Connect with us

Concrete

Efficient grinding unit selection impacts profitability

Published

on

Shares

ICR gets Vimal Jain, Director – Technical, HeidelbergCement India, to share his views about the innovations in technology of the grinding process and grinding aids as well as his understanding on how the entire process can be made more energy-efficient and cost-effective.

Explain the grinding process in cement manufacturing.
The grinding process is needed to create surface area for a good chemical reaction and reactivity to occur in cement manufacturing. The grinding process is mainly required for raw material, coal and clinker grinding in the cement manufacturing process.
The process of cement manufacturing involves grinding clinker granules along with blending materials or additives and gypsum to produce a fine powder called cement. Depending on the quality of clinker and type of cement, blending material/gypsum are added in controlled proportion to produce a quality product to meet the prescribed quality as per given codes.
Optimum fineness needs to be found for the type of raw materials, coal, and clinker to avoid over-grinding, which comes with ‘excess energy’ consumption and has a negative impact on quality and cost.
The quality of cement depends on its physical and chemical properties. Technology has advanced over the period and the grinding process can help in augmenting some properties of cement.

Tell us about the equipment used for grinding raw material and clinker.
The main equipment used for grinding raw materials and clinker are categorised based on their size reduction concept and mechanism as,
Ball Mill (BM):
Size reduction mechanism –

  1. Impact: particle breakage by a single rigid force causing fracture.
  2. Attrition or Abrasion: arising from particles scraping against one another or against a
    rigid surface.
    Ball mills are the most widely installed grinding equipment in the cement industry. It consists of a rotating cylinder filled with steel balls that tumble inside the mill, applying impact and friction forces to the clinker particles. For better grinding efficiency, the mill may be operated with one, two or three internal compartments separated by diaphragms that prevent the transfer of the balls between the compartments while allowing the flow of the ground material through the mill.
    Roller Press (RP)
    Size reduction mechanism – Compression: particle disintegration by two rigid forces.
    The roller press has been extensively used as a pre-grinder as well as a stand-alone cement mill. It compresses the material in a gap between two counter-rotating grinding rollers lined with wear-resistant material. The output product contains fine and coarse particles with a large number of cracks and weak points that significantly reduce the energy requirement during the further stage of fine grinding.
    Vertical Roller Mill (VRM)
    Size reduction mechanism –
  3. Compression
  4. Shear or Chipping: produced by fluid or particle-particle interaction.
  5. Attrition or Abrasion
    In a vertical roller mill, two-four rollers turning on their axles press on a rotating grinding table mounted on the yoke of a gearbox. Pressure is exerted hydraulically. This mill also has a built-in high-efficiency separator above the rollers. The vertical roller mills offer high drying capacity, comparatively low energy consumption, and compactness.
    Hybrid Grinding: a combination of Ball Mill with Roller press
    Horo Mill (HM): it is similar to the vertical mill but the roller arrangement differs from VRM.
    In the ball mill, RP and Combined grinding system separation take place outside the grinding mill, whereas in the VRM separation and grinding take place in one system.
    The technologies involved in cement can be classified as per the following:
    Intergrinding: With the intergrinding process, all components of the blended cement are ground together. In that way, the cement is homogenised during the grinding, and at the cement plant only one silo is needed. Because of interactions between the different cement components due to differences in grindability, the PSD of the blended cement and the different components is difficult to control due to differential grindability due to different hardness of materials. Equipment for the inter grindings are Ball mills, roll press/ Pre-grinder + Ball mill, Horo mill, and VRMs.
    Separate grinding: The separate grinding process is grinding the various components separately, storing them, and mixing them according to the desired proportions. This process has several advantages: the PSD of each component and of the blended cement can be controlled according to the components’ hardness and required fineness, and appropriate grinding equipment can be used for each component. But in this case, several silos for storage are needed at the cement plant. Equipment for separate grinding is all the grinding equipment mentioned above, with the use of blenders required to blend the grounded material in the proportion needed for the specific cement product.
    The advantage of separate grinding can be to produce a wide range of cements from one plant.
    Grinding systems are either ‘open circuit’ or ‘closed circuit.’ In an open circuit system, the feed rate of the incoming clinker is adjusted to achieve the desired fineness of the product. In a closed circuit system, coarse particles are separated from the finer product and returned for further grinding.

What are the key functionalities that are looked at while installing a grinding unit in your plant?
The key factors, which shall be carefully considered, include:

  • Product quality requirement: market requirement
  • Machine sizing and layout: investment cost
  • Raw materials quality and characteristics: input materials
  • Mechanical design: maintenance cost and reliability
  • Latest design innovations including high grinding efficiency, energy saving and environmental protection, good quality of finished products, etc., performance improvement
  • On-demand changes: project-specific requirement
  • Product diversification: commercial reasons
  • Capex vs Opex economics: budget
  • Spare part and service availability: after-sales service

What is the contribution of grinding units in making cement-making processes efficient and productive?
The grinding unit plays an important role in making the operation efficient. Approximately 60 per cent of the cement power is absorbed in the grinding circuit, and to be competitive in the market, power cost plays an important role.
It is also observed that particle size distribution is better in the BM compared to other mills considering the product quality requirement.
The following grinding units are involved in cement making process:

  • Raw material grinding: to improve raw meal burning behavior, clinker quality, and kiln output, including thermal energy requirement
  • Coal grinding: better combustion of fuels, improves the flame property, and avoids CO2 generation, including improved burning process
  • Cement grinding: cement hydration, strength development, and water demand

How do grinding units contribute to the profitability of the cement-making process?
The grinding unit contributes to profitability in the following ways:
The electrical energy price is a major contributor to the cost of production. Therefore, producing cement with less energy is becoming a key element of profitability: as the grinding process consumes about 60 per cent of the total plant electrical energy demand and about 20 per cent of cement production variable cost. So efficient grinding unit selection impacts profitability of cement manufacturing. Optimum fineness needs to be found to avoid over grinding and consuming excess energy Final product PSD (particle size distribution) improves quality and profitability. Where two types of cement have identical surface areas, the cement with the narrower PSD will have a higher compressive strength.
Maximum use of low-cost blending materials, technology and layout such that the repairs and maintenance and manpower costs are lower, etc.

What are the materials and equipment that aid in the process of cement grinding?
Grinding Aid (GA):
In the grinding process, agglomeration takes place, due to this grinding efficiency is reduced and the output and quality of product effects. The GA is a very efficient way to avoid the agglomeration mechanism and improve the over-grinding efficiency. Therefore, GA helps to increase the grinding mill output and reduces
the electrical energy consumption, resulting in improving profitability.
Performance Enhancers/Quality Improvers: Due to the quality of raw materials and variation in the burning process, desired clinker phase formation does not take place, which impacts the cement performance, workability, and durability. Therefore, in addition to a grinding aid, additional chemicals are used to improve the cement performance and properties, such as setting time and strength development
Functional Additives: The additive imparts a specific property, such as air entrainment in masonry cement or chromium (VI) reduction.
Supplementary Cementitious Materials (SCM): Supplementary Cementitious Materials (SCMs) are added to cement mixtures for various reasons, including improving durability, decreasing permeability, aiding in pumpability, mitigating alkali reactivity, and improving the overall hardened properties of concrete. This also helps to reduce the carbon dioxide footprint in cement manufacturing. The use of SCMs also reduces the dependency on natural resources and enhances the circular economy.
Equipment: Raw materials storage, dosing station, raw material transport conveyors/elevators, weigh feeders, air separators, baghouse, product transport and storage silos are the key equipment of the grinding units.
Air Separator is one of the vital equipment for grinding systems that plays a significant role in maintaining product quality and increasing the grinding system productivity.
QC Lab: It’s a must for sampling and testing so that consistent quality material is produced and supplied to customers.

How do you ensure standards in the process?
During manufacturing, quality control parameters are established with reference to the national standards, and accordingly, the sampling and testing plan of the company is maintained.
There are very well descriptive quality control and assurance plans at various stages of the manufacturing/operations.
At each of our plants, we have state-of-the-art laboratories to produce quality cement much above the spec from the BIS. We have a very low standard deviation in the finished product that indicates the consistency in the cement. We are certified with applicable ISO standards to ensure that the product supplied is safe, environmentally compliant, and quality consistent.

How often is the same monitored?
Cement manufacturing is a continuous process and monitoring is done in 24×7 mode to ensure cement quality.
The quality control starts from the mine to the cement packing, and there are well-defined testing protocols at a sampling frequency. Plants are equipped with various material feeding and transportation systems to maintain the quality and process.

What challenges do you face in the process of cement grinding?
Availability and economics of outsourced materials are major challenges these days. The key challenges are as follows:

  • Availability of reliable and economical energy sources, power generation is becoming expensive due to increasing fuel prices and quality of fuel.
  • Right quality and Quantity of SCMs (Supplementary Cementitious Materials) are needed to achieve cement quality and also to mitigate the challenges of CO2 reduction in the cement-making process
  • Production of multiple cement types needs more storage facilities and impacts mill performance and product quality
  • SCMs with high moisture content demand drying arrangements resulting in a need for more capital as well as operational expenses.
  • Skilled manpower for operation and maintenance.

What are the innovations you would like to see in the technology of the grinding process and grinding aids?
Innovations play an important role in the cement industry. The quality of the product can be enhanced by adopting the right technology and the optimum key performance indicators for producing a quality product at a competitive price. We would like to see further innovation for:

  • Energy efficient equipment and drives to lower the power consumption
  • Separate grinding of cement to improve product quality and lower power consumption to reduce CO2 emission.
  • New hybrid formulations in grinding aid to improve product quality, specific energy consumption and reduce clinker ratio in cement.
  • Innovation for cement production by substituting max possible clinker incorporation by alternative / lower quality cementitious materials but maintaining the product quality.
  • New wear materials for enhancing the life of wear components to reduce the consumables cost per ton.

Kanika Mathur

Concrete

Refractory demands in our kiln have changed

Published

on

By

Shares

Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, points out why performance, predictability and life-cycle value now matter more than routine replacement in cement kilns.

As Indian cement plants push for higher throughput, increased alternative fuel usage and tighter shutdown cycles, refractory performance in kilns and pyro-processing systems is under growing pressure. In this interview, Radha Singh, Senior Manager (P&Q), Shree Digvijay Cement, shares how refractory demands have evolved on the ground and how smarter digital monitoring is improving kiln stability, uptime and clinker quality.

How have refractory demands changed in your kiln and pyro-processing line over the last five years?
Over the last five years, refractory demands in our kiln and pyro line have changed. Earlier, the focus was mostly on standard grades and routine shutdown-based replacement. But now, because of higher production loads, more alternative fuels and raw materials (AFR) usage and greater temperature variation, the expectation from refractory has increased.
In our own case, the current kiln refractory has already completed around 1.5 years, which itself shows how much more we now rely on materials that can handle thermal shock, alkali attack and coating fluctuations. We have moved towards more stable, high-performance linings so that we don’t have to enter the kiln frequently for repairs.
Overall, the shift has been from just ‘installation and run’ to selecting refractories that give longer life, better coating behaviour and more predictable performance under tougher operating conditions.

What are the biggest refractory challenges in the preheater, calciner and cooler zones?
• Preheater: Coating instability, chloride/sulphur cycles and brick erosion.
• Calciner: AFR firing, thermal shock and alkali infiltration.
• Cooler: Severe abrasion, red-river formation and mechanical stress on linings.
Overall, the biggest challenge is maintaining lining stability under highly variable operating conditions.

How do you evaluate and select refractory partners for long-term performance?
In real plant conditions, we don’t select a refractory partner just by looking at price. First, we see their past performance in similar kilns and whether their material has actually survived our operating conditions. We also check how strong their technical support is during shutdowns, because installation quality matters as much as the material itself.
Another key point is how quickly they respond during breakdowns or hot spots. A good partner should be available on short notice. We also look at their failure analysis capability, whether they can explain why a lining failed and suggest improvements.
On top of this, we review the life they delivered in the last few campaigns, their supply reliability and their willingness to offer plant-specific custom solutions instead of generic grades. Only a partner who supports us throughout the life cycle, which includes selection, installation, monitoring and post-failure analysis, fits our long-term requirement.

Can you share a recent example where better refractory selection improved uptime or clinker quality?
Recently, we upgraded to a high-abrasion basic brick at the kiln outlet. Earlier we had frequent chipping and coating loss. With the new lining, thermal stability improved and the coating became much more stable. As a result, our shutdown interval increased and clinker quality remained more consistent. It had a direct impact on our uptime.

How is increased AFR use affecting refractory behaviour?
Increased AFR use is definitely putting more stress on the refractory. The biggest issue we see daily is the rise in chlorine, alkalis and volatiles, which directly attack the lining, especially in the calciner and kiln inlet. AFR firing is also not as stable as conventional fuel, so we face frequent temperature fluctuations, which cause more thermal shock and small cracks in the lining.
Another real problem is coating instability. Some days the coating builds too fast, other days it suddenly drops, and both conditions impact refractory life. We also notice more dust circulation and buildup inside the calciner whenever the AFR mix changes, which again increases erosion.
Because of these practical issues, we have started relying more on alkali-resistant, low-porosity and better thermal shock–resistant materials to handle the additional stress coming from AFR.

What role does digital monitoring or thermal profiling play in your refractory strategy?
Digital tools like kiln shell scanners, IR imaging and thermal profiling help us detect weakening areas much earlier. This reduces unplanned shutdowns, helps identify hotspots accurately and allows us to replace only the critical sections. Overall, our maintenance has shifted from reactive to predictive, improving lining life significantly.

How do you balance cost, durability and installation speed during refractory shutdowns?
We focus on three points:
• Material quality that suits our thermal profile and chemistry.
• Installation speed, in fast turnarounds, we prefer monolithic.
• Life-cycle cost—the cheapest material is not the most economical. We look at durability, future downtime and total cost of ownership.
This balance ensures reliable performance without unnecessary expenditure.

What refractory or pyro-processing innovations could transform Indian cement operations?
Some promising developments include:
• High-performance, low-porosity and nano-bonded refractories
• Precast modular linings to drastically reduce shutdown time
• AI-driven kiln thermal analytics
• Advanced coating management solutions
• More AFR-compatible refractory mixes

These innovations can significantly improve kiln stability, efficiency and maintenance planning across the industry.

Continue Reading

Concrete

Digital supply chain visibility is critical

Published

on

By

Shares

MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, discusses how data, discipline and scale are turning Industry 4.0 into everyday business reality.

Over the past five years, digitalisation in Indian cement manufacturing has moved decisively beyond experimentation. Today, it is a strategic lever for cost control, operational resilience and sustainability. In this interview, MSR Kali Prasad, Chief Digital and Information Officer, Shree Cement, explains how integrated digital foundations, advanced analytics and real-time visibility are helping deliver measurable business outcomes.

How has digitalisation moved from pilot projects to core strategy in Indian cement manufacturing over the past five years?
Digitalisation in Indian cement has evolved from isolated pilot initiatives into a core business strategy because outcomes are now measurable, repeatable and scalable. The key shift has been the move away from standalone solutions toward an integrated digital foundation built on standardised processes, governed data and enterprise platforms that can be deployed consistently across plants and functions.
At Shree Cement, this transition has been very pragmatic. The early phase focused on visibility through dashboards, reporting, and digitisation of critical workflows. Over time, this has progressed into enterprise-level analytics and decision support across manufacturing and the supply chain,
with clear outcomes in cost optimisation, margin protection and revenue improvement through enhanced customer experience.
Equally important, digital is no longer the responsibility of a single function. It is embedded into day-to-day operations across planning, production, maintenance, despatch and customer servicing, supported by enterprise systems, Industrial Internet of Things (IIoT) data platforms, and a structured approach to change management.

Which digital interventions are delivering the highest ROI across mining, production and logistics today?
In a capital- and cost-intensive sector like cement, the highest returns come from digital interventions that directly reduce unit costs or unlock latent capacity without significant capex.
Supply chain and planning (advanced analytics): Tools for demand forecasting, S&OP, network optimisation and scheduling deliver strong returns by lowering logistics costs, improving service levels, and aligning production with demand in a fragmented and regionally diverse market.
Mining (fleet and productivity analytics): Data-led mine planning, fleet analytics, despatch discipline, and idle-time reduction improve fuel efficiency and equipment utilisation, generating meaningful savings in a cost-heavy operation.
Manufacturing (APC and process analytics): Advanced Process Control, mill optimisation, and variability reduction improve thermal and electrical efficiency, stabilise quality and reduce rework and unplanned stoppages.
Customer experience and revenue enablement (digital platforms): Dealer and retailer apps, order visibility and digitally enabled technical services improve ease of doing business and responsiveness. We are also empowering channel partners with transparent, real-time information on schemes, including eligibility, utilisation status and actionable recommendations, which improves channel satisfaction and market execution while supporting revenue growth.
Overall, while Artificial Intelligence (AI) and IIoT are powerful enablers, it is advanced analytics anchored in strong processes that typically delivers the fastest and most reliable ROI.

How is real-time data helping plants shift from reactive maintenance to predictive and prescriptive operations?
Real-time and near real-time data is driving a more proactive and disciplined maintenance culture, beginning with visibility and progressively moving toward prediction and prescription.
At Shree Cement, we have implemented a robust SAP Plant Maintenance framework to standardise maintenance workflows. This is complemented by IIoT-driven condition monitoring, ensuring consistent capture of equipment health indicators such as vibration, temperature, load, operating patterns and alarms.
Real-time visibility enables early detection of abnormal conditions, allowing teams to intervene before failures occur. As data quality improves and failure histories become structured, predictive models can anticipate likely failure modes and recommend timely interventions, improving MTBF and reducing downtime. Over time, these insights will evolve into prescriptive actions, including spares readiness, maintenance scheduling, and operating parameter adjustments, enabling reliability optimisation with minimal disruption.
A critical success factor is adoption. Predictive insights deliver value only when they are embedded into daily workflows, roles and accountability structures. Without this, they remain insights without action.

In a cost-sensitive market like India, how do cement companies balance digital investment with price competitiveness?
In India’s intensely competitive cement market, digital investments must be tightly linked to tangible business outcomes, particularly cost reduction, service improvement, and faster decision-making.
This balance is achieved by prioritising high-impact use cases such as planning efficiency, logistics optimisation, asset reliability, and process stability, all of which typically deliver quick payback. Equally important is building scalable and governed digital foundations that reduce the marginal cost of rolling out new use cases across plants.
Digitally enabled order management, live despatch visibility, and channel partner platforms also improve customer centricity while controlling cost-to-serve, allowing service levels to improve without proportionate increases in headcount or overheads.
In essence, the most effective digital investments do not add cost. They protect margins by reducing variability, improving planning accuracy, and strengthening execution discipline.

How is digitalisation enabling measurable reductions in energy consumption, emissions, and overall carbon footprint?
Digitalisation plays a pivotal role in improving energy efficiency, reducing emissions and lowering overall carbon intensity.
Real-time monitoring and analytics enable near real-time tracking of energy consumption and critical operating parameters, allowing inefficiencies to be identified quickly and corrective actions to be implemented. Centralised data consolidation across plants enables benchmarking, accelerates best-practice adoption, and drives consistent improvements in energy performance.
Improved asset reliability through predictive maintenance reduces unplanned downtime and process instability, directly lowering energy losses. Digital platforms also support more effective planning and control of renewable energy sources and waste heat recovery systems, reducing dependence on fossil fuels.
Most importantly, digitalisation enables sustainability progress to be tracked with greater accuracy and consistency, supporting long-term ESG commitments.

What role does digital supply chain visibility play in managing demand volatility and regional market dynamics in India?
Digital supply chain visibility is critical in India, where demand is highly regional, seasonality is pronounced, and logistics constraints can shift rapidly.
At Shree Cement, planning operates across multiple horizons. Annual planning focuses on capacity, network footprint and medium-term demand. Monthly S&OP aligns demand, production and logistics, while daily scheduling drives execution-level decisions on despatch, sourcing and prioritisation.
As digital maturity increases, this structure is being augmented by central command-and-control capabilities that manage exceptions such as plant constraints, demand spikes, route disruptions and order prioritisation. Planning is also shifting from aggregated averages to granular, cost-to-serve and exception-based decision-making, improving responsiveness, lowering logistics costs and strengthening service reliability.

How prepared is the current workforce for Industry 4.0, and what reskilling strategies are proving most effective?
Workforce preparedness for Industry 4.0 is improving, though the primary challenge lies in scaling capabilities consistently across diverse roles.
The most effective approach is to define capability requirements by role and tailor enablement accordingly. Senior leadership focuses on digital literacy for governance, investment prioritisation, and value tracking. Middle management is enabled to use analytics for execution discipline and adoption. Frontline sales and service teams benefit from
mobile-first tools and KPI-driven workflows, while shop-floor and plant teams focus on data-driven operations, APC usage, maintenance discipline, safety and quality routines.
Personalised, role-based learning paths, supported by on-ground champions and a clear articulation of practical benefits, drive adoption far more effectively than generic training programmes.

Which emerging digital technologies will fundamentally reshape cement manufacturing in the next decade?
AI and GenAI are expected to have the most significant impact, particularly when combined with connected operations and disciplined processes.
Key technologies likely to reshape the sector include GenAI and agentic AI for faster root-cause analysis, knowledge access, and standardisation of best practices; industrial foundation models that learn patterns across large sensor datasets; digital twins that allow simulation of process changes before implementation; and increasingly autonomous control systems that integrate sensors, AI, and APC to maintain stability with minimal manual intervention.
Over time, this will enable more centralised monitoring and management of plant operations, supported by strong processes, training and capability-building.

Continue Reading

Concrete

Redefining Efficiency with Digitalisation

Published

on

By

Shares

Professor Procyon Mukherjee discusses how as the cement industry accelerates its shift towards digitalisation, data-driven technologies are becoming the mainstay of sustainability and control across the value chain.

The cement industry, long perceived as traditional and resistant to change, is undergoing a profound transformation driven by digital technologies. As global infrastructure demand grows alongside increasing pressure to decarbonise and improve productivity, cement manufacturers are adopting data-centric tools to enhance performance across the value chain. Nowhere is this shift more impactful than in grinding, which is the energy-intensive final stage of cement production, and in the materials that make grinding more efficient: grinding media and grinding aids.

The imperative for digitalisation
Cement production accounts for roughly 7 per cent to 8 per cent of global CO2 emissions, largely due to the energy intensity of clinker production and grinding processes. Digital solutions, such as AI-driven process controls and digital twins, are helping plants improve stability, cut fuel use and reduce emissions while maintaining consistent product quality. In one deployment alongside ABB’s process controls at a Heidelberg plant in Czechia, AI tools cut fuel use by 4 per cent and emissions by 2 per cent, while also improving operational stability.
Digitalisation in cement manufacturing encompasses a suite of technologies, broadly termed as Industrial Internet of Things (IIoT), AI and machine learning, predictive analytics, cloud-based platforms, advanced process control and digital twins, each playing a role in optimising various stages of production from quarrying to despatch.

Grinding: The crucible of efficiency and cost
Of all the stages in cement production, grinding is among the most energy-intensive, historically consuming large amounts of electricity and representing a significant portion of plant operating costs. As a result, optimising grinding operations has become central to digital transformation strategies.
Modern digital systems are transforming grinding mills from mechanical workhorses into intelligent, interconnected assets. Sensors throughout the mill measure parameters such as mill load, vibration, mill speed, particle size distribution, and power consumption. This real-time data, fed into machine learning and advanced process control (APC) systems, can dynamically adjust operating conditions to maintain optimal throughput and energy usage.
For example, advanced grinding systems now predict inefficient conditions, such as impending mill overload, by continuously analysing acoustic and vibration signatures. The system can then proactively adjust clinker feed rates and grinding media distribution to sustain optimal conditions, reducing energy consumption and improving consistency.

Digital twins: Seeing grinding in the virtual world
One of the most transformative digital tools applied in cement grinding is the digital twin, which a real-time virtual replica of physical equipment and processes. By integrating sensor data and
process models, digital twins enable engineers to simulate process variations and run ‘what-if’
scenarios without disrupting actual production. These simulations support decisions on variables such as grinding media charge, mill speed and classifier settings, allowing optimisation of energy use and product fineness.
Digital twins have been used to optimise kilns and grinding circuits in plants worldwide, reducing unplanned downtime and allowing predictive maintenance to extend the life of expensive grinding assets.

Grinding media and grinding aids in a digital era
While digital technologies improve control and prediction, materials science innovations in grinding media and grinding aids have become equally crucial for achieving performance gains.
Grinding media, which comprise the balls or cylinders inside mills, directly influence the efficiency of clinker comminution. Traditionally composed of high-chrome cast iron or forged steel, grinding media account for nearly a quarter of global grinding media consumption by application, with efficiency improvements translating directly to lower energy intensity.
Recent advancements include ceramic and hybrid media that combine hardness and toughness to reduce wear and energy losses. For example, manufacturers such as Sanxin New Materials in China and Tosoh Corporation in Japan have developed sub-nano and zirconia media with exceptional wear resistance. Other innovations include smart media embedded with sensors to monitor wear, temperature, and impact forces in real time, enabling predictive maintenance and optimal media replacement scheduling. These digitally-enabled media solutions can increase grinding efficiency by as much as 15 per cent.
Complementing grinding media are grinding aids, which are chemical additives that improve mill throughput and reduce energy consumption by altering the surface properties of particles, trapping air, and preventing re-agglomeration. Technology leaders like SIKA AG and GCP Applied Technologies have invested in tailored grinding aids compatible with AI-driven dosing platforms that automatically adjust additive concentrations based on real-time mill conditions. Trials in South America reported throughput improvements nearing 19 per cent when integrating such digital assistive dosing with process control systems.
The integration of grinding media data and digital dosing of grinding aids moves the mill closer to a self-optimising system, where AI not only predicts media wear or energy losses but prescribes optimal interventions through automated dosing and operational adjustments.

Global case studies in digital adoption
Several cement companies around the world exemplify digital transformation in practice.
Heidelberg Materials has deployed digital twin technologies across global plants, achieving up to 15 per cent increases in production efficiency and 20 per cent reductions in energy consumption by leveraging real-time analytics and predictive algorithms.
Holcim’s Siggenthal plant in Switzerland piloted AI controllers that autonomously adjusted kiln operations, boosting throughput while reducing specific energy consumption and emissions.
Cemex, through its AI and predictive maintenance initiatives, improved kiln availability and reduced maintenance costs by predicting failures before they occurred. Global efforts also include AI process optimisation initiatives to reduce energy consumption and environmental impact.

Challenges and the road ahead
Despite these advances, digitalisation in cement grinding faces challenges. Legacy equipment may lack sensor readiness, requiring retrofits and edge-cloud connectivity upgrades. Data governance and integration across plants and systems remains a barrier for many mid-tier producers. Yet, digital transformation statistics show momentum: more than half of cement companies have implemented IoT sensors for equipment monitoring, and digital twin adoption is growing rapidly as part of broader Industry 4.0 strategies.
Furthermore, as digital systems mature, they increasingly support sustainability goals: reduced energy use, optimised media consumption and lower greenhouse gas emissions. By embedding intelligence into grinding circuits and material inputs like grinding aids, cement manufacturers can strike a balance between efficiency and environmental stewardship.
Conclusion
Digitalisation is not merely an add-on to cement manufacturing. It is reshaping the competitive and sustainability landscape of an industry often perceived as inertia-bound. With grinding representing a nexus of energy intensity and cost, digital technologies from sensor networks and predictive analytics to digital twins offer new levers of control. When paired with innovations in grinding media and grinding aids, particularly those with embedded digital capabilities, plants can achieve unprecedented gains in efficiency, predictability and performance.
For global cement producers aiming to reduce costs and carbon footprints simultaneously, the future belongs to those who harness digital intelligence not just to monitor operations, but to optimise and evolve them continuously.

About the author:
Professor Procyon Mukherjee, ex-CPO Lafarge-Holcim India, ex-President Hindalco, ex-VP Supply Chain Novelis Europe,
has been an industry leader in logistics, procurement, operations and supply chain management. His career spans 38 years starting from Philips, Alcan Inc (Indian Aluminum Company), Hindalco, Novelis and Holcim. He authored the book, ‘The Search for Value in Supply Chains’. He serves now as Visiting Professor in SP Jain Global, SIOM and as the Adjunct Professor at SBUP. He advises leading Global Firms including Consulting firms on SCM and Industrial Leadership and is a subject matter expert in aluminum and cement. An Alumnus of IIM Calcutta and Jadavpur University, he has completed the LH Senior Leadership Programme at IVEY Academy at Western University, Canada.

Continue Reading

Trending News