Connect with us

Concrete

Journey of cement as a sustainable construction material

Published

on

Shares

The global cement industry space is as big as $300 billion, almost half of that is in China, but the real distinctive way of looking at the space is to see how much of this is ??ustainably??organised, as most of it is not.

The two most dominant regions that are organising themselves sustainably is EU and China, the former is doing it through legislations and cement companies have to buy carbon credits, the price of which has moved to the stratosphere, so the financial incentives are driving it as less emissions can only reduce this impact. The latter is cracking down on all polluting industries and emission norms remain stringent for all industries, including cement.

The rest of the world do not have a concerted way of incentivising the sustainability journey in cement, although every government wants to limit the impact of emissions and there are norms set in this regard. These norms however are far short of making the journey for a net zero kind of impact, which essentially means that cement as a construction material will not add any net emission of CO2 to the atmosphere either during production or in sourcing of inputs or during transportation and use. This is a very tall task for three reasons.

The first reason is that the conversion of limestone to clinker itself is the fundamental driver of the bulk of the CO2 emissions as the molecular structure changes. The second most dominant factor for emissions is in the use of energy for heating of the limestone mix and the emissions that stem from the logistics sector on the inbound and outbound to move materials. The third is the entire supply chain of cement including all sources of direct and indirect materials add to the woes of emissions generated by the partners in the process. Thus making and distribution of cement becomes the text book case for emissions and sustainability.

The cement to CO2 mix is simple to understand that for every ton of cement produced 0.6 tons end up as CO2 in the atmosphere. So if the world produces 4.3 billion tonnes of cement, 2.6 billion tonnes of CO2 is emitted by the industry globally, out of which 1.82 billion tonne is only in the conversion of limestone to clinker.

This natural process of production of cement is where all attention is currently devoted as the rest has solutions like using solar or wind as energy source, waste heat recovery systems or electrification in transportation and improvement of efficiencies of all kind in the entire supply chain. But the basic production process of cement needs a breakthrough look if net zero targets are to be met.

This journey of reducing the emissions for producing cement started in the early part of 2000, when Polish cement manufacturers started using more fly ash as raw material inputs while grinding clinker to cement, this reduced the clinker in cement. The percentage use of fly ash moved to plus 30 per cent when it drew the world?? attention as it meant that overall emission reduction could touch 30 per cent of 70 per cent or 21 per cent.

The same started to happen with use of slag in slag based cement where the percentage use touched more than 50 per cent, which meant that 50 per cent of 70 per cent, or 35 per cent reduction in emission for the overall cement industry.

Thus alternate use of raw materials in the grinding, slag and fly ash helped to reduce CO2 emissions from close to 600 kg per ton of cement to 550 kg per tonne of cement now. The question now is to look at the balance, which is the very production of clinker through the natural process of conversion of limestone through application of heat, which releases CO2 to the atmosphere.

The current technologies where the attention has been drawn is towards carbon capture processes that will disallow release of carbon dioxide (CO2) to the atmosphere. The first one of its kind is the strategy of using CO2 for permanent storage during the production of concrete, where CO2 molecules are injected when cement is mixed with water to create concrete and it permanently stores CO2 to harden the concrete forever.

Today the world over pre-cast or pre-fabricated concrete blocks are the new norms of the day and this technology can be used to absorb the CO2 molecules to harden the concrete and this would prevent the release of CO2 to the atmosphere. This is the future use of CO2 not only from the emissions coming from the Cement industry but also from any industry that releases CO2 and it helps in the carbon credit offset for all industries as well.

Thus carbon capture, sequestration and its use in existing or future products is where the world?? attention is devoted; the efficiency improvement programs, use of waste heat recovery from the process by extracting from the cooler, use of alternate materials during grinding, etc. all comes on top.

If the world?? incentive systems are well coordinated, the pace at which these programs are run will only move to the next gear, as the investments can only pay back to offset the carbon credits.

The cement-concrete industry on the other hand by providing a useful carbon capture solution in its product would have the right for a premium that customers would be willing to pay as responsibility for the environment becomes mandatory for all.

Footnote:

ABOUT THE AUTHOR:

Procyon Mukherjee is an ex-Chief Procurement Officer at LafargeHolcim India.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Concrete

India Sets Up First Carbon Capture Testbeds for Cement Industry

Five CCU testbeds launched to decarbonise cement production

Published

on

By

Shares
The Department of Science and Technology (DST) recently unveiled a pioneering national initiative: five Carbon Capture and Utilisation (CCU) testbeds in the cement sector, forming a first-of-its-kind research and innovation cluster to combat industrial carbon emissions.
This is a significant step towards India’s Climate Action for fostering National Determined Contributions (NDCs) targets and to achieve net zero decarbonisation pathways for Industry Transition., towards the Government’s goal to achieve a carbon-neutral economy by 2070.
Carbon Capture Utilisation (CCU) holds significant importance in hard-to-abate sectors like Cement, Steel, Power, Oil &Natural Gas, Chemicals & Fertilizers in reducing emissions by capturing carbon dioxide from industrial processes and converting it to value add products such as synthetic fuels, Urea, Soda, Ash, chemicals, food grade CO2 or concrete aggregates. CCU provides a feasible pathway for these tough to decarbonise industries to lower their carbon footprint and move towards achieving Net Zero Goals while continuing their operations efficiently. DST has taken major strides in fostering R&D in the CCUS domain.
Concrete is vital for India’s economy and the Cement industry being one of the main hard-to-abate sectors, is committed to align with the national decarbonisation commitments. New technologies to decarbonise emission intensity of the cement sector would play a key role in achieving of national net zero targets.
Recognizing the critical need for decarbonising the Cement sector, the Energy and Sustainable Technology (CEST) Division of Department launched a unique call for mobilising Academia-Industry Consortia proposals for deployment of Carbon Capture Utilisation (CCU) in Cement Sector. This Special call envisaged to develop and deploy innovative CCU Test bed in Cement Sector with thrust on Developing CO2 capture + CO2 Utilisation integrated unit in an Industrial set up through an innovative Public Private Partnership (PPP) funding model.
As a unique initiative and one of its first kind in India, DST has approved setting up of five CCU testbeds for translational R&D, to be set up in Academia-Industry collaboration under this significant initiative of DST in PPP mode, engaging with premier research laboratories as knowledge partners and top Cement companies as the industry partner.
On the occasion of National Technology Day celebrations, on May 11, 2025 the 5 CCU Cement Test beds were announced and grants had been handed over to the Test bed teams by the Chief Guest, Union Minister of State (Independent Charge) for Science and Technology; Earth Sciences and Minister of State for PMO, Department of Atomic Energy, Department of Space, Personnel, Public Grievances and Pensions, Dr Jitendra Singh in the presence of Secretary DST Prof. Abhay Karandikar.
The five testbeds are not just academic experiments — they are collaborative industrial pilot projects bringing together India’s top research institutions and leading cement manufacturers under a unique Public-Private Partnership (PPP) model. Each testbed addresses a different facet of CCU, from cutting-edge catalysis to vacuum-based gas separation.
The outcomes of this innovative initiative will not only showcase the pathways of decarbonisation towards Net zero goals through CCU route in cement sector, but should also be a critical confidence building measure for potential stakeholders to uptake the deployed CCU technology for further scale up and commercialisation.
It is envisioned that through continuous research and innovation under these test beds in developing innovative catalysts, materials, electrolyser technology, reactors, and electronics, the cost of Green Cement via the deployed CCU technology in Cement Sector may considerably be made more sustainable.
Secretary DBT Dr Rajesh Gokhale, Dr Ajai Choudhary, Co-Founder HCL, Dr. Rajesh Pathak, Secretary, TDB, Dr Anita Gupta Head CEST, DST and Dr Neelima Alam, Associate Head, DST were also present at the programme organized at Dr Ambedkar International Centre, New Delhi.

Continue Reading

Concrete

JK Lakshmi Adopts EVs to Cut Emissions in Logistics

Electric vehicles deployed between JK Puram and Kalol units

Published

on

By

Shares
JK Lakshmi Cement, a key player in the Indian cement industry, has announced the deployment of electric vehicles (EVs) in its logistics operations. This move, made in partnership with SwitchLabs Automobiles, will see EVs transporting goods between the JK Puram Plant in Sirohi, Rajasthan, and the Kalol Grinding Unit in Gujarat.
The announcement follows a successful pilot project that showcased measurable reductions in carbon emissions while maintaining efficiency. Building on this, the company is scaling up EV integration to enhance sustainability across its supply chain.
“Sustainability is integral to our vision at JK Lakshmi Cement. Our collaboration with SwitchLabs Automobiles reflects our continued focus on driving innovation in our logistics operations while taking responsibility for our environmental footprint. This initiative positions us as a leader in transforming the cement sector’s logistics landscape,” said Arun Shukla, President & Director, JK Lakshmi Cement.
This deployment marks a significant step in aligning with India’s push for greener transport infrastructure. By embracing clean mobility, JK Lakshmi Cement is setting an example for the industry, demonstrating that environmental responsibility can go hand in hand with operational efficiency.
The company continues to embed sustainability into its operations as part of a broader goal to reduce its carbon footprint. This initiative adds to its vision of building a more sustainable and eco-friendly future.
JK Lakshmi Cement, part of the 135-year-old JK Organisation, began operations in 1982 and has grown to become a recognised name in Indian cement. With a presence across Northern, Western, and Eastern India, the company has a cement capacity of 16.5 MTPA, with a target to reach 30 MT by 2030. Its product range includes ready-mix concrete, gypsum plaster, wall putty, and autoclaved aerated fly ash blocks.

Continue Reading

Concrete

Holcim UK drives sustainable construction

Published

on

By

Shares

Holcim UK has released a report titled ‘Making Sustainable Construction a Reality,’ outlining its five-fold commitment to a greener future. The company aims to focus on decarbonisation, circular economy principles, smarter building methods, community engagement, and integrating nature. Based on a survey of 2,000 people, only 41 per cent felt urban spaces in the UK are sustainably built. A significant majority (82 per cent) advocated for more green spaces, 69 per cent called for government leadership in sustainability, and 54 per cent saw businesses as key players. Additionally, 80 per cent of respondents stressed the need for greater transparency from companies regarding their environmental practices.

Image source:holcim

Continue Reading

Trending News

SUBSCRIBE TO THE NEWSLETTER

 

Don't miss out on valuable insights and opportunities to connect with like minded professionals.

 


    This will close in 0 seconds