Connect with us

Concrete

The impact is clear: 40 per cent lower CO2 missions from cement

Published

on

Shares

The maths is simple: replace 30 per cent of clinker with calcined clay for up to a 40 per cent reduction in CO2 emissions. It’s smart, it’s efficient, and it’s something almost every cement manufacturer could do right now. Steven Miller, Global Process Line Manager at FLSmidth, shares insights on the naturally occurring mineral that is set to accelerate the green transition of cement.

With 7 per cent to 8 per cent of all global carbon emissions coming from cement production, the pressure is rising. Environmental regulations grow progressively more demanding. Financiers shy away from emissions-intensive investments. And around the world, citizens, governments, and a broad range of other organisations are calling for action on climate change. For the cement industry, it’s the perfect storm – and it calls for innovation and ingenuity. Right now, there is no substitution at scale for concrete. But we all know we can’t continue our current practices. To meet our sustainability commitments in line with the Paris Agreement, we need to make some radical shifts. This challenge presents a new opportunity for a centuries-old material combined with 21ˢᵗ century technology.

Step one: Cut the clinker factor
The science of the cement manufacturing process is well known. Reducing energy consumption and switching from fossil fuels to carbon neutral alternative fuels have the capability to cut CO2 emissions by up to ~35 per cent. But the majority of the CO2 coming from the manufacturing process occurs during limestone calcination. In the future, we hope these emissions will be captured before entering the atmosphere, but right now that technology is still some way off widescale availability. Instead, we have a more accessible solution: Cut the clinker factor – i.e. the quantity of clinker used in the cement mix.

For many years, cement manufacturers around the world have been doing just that. Fly ash from coal fired power plants, blast furnace slag from iron and steel manufacturing, and a range of other natural and manmade pozzolans have helped cement manufacturers achieve clinker factors as low as 0.4 for some cement types.

However, these low clinker factors are not possible across the board. They are highly dependent on local availability. And as coal-fired power is phased out and iron and steel producers work to reduce their environmental impact, the availability of these industry by-products will fall away altogether. What we don’t want is to see the clinker factor increasing again, along with emissions.

Fortunately, we have an alternative. A widely available, naturally-occurring mineral can be activated into a supplementary cementitious material that can replace 30 per cent of clinker and eliminate up to 40 per cent of CO2 emissions.

In some cases, an even higher percentage of clinker replacement is possible. Best of all, the technology to incorporate it into your process already exists. It has a low ROI, and it’s actually cheaper to manufacture than clinker. What are we talking about?

Calcined Clay – the future of green cement
Clay is found almost everywhere in the world, making it a natural solution in regions where a lack of limestone availability drives up the cost of cement. With the right treatment, it makes an excellent replacement for clinker. You may even be able to use some of the equipment you already have on site, further reducing your investment.

The process is simple. We use the best available technologies from the cement and mining industries to optimise clinker substitution while maintaining cement quality.

This begins with our established ET dryer crusher, which is especially designed for materials like clay with up to 40 per cent moisture content. Using waste gases from the preheater, feed material is dried and crushed in one operation, achieving both the required fineness and a free moisture content of just 1 per cent by the time the clay enters the preheater.

From the dryer crusher, the material is fed to the 2-stage preheater/calciner system for calcination. It’s important to note that any fuels you fire in your existing calciner can be used in the clay calciner, including up to 100 per cent waste fuels.

What colour should green cement be?
Perhaps in the future, the natural red colour of calcined clay will be a sign of a green cement. For now, however, our clay calciner includes colour control technology to ensure the final result is traditional cement grey. This will ensure easy adoption by the cement industry’s customers who have had many decades of building grey buildings, bridges and roads – and may need additional time to change their perspective on colour.

The calciner is engineered for consistent clay activation. This ensures you get the uniform product quality that enables you to substitute more clinker in your cement product. After the activated clay has been collected in the bottom stage of the calciner, it is sent to a reducing zone where the colour control process takes place. From there the clay is introduced to a series of cooling cyclones to attain a final product temperature in the range of 100 – 120˚C. Cooling is achieved using fresh air, which is then heated by the cooling clay and recovered for use as combustion air in the calciner. This is significantly more efficient than water cooling and ensures the lowest possible fuel consumption.

Elimi nate f ossil f uels by electrif ying clay calcination To further decarbonise the cement industry, FLSmidth and a series of leading industry experts have formed a new partnership called ECoClayTM.

To reduce CO2 emissions from cement production by up to 50 per cent, the ECoClay partners will develop and commercialise the technology needed to replace fossil fuels in the calcination of clay by fully electrifying the process.

Led by FLSmidth, the global ECoClay partners include US-based industrial heating expert Rondo Energy, cement producers VICAT from France and Colombian Cementos Argos, and the Technical University of Denmark.

Based on the shared research and tests on hightemperature electric heat generation, storage solutions and renewable grid integration, the ECoClay partnership will build a pilot plant at FLSmidth’s R&D Center in Denmark. The consortium will seek to demonstrate how the ECoClay process is superior to the conventional combustion processes, has a smaller physical footprint on site and significantly lower emissions of air pollutants.

According to the project plan, the ECoClay partners expect to be able to commence construction of the first full-scale electric clay calcination installation by the end of 2025.

Concrete

India Sets Up First Carbon Capture Testbeds for Cement Industry

Five CCU testbeds launched to decarbonise cement production

Published

on

By

Shares



The Department of Science and Technology (DST) recently unveiled a pioneering national initiative: five Carbon Capture and Utilisation (CCU) testbeds in the cement sector, forming a first-of-its-kind research and innovation cluster to combat industrial carbon emissions.
This is a significant step towards India’s Climate Action for fostering National Determined Contributions (NDCs) targets and to achieve net zero decarbonisation pathways for Industry Transition., towards the Government’s goal to achieve a carbon-neutral economy by 2070.
Carbon Capture Utilisation (CCU) holds significant importance in hard-to-abate sectors like Cement, Steel, Power, Oil &Natural Gas, Chemicals & Fertilizers in reducing emissions by capturing carbon dioxide from industrial processes and converting it to value add products such as synthetic fuels, Urea, Soda, Ash, chemicals, food grade CO2 or concrete aggregates. CCU provides a feasible pathway for these tough to decarbonise industries to lower their carbon footprint and move towards achieving Net Zero Goals while continuing their operations efficiently. DST has taken major strides in fostering R&D in the CCUS domain.
Concrete is vital for India’s economy and the Cement industry being one of the main hard-to-abate sectors, is committed to align with the national decarbonisation commitments. New technologies to decarbonise emission intensity of the cement sector would play a key role in achieving of national net zero targets.
Recognizing the critical need for decarbonising the Cement sector, the Energy and Sustainable Technology (CEST) Division of Department launched a unique call for mobilising Academia-Industry Consortia proposals for deployment of Carbon Capture Utilisation (CCU) in Cement Sector. This Special call envisaged to develop and deploy innovative CCU Test bed in Cement Sector with thrust on Developing CO2 capture + CO2 Utilisation integrated unit in an Industrial set up through an innovative Public Private Partnership (PPP) funding model.
As a unique initiative and one of its first kind in India, DST has approved setting up of five CCU testbeds for translational R&D, to be set up in Academia-Industry collaboration under this significant initiative of DST in PPP mode, engaging with premier research laboratories as knowledge partners and top Cement companies as the industry partner.
On the occasion of National Technology Day celebrations, on May 11, 2025 the 5 CCU Cement Test beds were announced and grants had been handed over to the Test bed teams by the Chief Guest, Union Minister of State (Independent Charge) for Science and Technology; Earth Sciences and Minister of State for PMO, Department of Atomic Energy, Department of Space, Personnel, Public Grievances and Pensions, Dr Jitendra Singh in the presence of Secretary DST Prof. Abhay Karandikar.
The five testbeds are not just academic experiments — they are collaborative industrial pilot projects bringing together India’s top research institutions and leading cement manufacturers under a unique Public-Private Partnership (PPP) model. Each testbed addresses a different facet of CCU, from cutting-edge catalysis to vacuum-based gas separation.
The outcomes of this innovative initiative will not only showcase the pathways of decarbonisation towards Net zero goals through CCU route in cement sector, but should also be a critical confidence building measure for potential stakeholders to uptake the deployed CCU technology for further scale up and commercialisation.
It is envisioned that through continuous research and innovation under these test beds in developing innovative catalysts, materials, electrolyser technology, reactors, and electronics, the cost of Green Cement via the deployed CCU technology in Cement Sector may considerably be made more sustainable.
Secretary DBT Dr Rajesh Gokhale, Dr Ajai Choudhary, Co-Founder HCL, Dr. Rajesh Pathak, Secretary, TDB, Dr Anita Gupta Head CEST, DST and Dr Neelima Alam, Associate Head, DST were also present at the programme organized at Dr Ambedkar International Centre, New Delhi.

Continue Reading

Concrete

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Electric vehicles deployed between JK Puram and Kalol units

Published

on

By

Shares



JK Lakshmi Cement, a key player in the Indian cement industry, has announced the deployment of electric vehicles (EVs) in its logistics operations. This move, made in partnership with SwitchLabs Automobiles, will see EVs transporting goods between the JK Puram Plant in Sirohi, Rajasthan, and the Kalol Grinding Unit in Gujarat.
The announcement follows a successful pilot project that showcased measurable reductions in carbon emissions while maintaining efficiency. Building on this, the company is scaling up EV integration to enhance sustainability across its supply chain.
“Sustainability is integral to our vision at JK Lakshmi Cement. Our collaboration with SwitchLabs Automobiles reflects our continued focus on driving innovation in our logistics operations while taking responsibility for our environmental footprint. This initiative positions us as a leader in transforming the cement sector’s logistics landscape,” said Arun Shukla, President & Director, JK Lakshmi Cement.
This deployment marks a significant step in aligning with India’s push for greener transport infrastructure. By embracing clean mobility, JK Lakshmi Cement is setting an example for the industry, demonstrating that environmental responsibility can go hand in hand with operational efficiency.
The company continues to embed sustainability into its operations as part of a broader goal to reduce its carbon footprint. This initiative adds to its vision of building a more sustainable and eco-friendly future.
JK Lakshmi Cement, part of the 135-year-old JK Organisation, began operations in 1982 and has grown to become a recognised name in Indian cement. With a presence across Northern, Western, and Eastern India, the company has a cement capacity of 16.5 MTPA, with a target to reach 30 MT by 2030. Its product range includes ready-mix concrete, gypsum plaster, wall putty, and autoclaved aerated fly ash blocks.

Continue Reading

Concrete

Holcim UK drives sustainable construction

Published

on

By

Shares



Holcim UK has released a report titled ‘Making Sustainable Construction a Reality,’ outlining its five-fold commitment to a greener future. The company aims to focus on decarbonisation, circular economy principles, smarter building methods, community engagement, and integrating nature. Based on a survey of 2,000 people, only 41 per cent felt urban spaces in the UK are sustainably built. A significant majority (82 per cent) advocated for more green spaces, 69 per cent called for government leadership in sustainability, and 54 per cent saw businesses as key players. Additionally, 80 per cent of respondents stressed the need for greater transparency from companies regarding their environmental practices.

Image source:holcim

Continue Reading

Trending News