating build-up. Based on the velocity of the temperature changes, further development can be estimated. For example, if maximum temperature rises sharply while the average temperature remains the same or changes slightly, then this pertains to a limited, localised eruption and not overheating of the relevant kiln zone. One preferable option would be to continually check the kiln shell temperature by measuring infrared radiation.
Visual inspection from outside: Inspection or detecting peculiarities on the entire kiln plant are part of the routine task of the kiln personnel. Sudden changes in the surface colours due to increased shell temperatures are clear signs of damage in the lining. But most of the time, even more serious damage is already present. The visual diagnostic procedure therefore ranks last among potential tools, and it is primarily used to prevent further damage to machines.
The condition of the cyclone and vaulted ceilings should be checked regularly through the inspection openings in the ceilings to see if the transition between the brick masonry and the skin is flush. In addition, skin temperature should be compared to earlier measurements in order to gain information about the current refractory status.
Easily accessible part of the cooler, burner pipe or the kiln can also be inspected visually via inspection openings or kiln/cooler cameras. Such an inspection is especially suitable during sort down times as easy inspection measures.
Non-destructive measurements of residual brick thickness: The brick thickness can be measured relatively quickly using a residual thickness metre. But experience shows that generally no reliable measurement signals are provided. Residual thickness metres work with sensitive probe systems that can send and record high frequency electrical impulses. The metallic rotary kiln shell serves as a reflector to determine the residual wall thickness. This device also allows for the different electromagnetic properties of different refractory bricks and infiltration to be recorded.
Drill holes and chiselling out of windows: The residual brick height of the refractory material is determined along the rotary kiln by drilling with a brick drill (9-10 mm). The procedure and results are recorded in a drilling protocol. Brick damage is not always detected with the drilling samples. Using core drilling or chiselling of windows in critical spots, it is possible to detect crack formation or alkali filtration in addition to the residual brick height. However, the subsequent closure of the masonry is unsatisfactory with this method if the residual brick height is low.

What are the major challenges your organisation comes across with the refractory kiln?

  • Spalling of bricks in the burning zone: We use ISO type of bricks in the burning zone in kilns. Refractories develop the spalling because of the mismatch of thermal expansion or contraction in between hot face and cold face during heating – cooling cycle and as a result, cracks are developed in the brick. This crack propagates every time and ultimately some portion of the brick gets spelled out from the position.
  • Kiln bricks failure near second tyre: Due to mechanical loading as well as thermal loading, bricks failure occurs near kiln 2nd tyre area. Whenever this failure happens, then in this area brick lining is done with a manual jack method
  • Tip casting failure: Kiln tip casting failure occurs every 3 to 4 months of continuous running of kiln. Earlier shuttering panel was 400×400 mm as the first kiln outlet retainer was just after 400 mm from the kiln outlet. After modification, outlet retainer shifted towards inlet about 400 mm, i.e., now tip casting shuttering increased to 800×800 mm. It gives us a maximum tip casting life of about 11 months.

What innovations in the refractory sector do you expect to see in the near future that will help better it?
The two main innovations that we foresee are:

AFR friendly refractory: Due to the increasing fuel cost and focus on sustainable ways of operations, the use of alternative fuels in cement industries is essential. Though, the use of alternative fuels is limited because of the high concentration of chlorine and sulphates which are susceptible to coating formation. Therefore, coating resistant refractories that are less prone to chlorine and sulphate attacks will increase the use of alternative fuels with a good refractory life. Moreover, with the enhanced use of AFR, we require good quality AFR friendly castable near AFR feeding zones.
Insulating Bricks: Refractories with low thermal conductivity and low radiation emissivity can help to save the heat losses that ultimately leads to saving fuel, instead of increasing refractory thickness. While by increasing the refractory thickness a loss of volume in pyro-equipment may affect the production capability of the system. Therefore, we required high alumina with low thermal conductivity refractory bricks to save the radiation loss.

Kanika Mathur

Concrete

Turning Carbon into Opportunity

Published

on

By

Shares



Carbon Capture, Utilisation, and Storage (CCUS) is crucial for reducing emissions in the cement industry. Kanika Mathur explores how despite the challenges such as high costs and infrastructure limitations, CCUS offers a promising pathway to achieve net-zero emissions and supports the industry’s sustainability goals.

The cement industry is one of the largest contributors to global CO2 emissions, accounting for approximately seven to eight per cent of total anthropogenic carbon dioxide released into the atmosphere. As the world moves towards stringent decarbonisation goals, the cement sector faces mounting pressure to adopt sustainable solutions that minimise its carbon footprint. Among the various strategies being explored, Carbon Capture, Utilisation, and Storage (CCUS) has emerged as one of the most promising approaches to mitigating emissions while maintaining production efficiency. This article delves into the challenges, opportunities, and strategic considerations surrounding CCUS
in the cement industry and its role in achieving net-zero emissions.

Understanding CCUS and Its Relevance to Cement Manufacturing
Carbon Capture, Utilisation, and Storage (CCUS) is an advanced technological process designed to capture carbon dioxide emissions from industrial sources before they are released into the atmosphere. The captured CO2 can then be either utilised in various applications or permanently stored underground to prevent its contribution to climate change.
Rajesh Kumar Nayma, Associate General Manager – Environment and Sustainability, Wonder Cement says, “CCUS is indispensable for achieving Net Zero emissions in the cement industry. Even with 100 per cent electrification of kilns and renewable energy utilisation, CO2 emissions from limestone calcination—a key raw material—remain unavoidable. The cement industry is a major contributor to
GHG emissions, making CCUS critical for sustainability. Integrating CCUS into plant operations ensures significant reductions in carbon emissions, supporting the industry’s Net Zero goals. This transformative technology will also play a vital role in combating climate change and aligning with global sustainability standards.”
The relevance of CCUS in cement manufacturing stems from the inherent emissions produced during the calcination of limestone, a process that accounts for nearly 60 per cent of total CO2 emissions in cement plants. Unlike other industries where CO2 emissions result primarily from fuel combustion, cement production generates a significant portion of its emissions as an unavoidable byproduct. This makes CCUS a particularly attractive solution for the sector, as it offers a pathway to drastically cut emissions without requiring a complete overhaul of existing production processes.
According to a Niti Ayog report from 2022, the adverse climatic effects of a rise in GHG emissions and global temperatures rises are well established and proven, and India too has not been spared from adverse climatic events. As a signatory of the Paris Agreement 2015, India has committed to reducing emissions by 50 per cent by the year 2050 and reaching net zero by 2070. Given the sectoral composition and sources of CO2 emissions in India, CCUS will have an important and integral role to play in ensuring India meets its stated climate goals, through the deep decarbonisation of energy and CO2 emission intensive industries such as thermal power generation, steel, cement, oil & gas refining, and petrochemicals. CCUS can enable the production of clean products while utilising our rich endowments of coal, reducing imports and thus leading to an Indian economy. CCUS also has an important role to play in enabling sunrise sectors such as coal gasification and the nascent hydrogen economy in India.
The report also states that India’s current cement production capacity is about 550 mtpa, implying capacity utilisation of about 50 per cent only. While India accounts for 8 per cent of global cement capacity, India’s per capita cement consumption is only 235 kg, and significantly low compared to the world average of 500 kg per capita, and China’s per capita consumption of around 1700 kg per capita. It is expected that domestic demand, capacity utilisation and per capita cement consumption will increase in the next decade, driven by robust demand from rapid industrialisation and urbanisation, as well as the Central Government’s continued focus on highway expansions, investment in smart cities, Pradhan Mantri Awas Yojana (PMAY), as well as several state-level schemes.

Key Challenges in Integrating CCUS in Cement Plants Spatial Constraints and Infrastructure Limitations
One of the biggest challenges in integrating CCUS into existing cement manufacturing facilities is space availability. Most cement plants were designed decades ago without any consideration for carbon capture systems, making retrofitting a complex and costly endeavour. Many facilities are already operating at full capacity with limited available space, and incorporating additional carbon capture equipment requires significant modifications.
“The biggest challenge we come across repeatedly is that most cement manufacturing facilities were built decades ago without any consideration for carbon capture systems. Consequently, one of the primary hurdles is the spatial constraints at these sites. Cement plants often have limited space, and retrofitting them to integrate carbon capture systems can be very challenging. Beyond spatial issues, there are additional considerations such as access and infrastructure modifications, which further complicate the integration process. Spatial constraints, however, remain at the forefront of the challenges we encounter” says Nathan Ashcroft, Carbon Director, Stantec.
High Capital and Operational Costs CCUS technologies are still in the early stages of large-scale deployment, and the costs associated with implementation remain a significant barrier. Capturing, transporting, and storing CO2 requires substantial capital investment and increases operational expenses. Many cement manufacturers, especially in developing economies, struggle to justify these costs without clear financial incentives or government support.
Regulatory and Policy Hurdles The regulatory landscape for CCUS varies from region to region, and in many cases, clear guidelines and incentives for deployment are lacking. Establishing a robust framework for CO2 storage and transport infrastructure is crucial for widespread CCUS adoption, but many countries are still in the process of developing these policies.

Waste Heat Recovery and Energy Optimisation in CCUS Implementation
CCUS technologies require significant energy inputs, primarily for CO2 capture and compression. One way to offset these energy demands is through the integration of waste heat recovery (WHR) systems. Cement plants operate at high temperatures, and excess heat can be captured and converted into usable energy, thereby reducing the additional power required for CCUS. By effectively utilizing waste heat, cement manufacturers can lower the overall cost of carbon capture and improve the economic feasibility of CCUS projects.
Another critical factor in optimising CCUS efficiency is pre-treatment of flue gases. Before CO2 can be captured, flue gas streams must be purified and cleaned to remove particulates and impurities. This additional processing can lead to better capture efficiency and lower operational costs, ensuring that cement plants can maximise the benefits of CCUS.

Opportunities for Utilising Captured CO2 in the Cement Sector
While storage remains the most common method of handling captured CO2, the utilising aspect presents an exciting opportunity for the cement industry. Some of the most promising applications include:

Carbonation in Concrete Production
CO2 can be injected into fresh concrete during mixing, where it reacts with calcium compounds to form solid carbonates. This process not only locks away CO2 permanently but also enhances the compressive strength of concrete, reducing the need for additional cement.

Enhanced Oil Recovery (EOR) and Industrial Applications
Captured CO2 can be used in enhanced oil recovery (EOR), where it is injected into underground oil reservoirs to improve extraction efficiency. Additionally, certain industrial processes, such as urea production and synthetic fuel manufacturing, can use CO2 as a raw material, creating economic opportunities for cement producers.

Developing Industrial Hubs for CO2 Utilisation
By co-locating cement plants with other industrial facilities that require CO2, manufacturers can create synergies that make CCUS more economically viable. Industrial hubs that facilitate CO2 trading and re-use across multiple sectors can help cement producers monetise their captured carbon, improving the financial feasibility of CCUS projects.

Strategic Considerations for Large-Scale CCUS Adoption Early-Stage Planning and Feasibility Assessments
Cement manufacturers looking to integrate CCUS should begin with comprehensive feasibility studies to assess site-specific constraints, potential CO2 storage locations, and infrastructure requirements. A phased implementation strategy, starting with pilot projects before full-scale deployment, can help mitigate risks and optimise
system performance.
Neelam Pandey Pathak, Founder and CEO, Social Bay Consulting and Rozgar Dhaba says, “Carbon Capture, Utilisation and Storage (CCUS) has emerged as a transformative technology that holds the potential to revolutionise cement manufacturing by addressing its carbon footprint while supporting global sustainability goals. CCUS has the potential to be a game-changer for the cement industry, which accounts for about seven to eight per cent of global CO2 emissions. It addresses one of the sector’s most significant challenges—emissions from clinker production. By capturing CO2 at the source and either storing it or repurposing it into value-added products, CCUS not only reduces
the carbon footprint but also creates new economic opportunities.”

Government Incentives and Policy Support
For CCUS to achieve widespread adoption, governments must play a crucial role in providing financial incentives, tax credits, and regulatory frameworks that support carbon capture initiatives. Policies such as carbon pricing, emission reduction credits, and direct subsidies for CCUS infrastructure can make these projects more economically viable for cement manufacturers.
Neeti Mahajan, Consultant, E&Y India says, “With new regulatory requirements coming in, like SEBI’s Business Responsibility and Sustainability Reporting for the top 1000 listed companies, value chain disclosures for the top 250 listed companies, and global frameworks to reduce emissions from the cement industry – this can send stakeholders into a state of uncertainty and unnecessary panic leading to a semi-market disruption. To avoid this, communication on technologies like carbon capture utilisation and storage (CCUS), and other innovative tech technologies which will pave the way for the cement industry, is essential. Annual reports, sustainability reports, the BRSR disclosure, and other broad forms of communication in the public domain, apart from continuous stakeholder engagement internally to a company, can go a long way in redefining a rather traditional industry.”

The Role of Global Collaborations in Scaling CCUS
International collaborations will be essential in driving CCUS adoption at scale. Countries that have made significant progress in CCUS, such as Canada, Norway, and the U.S., offer valuable insights and technological expertise that can benefit emerging markets. Establishing partnerships between governments, industry players, and research institutions can help accelerate technological advancements and facilitate knowledge transfer.
Raj Bagri, CEO, Kapture, says “The cement industry can leverage CCUS to capture process and fuel emissions and by using byproducts to replace existing carbon intensive products like aggregate filler or Portland Cement.”
Organisations like the Carbon Capture Knowledge Centre in Saskatchewan provide training programs and workshops that can assist cement manufacturers in understanding CCUS implementation. Additionally, global symposiums and industry conferences provide platforms for stakeholders to exchange ideas and explore collaborative opportunities.
According to a Statista report from September 2024, Carbon capture and storage (CCS) is seen by many experts as a vital tool in combating climate change. CCS technologies are considered especially important for hard-to-abate industries that cannot be easily replaced by electrification, such as oil and gas, iron and steel, and cement and refining. However, CCS is still very much in its infancy, capturing just 0.1 per cent of global CO2 emissions per year. The industry now faces enormous challenges to reach the one billion metric tons needing to be captured and stored by 2030 and live up to the hype.
The capture capacity of operational CCS facilities worldwide increased from 28 MtCO2 per year in 2014 to around 50 MtCO2 in 2024. Meanwhile, the capacity of CCS facilities under development or in construction has risen to more than 300 MtCO2 per year. As of 2024, the United States had the largest number of CCS projects in the pipeline, by far, with 231 across various stages of development, 17 of which were operational. The recent expansion of CCS has been driven by developments in global policies and regulations – notably the U.S.’ Inflation Reduction Act (IRA) – that have made the technology more attractive to investors. This has seen global investment in CCS more than quadruple since 2020, to roughly $ 11 billion in 2023.

The Future of CCUS in the Cement Industry
As technology advances and costs continue to decline, CCUS is expected to play a crucial role in the cement industry’s decarbonisation efforts. Innovations such as cryogenic carbon capture and direct air capture (DAC) are emerging as promising alternatives to traditional amine-based systems. These advancements could further enhance the feasibility and efficiency of CCUS in cement manufacturing.
In conclusion, while challenges remain, the integration of CCUS in the cement industry is no longer a question of “if” but “when.” With the right mix of technological innovation, strategic planning, and policy support, CCUS can help the cement sector achieve net zero emissions while maintaining its role as a vital component of global infrastructure development.

Continue Reading

Concrete

Exploring the Indo-German Alliance

Published

on

By

Shares



ICR explores the Indo-German partnership is driving growth through collaboration in trade, technology, sustainability, and workforce development, with a strong focus on SMEs and innovation. By leveraging each other’s strengths, both nations are fostering industrial modernisation, skill development, and economic resilience for a sustainable future.

The optimism expressed by the panellists suggests that Indo-German collaboration is not only beneficial for both countries but also sets a powerful example for global partnerships.
In a rapidly evolving global economy, strategic international collaborations are more important than ever. One such partnership that continues to gain momentum is between India and Germany. This collaboration spans a wide array of sectors—from trade and technology to sustainability and workforce development—and is already delivering impressive results. The recent First Construction Council webinar, titled ‘Indo-German Partnership: Collaborating for Growth’, provided an extensive look at this vital alliance. Moderated by Rajesh Nath, Managing Director, VDMA India, the session explored the evolution, opportunities, and challenges that define the Indo-German partnership, which saw an impressive $33 billion in bilateral trade in 2023.

From Trade to Technology
The Indo-German relationship has undergone a remarkable transformation over the years, transitioning from basic trade to multifaceted cooperation. Rajesh Nath opened the session by underscoring the dynamic nature of Indo-German trade, with more than 1,800 German companies now operating in India. “Machinery accounts for nearly a third of our bilateral trade,” Nath shared, highlighting sectors such as renewable energy, digitalisation, and green hydrogen as key growth areas for the future.
V.G. Sakthikumar, Managing Director, Schwing Stetter India, reflected on his company’s own journey, which mirrors the broader evolution of the Indo-German partnership. When Schwing Stetter first set up operations in India in 1998, the country was considered a relatively small market. Today, India has become the largest manufacturing hub for Schwing Stetter, with exports flowing to markets in Europe, the U.S., and even China. “Germany trusted India to produce high-quality products at competitive prices, and now, we export machinery back to Germany and America,” said Sakthikumar, underscoring the mutual growth that has defined this partnership.

India’s Industrial Modernisation
Germany has played a pivotal role in India’s industrial modernisation, particularly in advancing manufacturing capabilities. Maanav Goel, Managing Director, Hoffmann Quality Tools India, discussed how the historical and contemporary aspects of Indo-German cooperation have shaped both nations’ industries. “Before 1947, our interactions were largely limited to cultural exchanges,” Goel said, explaining how industrial cooperation became central after India’s independence. “Today, German companies like Hoffmann have developed high-quality tools tailored to industries such as automotive and aerospace.”
Goel also pointed out that German companies have been instrumental in advancing India’s Industry 4.0 ambitions. “Sustainability is not just a cost; it’s an investment,” he added, referring to the energy-efficient and precision-engineered solutions Hoffmann provides to enhance India’s manufacturing sector.

Research, Innovation, and the Role of Technology
Innovation has always been the core of the Indo-German partnership. Anandi Iyer, Director, Fraunhofer Office India, highlighted how research and innovation are driving both countries toward a more sustainable future. As the world’s largest applied research ecosystem, Fraunhofer has introduced technologies ranging from digital twins for manufacturing to waste-to-construction materials, all aimed at improving efficiency and sustainability in Indian industries.
Reflecting on Fraunhofer’s work in India, Iyer noted that India is not just a market for technology, but a hub of entrepreneurship and rapid implementation. “We entered India in 2008, and today we earn over €70 million annually from Indian industry contracts,” she shared. Iyer also stressed the importance of democratising technology, especially for India’s small and medium enterprises (SMEs). “SMEs are crucial to the future of both India and Germany. By creating innovation clusters similar to Germany’s, we can ensure that technology benefits all businesses, big and small,” she said.

Cornerstone of Growth
SMEs are a critical focus in the Indo-German partnership. Manoj Barve, India Head, BVMW, emphasised their importance in both countries. “In Germany, SMEs contribute 55 per cent to GDP and employ 60 per cent of the workforce,” Barve said. “India’s SMEs, which contribute 30 per cent to the country’s GDP, are equally important for job creation and economic growth.”
Barve also discussed the complementary strengths of India and Germany. India’s prowess in IT, coupled with Germany’s engineering expertise, provides a fertile ground for collaboration. “Germany’s advanced technology can support India’s ‘Make in India’ initiative, while India’s cost-effective manufacturing can help Germany tackle its energy-led inflation,” he explained.
Gender diversity was another issue Barve touched upon, pointing out that Germany’s workforce is 62 per cent female, supported by policies such as parental leave and flexible working hours. “India, at 37 per cent, has room to grow in this area,” he added. “Addressing issues like workplace safety and societal norms can help unlock the full potential of Indian women in the workforce.”

Navigating Challenges and Expanding Reach
The webinar also addressed the challenges that SMEs face when attempting to expand internationally. Nitin Pangam, Managing Director, Maeflower Consulting, emphasised the need for deeper market insights and sustained engagement to succeed globally. “SMEs need to understand target markets better, whether it’s leveraging the Inflation Reduction Act in the U.S. or tapping into infrastructure projects in Saudi Arabia,” Pangam said.
He also stressed the importance of government support for SMEs. “Institutions like Invest India and VDMA India play a crucial role in guiding SMEs toward international expansion,” Pangam added, suggesting that India could benefit from models like Enterprise Ireland’s, which helps SMEs navigate global markets.

Shared Responsibility
An often overlooked but vital aspect of Indo-German collaboration is skill development. Schwing Stetter’s Sakthikumar discussed how the company has been proactive in training operators and welders, addressing the significant skills gap in India’s construction machinery sector. “We have partnered with state governments to create training programs that produce highly skilled workers, and some of our welding schools have produced global champions,” he shared.
Iyer also highlighted the potential for India to adopt Germany’s dual education system, which sees 5 per cent of the workforce engaged in training at any given time. “This system can be a model for India, where industry-driven skill programs can help bridge the skills gap and align workers with evolving technologies,” Iyer explained.

Looking to the Future
The future of the Indo-German partnership lies in embracing sustainability, digitalisation, and workforce empowerment. Rajesh Nath summarised the webinar’s discussions, emphasising that sustainability and supply chain resilience will play a defining role in the relationship moving forward. “Leveraging technology and deepening institutional collaboration are key to the future,” Nath concluded, signalling the importance of continued cooperation in these areas.
The optimism expressed by the panellists suggests that Indo-German collaboration is not only beneficial for both countries but also sets a powerful example for global partnerships. As Iyer aptly remarked, “The future is bright, but it requires strategic steps to make SMEs and innovation the engines of growth.”
The Indo-German partnership represents a model of what strategic international cooperation can achieve. By focusing on trade, technology, sustainability, and workforce development, both nations have been able to create a mutually beneficial relationship that drives growth and innovation. As India and Germany move forward, their cooperation will serve as a blueprint for growth in the years to come.

Continue Reading

Concrete

An Inclusive Budget

Published

on

By

Shares



Harking on the ‘sabka vikas’ maxim, Union Budget 2025 presented several key industries, including infrastructure and urban development, with promising provisions, while endowing the middle class with reformative taxation. ICR brings you a special report.

Finance Minister Nirmala Sitharaman’s Union Budget 2025 outlined a multi-pronged approach to achieving ‘Viksit Bharat.’ Key themes included poverty eradication, quality education, and affordable healthcare. The budget focused on tax reforms, middle-class empowerment, and national economic growth. Special attention was given to the aspirations of GYAN (Garib, Yuva, Annadata, and Nari Shakti).
Union Budget 2025 also stressed the need to expedite the pending housing projects. Together with the impetus given to infrastructure and urban development, the budget bodes well for the cement sector. We reached out to key opinion leaders from the industry to understand their reaction to the budget.

Towards sustainable growth
Arun Shukla, President and Director, JK Lakshmi Cement, applauded the focus of Union Budget 2025 on expanding infrastructure through PPP models and streamlining trade and warehousing facilities, as this will create a conducive environment for cement demand, driving sustainable growth in the industry.
Elaborating further he said, “As we continue to build a stronger future for India, the 2025 Union Budget offers a clear path forward, focusing on sustainable growth, affordable housing and infrastructure development. The completion of 50,000 dwelling units in stressed housing projects and the Rs.1.5 lakh crore allocation for infrastructure will bring much-needed relief to middle-class families, helping them move closer to homeownership while fostering rapid urbanisation. We are optimistic about the Rs 10 lakh crore asset monetisation plan, which will infuse capital into new projects, sparking innovation across key sectors.”
A media release from Cement Manufacturers’ Association (CMA) said that the cement industry is poised to leverage the opportunities presented by Union Budget 2025 by ensuring steady and sustained supplies of cement to meet the nation’s growing domestic market and infrastructure demand coupled with sustainable and innovative technologies.
Lauding the budget for its comprehensive focus on holistic and inclusive development, Neeraj Akhoury, President, CMA, and Managing Director, Shree Cement, stated, “The Budget reinforces a transformative journey towards building a resilient economy for advancing India’s development goals. The various initiatives announced by the Government balance people’s aspirations with the future requirements for the country’s economic growth. The focus on increased investments on infrastructure across states amplifies opportunities and avenues for the growth of the cement sector. We appreciate the sustained core focus on infrastructure and reiterate our commitment to being partners in the nation’s progress.”
He opined that the increased spending on large scale housing and infrastructure projects will drive demand for construction materials allowing capacity expansion and promotion of innovation in sustainable practices. “We are certain that despite challenges these measures will support the cement Industry in achieving a consistent CAGR growth rate of more than 6 per cent of installed cement capacity in the present financial year. Policy reforms in Budget 2025-26 signal a reaffirmation of the Government’s intent to augment socio economic growth across core sectors,” he added.
Calling the budget a forward-looking roadmap, Parth Jindal, Vice President, CMA and Managing Director, JSW Cement, said, “It prioritises growth in key sectors such as infrastructure, manufacturing, and technology. The increased investment in technology will accelerate advancements in green cement solutions, driving both sustainability and innovation within the industry. Notable allocations, including Rs.20,000 crore to foster innovation and Rs.1.5 lakh crore in 50-year interest-free loans to states for capital expenditure on infrastructure development, are expected to significantly bolster growth in the core sectors, including cement sector.
He further added, “The budget’s focus on a three-year pipeline of projects under the public-private partnership (PPP) model will incentivise private sector investment and catalyse a transformation in the infrastructure landscape. The establishment of five National Centres of Excellence for skill development, as part of the ‘Make for India, Make for the World’ initiative, will ensure that India’s emerging workforce is well-equipped to meet the demands of a rapidly growing economy.”
Praising the Finance Minister’s efforts at prioritising sustained reforms in manufacturing, mining, power and skill development, Vivek Bhatia, MD and CEO, TKIL Industries, said, “These sectors will be key drivers of growth, infrastructure development, governance improvements and sustainable development for the country. We welcome the government’s move towards accelerating India’s manufacturing sector. Over the past decade, structural reforms have drawn global attention, and the announcement of a National Manufacturing Mission is a significant step in strengthening the Make in India initiative. This will drive clean-tech manufacturing, bolstering the ecosystem for solar cells, EV batteries, wind turbines and more.”
He added, “The `1.5 lakh crore allocation for 50-year interest-free loans is set to accelerate infrastructure development, unlocking new growth avenues for us. These strategic measures position India as a rising global manufacturing hub, seamlessly aligning with its green energy and economic ambitions. We applaud these initiatives and eagerly anticipate the forthcoming policy on critical mineral recovery, which will play a pivotal role in driving sustainable industrial growth.”
Raman Bhatia, MD, Servotech Renewable Power System, echoed the sentiments as he noted the provisions made for incentivising electricity distribution reforms. He said, “The practical approach of allowing additional borrowing for states contingent on these reforms is commendable. The inclusion of 35 additional capital goods for EV battery manufacturing is a significant boost to domestic lithium-ion battery production, a critical component for the EV sector. I particularly appreciate the emphasis on improving domestic value addition and building our ecosystem for these crucial technologies. The substantial allocation for private sector-driven R&D and innovation is another welcome move that will further accelerate progress.”

Constructing a sturdier future
Union Budget 2025 bodes well for the infrastructure and construction industries, too, which in turn directly impacts the growth of the cement sector. Emphasis on economic expansion, infrastructure growth, support for MSMEs and empowering the middle-class are several key factors that will create favourable grounds for increase in construction activities.
Lalit Parihar, Managing Director, Aaiji Group, said, “Raising the exemption limit will boost disposable income, enhancing housing affordability and driving real estate demand. Increased infrastructure spending and the Rs 1 lakh crore Urban Challenge Fund will transform cities into growth hubs, fostering redevelopment and strengthening water and sanitation systems. These measures aim to stimulate domestic consumption, address the economic slowdown, and create a business-friendly environment. Overall, the budget takes a decisive step toward urban transformation and sustainable economic growth.”
Speaking about the limitations of the budget, Narayan Saboo, Chairman, BigBloc Construction, pointed out, “The focus on consumption-driven growth, coupled with strategic spending, is expected to provide a much-needed push to the economy. Although we were little disappointed with no major tax reliefs for MSMEs. Overall, it is a steady and practical budget aimed at sustaining momentum without major surprises. The budget outlines a long-term path for fiscal consolidation while delivering a significant boost to individual taxpayers by raising the exemption limit. This move is expected to stimulate domestic consumption, addressing the ongoing economic slowdown.”
“The government has not clarified its plans for increased infrastructure spending and other growth-oriented expenditures. However, there is no mention of last year’s CAPEX shortfall, which is a notable omission. While the budget does not introduce any groundbreaking measures, it provides a stable framework to support MSMEs and economic activity,” he added.
While Rakesh Reddy, Director, Aparna Constructions, highlighted the `1 lakh crore Urban Challenge Fund and the Rs.1.5 lakh crore interest-free loan to states for infrastructure development in his reaction to the budget, he also pointed out that several key industry expectations for the real estate sector remain unaddressed. “Granting industry status to real estate, streamlining approval processes, and enhancing liquidity support for developers were essential priorities which would have gone a long way in accelerating real estate growth,” he clarified.
“We welcome the Rs.1 lakh crore Urban Challenge Fund, which will spur housing and private sector participation. The Rs.15,000 crore SWAMIH Fund-2 will help complete 40,000 stalled units, boosting consumer confidence. Expanding UDAN’s connectivity to 120 destinations will drive tier II market growth. With policy continuity and economic expansion, this budget reinforces real estate as a key pillar of India’s $5 trillion economy journey,” stated Ashish Puravankara, Managing Director, Puravankara.
Prashant Sharma, President, NAREDCO Maharashtra, said, “The Union Budget 2025-26 has emphasised economic growth and inclusive development, but the absence of specific measures for the real estate sector is a major disappointment. While the Rs.1 lakh crore Urban Challenge Fund is a step in the right direction to transform cities into growth hubs, the sector was expecting direct incentives such as industry status, single-window clearances and increased tax benefits for homebuyers.”
Ravleen Sethi, Director, CareEdge Ratings, in her report stated that the ongoing consolidation in India’s cement sector is driving competition, with companies shifting focus to profitability and expansion. While the Union Budget 2025 provides some support through infrastructure spending and housing initiatives, the lower-than-expected capex allocation raises concerns. The government aims to boost private sector investment in infrastructure, but its pace of scaling up remains uncertain. Cement companies must prioritise operational efficiency and innovation to manage near-term challenges. A long-term growth outlook remains positive, but adaptability will be key in leveraging both public and private sector opportunities.
The Union Budget 2025 lays a solid foundation for economic growth, infrastructure expansion and middle-class empowerment. While it introduces key reforms and allocations to drive sustainable development, some industry expectations remain unmet. The emphasis on urban transformation, manufacturing, and green energy signals a progressive vision for Viksit Bharat. Moving forward, effective implementation will be crucial in realising the budget’s ambitious goals.

Continue Reading

Trending News

This will close in 5 seconds

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds